Ctructure and Interpretation of

Gignale and
CQyctemse

Edward Achford Lee
Pravin Varaiya

UC Berkeley

Second Edition
http://LeeVaraiya.org

Copyright ©2011
Edward Ashford Lee & Pravin Varaiya
All rights reserved

Second Edition, Version 2.04

ISBN 978-0-578-07719-2

Please cite this book as:
E. A. Lee and P. Varaiya,

Structure and Interpretation of Signals and Systems,
Second Edition, LeeVaraiya.org, 2011.

First Edition was printed by:

Addison-Wesley, ISBN 0-201-74551-8, 2003, Pearson Education, Inc.

Preface

1 Signals and Systems

1.1 Signals.
1.2 Systems
1.3 Summary
Exercises

2 Defining Signals and Systems

2.1 Defining functions
2.2 Definingsignals
2.3 Defining systems
24 Summary
Exercises

3 State Machines

3.1 Structure of state machines

3.2 Finite state machines

3.3 Nondeterministic state machines

Contents

iii

3.4 Simulationrelations 112

3.5 Summary e e e e 121
Exercises 129
Composing State Machines 137
4.1 Synchrony e 138
4.2 Side-by-side composition Lo 139
4.3 Cascade composition 143
4.4 Product-forminputsand outputs 148
4.5 General feedforward composition 151
4.6 Hierarchical composition 154
47 Feedback 155
4.8 Summaryo e e e e 177
Exercises 179
Linear Systems 187
5.1 Operation of an infinite state machine 189
52 Linearfunctions L 192
5.3 The [A,B,C,D] representation of asystem 195
5.4 Continuous-time state-spacemodels 218
5.5 Summary e e 219
Exercises 227
Hybrid Systems 231
6.1 Mixedmodels 233
6.2 Modalmodels 235
6.3 Timedautomata 240
6.4 More interesting dynamics o 250
6.5 Supervisorycontrolo 260
6.6 Formalmodel 266

Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org

6.7 Summary e e e 268

Exercises e 269
7 Frequency Domain 275
7.1 Frequency decomposition 277
7.2 Phase e 283
7.3 Spatial frequency 284
7.4 Periodic and finite signals Lo 285
7.5 Fourierseries e 289
7.6 Discrete-time signals L 300
TT Summaryo e e e e e e e e 303
Exercises 304
8 Frequency Response 311
8.1 LTIsSystems o v ittt e e e e e 313
8.2 Finding and using the frequency response 325
8.3 Determining the Fourier series coefficients 339
8.4 Frequency response and the Fourier series 340
8.5 Frequency response of composite systems 342
8.6 Summary e 346
Exercises e 355
9 Filtering 363
9.1 Convolution e 365
9.2 Frequency response and impulse response 378
9.3 Causality 382
9.4 Finite impulse response (FIR) filters 382
9.5 Infinite impulse response (IIR) filters 395
9.6 Implementationoffilters 398
9.7 Summary 403

Lee & Varaiya, Signals and Systems v

http://LeeVaraiya.org

10

11

12

13

vi

Exercises e 406

The Four Fourier Transforms 413
10.1 Notation o e e e 414
10.2 The Fourier series (FS) 415
10.3 The discrete Fourier transform (DFT) 421
10.4 The discrete-Time Fourier transform (DTFT) 424
10.5 The continuous-time Fourier transform 428
10.6 Fourier transforms vs. Fourier series 434
10.7 Properties of Fourier transforms 444
10.8 Summary e 458
Exercises 460
Sampling and Reconstruction 473
11.1 Sampling e 474
11.2 Reconstruction e 482
11.3 The Nyquist-Shannon sampling theorem 488
11.4 Summary e 494
Exercises 495
Stability 499
12.1 Boundedness and stability 503
122 The Ztransform 509
12.3 The Laplace transform 521
12.4 Summaryo e e 530
Exercises 532
Laplace and Z Transforms 537
13.1 Properties of the Z tranform 538
13.2 Frequency response and pole-zeroplots 550
13.3 Properties of the Laplace transform 552

Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org

13.4 Frequency response and pole-zeroplots

13.5 The inverse transforms oo

13.6 Steady state response e e e e e e e
13.7 Linear difference and differential equations
13.8 State-spacemodels Lo
13.9 Summary e

EXercises o e

14 Composition and Feedback Control
14.1 Cascade composition i v it
14.2 Parallel composition
14.3 Feedback composition

14.4 PID controllers e
14.5 Summary e e e

Exercises e

A Sets and Functions
Al Sets . . . e
A2 Functions
A3 Summary e e

Exercises e

B Complex Numbers
B.1 Imaginary numbers
B.2 Arithmetic of imaginary numbers L.
B.3 Complexnumbers
B.4 Arithmetic of complex numbers
B.5 Exponentials

B.6 Polarcoordinates

EXercises e

Lee & Varaiya, Signals and Systems

611
613
620
626

639
647

648

655
656
677
680

684

689
690
691
692
693
694

696
701

vii

http://LeeVaraiya.org

Bibliography 703
Notation Index 704

Index 708

viii Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org

Preface

Signals convey information. Systems transform signals. This book introduces the mathe-
matical models used to design and understand both. It is intended for students interested
in developing a deep understanding of how to digitally create and manipulate signals to
measure and control the physical world and to enhance human experience and communi-
cation.

The discipline known as “signals and systems” is rooted in the intellectual tradition of
electrical engineering (EE). This tradition, however, has evolved in unexpected ways.
EE has lost its tight coupling with the “electrical.” So although many of the techniques
introduced in this book were first developed to analyze circuits, today they are widely
applied in information processing, system biology, mechanical engineering, finance, and
many other disciplines.

This book approaches signals and systems from a computational point of view. A more
traditional introduction to signals and systems would be biased towards the historic ap-
plication, analysis and design of circuits. It would focus almost exclusively on linear
time-invariant systems, and would develop continuous-time models first, with discrete-
time models then treated as an advanced topic.

The approach in this book benefits students by showing from the start that the methods of
signals and systems are applicable to software systems, and most interestingly, to systems

ix

Preface

that mix computers with physical devices and processes, including mechanical control
systems, biological systems, chemical processes, transportation systems, and financial
systems. Such systems have become pervasive, and profoundly affect our daily lives.

The shift away from circuits implies some changes in the way the methodology of signals
and systems is presented. While it is still true that a voltage that varies over time is
a signal, so is a packet sequence on a network. This text defines signals to cover both.
While it is still true that an RLC circuit is a system, so is a computer program for decoding
Internet audio. This text defines systems to cover both. While for some systems the state
is still captured adequately by variables in a differential equation, for many it is now the
values in registers and memory of a computer. This text defines state to cover both.

The fundamental limits also change. Although we still face thermal noise and the speed
of light, we are likely to encounter other limits—such as complexity, computability, chaos,
and, most commonly, limits imposed by other human constructions—before we get to
these. The limitations imposed, for example, when transporting voice signals over the In-
ternet, are not primarily physical limitations. They are instead limitations arising from the
design and implementation of the Internet, and from the fact that transporting voice was
never one of the original intentions of the design. Similarly, computer-based audio sys-
tems face latency and jitter imposed by an operating system designed to time share scarce
computing resources among data processing tasks. This text focuses on composition of
systems so that the limits imposed by one system on another can be understood.

The mathematical basis for the discipline also changes with this new emphasis. The
mathematical foundations of circuit analysis are calculus and differential equations. Al-
though we still use calculus and differential equations, we frequently need discrete math,
set theory, and mathematical logic. Whereas the mathematics of calculus and differential
equations evolved to describe the physical world, the world we face as system designers
often has nonphysical properties that are not such a good match for this mathematics.
This text bases the entire study on a highly adaptable formalism rooted in elementary set
theory.

Despite these fundamental changes in the medium with which we operate, the methodol-
ogy of signals and systems remains robust and powerful. It is the methodology, not the
medium, that defines the field.

The book is based on a course at Berkeley required of all majors in Electrical Engineer-
ing and Computer Sciences (EECS). The experience developing the course is reflected in
certain distinguished features of this book. First, no background in electrical engineer-

X Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org

Preface

ing or computer science is assumed. Readers should have some exposure to calculus,
elementary set theory, series, first order linear differential equations, trigonometry, and
elementary complex numbers. The appendices review set theory and complex numbers,
so this background can be made up students.

Approach

This book is about mathematical modeling and analysis of signals and systems, appli-
cations of these methods, and the connection between mathematical models and compu-
tational realizations. We develop three themes. The first theme is the use of sets and
functions as a universal language to describe diverse signals and systems. Signals—
voice, images, bit sequences—are represented as functions with an appropriate domain
and range. Systems are represented as functions whose domain and range are themselves
sets of signals. Thus, for example, an Internet voice signal is represented as a function
that maps voice-like signals into sequences of packets.

The second theme is that complex systems are constructed by connecting simpler sub-
systems in standard ways—cascade, parallel, feedback. The connections determine the
behavior of the interconnected system from the behaviors of component subsystems. The
connections place consistency requirements on the input and output signals of the systems
being connected.

Our third theme is to relate the declarative view (mathematical, “what is”) with the imper-
ative view (procedural, “how to”). That is, we associate mathematical analysis of systems
with realizations of these systems. This is the heart of engineering. When electrical en-
gineering was entirely about circuits, this was relatively easy, because it was the physics
of the circuits that was being described by the mathematics. Today we have to some-
how associate the mathematical analysis with very different realizations of the systems,
most especially software. We do this association through the study of state machines, and
through the consideration of many real-world signals, which, unlike their mathematical
abstractions, have little discernable declarative structure. Speech signals, for instance, are
far more interesting than sinusoids, and yet many signals and systems textbooks talk only
about sinusoids.

Lee & Varaiya, Signals and Systems xi

http://LeeVaraiya.org

Preface

Content

We begin in Chapter 1 by describing signals as functions, focusing on characterizing the
domain and the range for familiar signals that humans perceive, such as sound, images,
video, trajectories of vehicles, as well as signals typically used by machines to store or
manipulate information, such as sequences of words or bits.

Systems, also introduced in Chapter 1, are described as functions, but now the domain and
the range are themselves sets of signals. Systems can be connected to form a more com-
plex system, and the function describing these more complex systems is a composition of
functions describing the component systems.

Chapter 2 focuses on how to define the functions that we use to model both signals and
systems. It distinguishes declarative definitions (assertions of what a signal or system is)
from imperative ones (descriptions of how a signal is produced or processed by a system).

The imperative approach is further developed in Chapter 3 using the notion of state, the
state transition function, and the output function, all in the context of finite state machines.
In Chapter 4, state machines are composed in various ways (cascade, parallel, and feed-
back) to make more interesting systems. Applications to feedback control illustrate the
power of the state machine model.

In Chapter 5, time-based systems are studied, first with discrete-time systems (which have
simpler mathematics), and then with continuous-time systems. We introduce the notion
of a state machine and define linear time-invariant (LTI) systems as state machines with
linear state transition and output functions and zero initial state. The input-output behavior
of these systems is fully characterized by their impulse response.

Chapter 7 introduces frequency decomposition of signals, Chapter 8 introduces frequency
response of LTI systems, and Chapter 9 brings the two together by discussing filtering.
The approach is to present frequency domain concepts as a complementary toolset, differ-
ent from that of state machines, and much more powerful when applicable. Frequency de-
composition of signals is motivated first using psychoacoustics, and gradually developed
until all four Fourier transforms (the Fourier series, the Fourier transform, the discrete-
time Fourier transform, and the discrete Fourier transform) have been described. We
linger on the first of these, the Fourier series, since it is conceptually the easiest, and then
more quickly present the others as generalizations of the Fourier series. LTI systems yield
best to frequency-domain analysis because of the property that complex exponentials are
eigenfunctions (the output is a scaled version of the input). Consequently, they are fully

xii Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org

Preface

characterized by their frequency response—the main reason that frequency domain meth-
ods are important in the analysis of filters and feedback control.

Chapter 10 covers classical Fourier transform material such as properties of the four
Fourier transforms and transforms of basic signals. Chapter 11 applies frequency domain
methods to a study of sampling and aliasing.

Chapters 12, 13 and 14 extend frequency domain techniques to include the Z transform
and the Laplace transform. Applications in signal processing and feedback control illus-
trate the concepts and the utility of the techniques. Mathematically, the Z transform and
the Laplace transform are introduced as extensions of the discrete-time and continuous-
time Fourier transforms to signals on which Fourier transforms do not work, specifically
signals that are not absolutely summable or integrable. Practically, the concern is for
systems that are not stable and for systems that consume unbounded amounts of energy.
These chapters extend the intuition of previous chapters to cover such systems.

The unified modeling approach in this text is rich enough to describe a wide range of
signals and systems, including those based on discrete events and those based on sig-
nals in time, both continuous and discrete. The complementary tools of state machines
and frequency domain methods permit analysis and implementation of concrete signals
and systems. Hybrid systems and modal models offer systematic ways to combine these
complementary toolsets. The framework and the tools of this text provide a foundation
on which to build later courses on digital systems, embedded systems, communications,
signal processing, hybrid systems, and control.

Pedagogical features

This book has a number of highlights that make it well suited as a textbook for an intro-
ductory course.

1. “Probing Further” sidebars briefly introduce the reader to interesting extensions of
the subject, to applications, and to more advanced material. They serve to indicate
directions in which the subject can be explored.

2. “Basics” sidebars offer readers with less mathematical background some basic tools
and methods.

Lee & Varaiya, Signals and Systems xiii

http://LeeVaraiya.org

Preface

3. Appendix A reviews basic set theory and helps establish the notation used through-
out the book.

4. Appendix B reviews complex variables, making it unnecessary for students to have
much background in this area.

5. Key equations are boxed to emphasize their importance. They can serve as the
places to pause in a quick reading. In the index, the page numbers where key terms
are defined are shown in bold.

6. The exercises at the end of each chapter are annotated with the letters E, T, or
C to distinguish those exercises that are mechanical (E for excercise) from those
requiring a plan of attack (T for thought) and those that generally have more than
one reasonable answer (C for conceptualization).

Notation

The notation in this text is unusual when compared to standard texts on signals and sys-
tems. We explain our reasons for this as follows:

Domains and ranges. It is common in signals and systems texts to use the form of the
argument of a function to define its domain. For example, x(n) is a discrete-time signal,
while x(7) is a continuous-time signal; X (j®) is the continuous-time Fourier transform
and X (/) is the discrete-time Fourier transform. This leads to apparent nonsense like

x(n) = x(nT) to define sampling, or to confusion like X (j®) # X (e/®) even when j® =
el®,

We treat the domain of a function as part of its definition. Thus a discrete-time, real-
valued signal is a function x : Z — R, which maps integers to real numbers. Its discrete-
time Fourier transform (DTFT) is a function X : R — C, which maps real numbers into
complex numbers. The DTFT is found using a function whose domain and range are sets
of functions,

DTFT : [Z — R] — [R = C].

This function maps functions of the form x : Z — R into functions of the form X : R — C.
The notation [Z — R] means the set of all functions mapping integers into real numbers.
Then we can unambiguously write X = DTFT (x).

Xiv Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org

Preface

Functions as values. Most texts call the expression x(¢) a function. A better interpretation
is that x(7) is an element in the range of the function x. The difficulty with the former
interpretation becomes obvious when talking about systems. Many texts pay lip service
to the notion that a system is a function by introducing a notation like y(¢) = 7'(x(z)). This
makes it seem that 7' acts on the value x(¢) rather than on the entire function x.

Our notation includes set of functions, allowing systems to be defined as functions with
such sets as the domain and range. Continuous-time convolution, for example, becomes

Convolution: [R — R] x [R — R] — [R — R].
We then introduce the notation * as a shorthand,
y = x*h = Convolution(x,h),

and define the convolution function by
VieR, y(t)=(xxh)(t) = / ()t —T)dx.

Note the careful parenthesization. The more traditional notation, y(z) = x(¢) x h(t), would
seem to imply that y(r — T) = x(t — T) xh(t — T'). But it is not so! Such notation un-
dermines a student’s confidence in algebra, since substitution of a value for ¢ does not
work!

A major advantage of our notation is that it easily extends beyond LTI systems to the sorts
of systems that inevitably arise in any real world application, such as mixtures of discrete
event and continuous-time systems.

Names of functions. We use long names for functions and variables when they have a
concrete interpretation. Thus, instead of x we might use Sound. This follows a long-
standing tradition in software, where readability is considerably improved by long names.
By giving us a much richer set of names to use, this helps us avoid some of the preceding
pitfalls. For example, to define sampling of an audio signal, we might write

SampledSound = Samplery (Sound).

It also helps bridge the gap between realizations of systems (which are often software)
and their mathematical models. How to manage and understand this gap is a major theme
of our approach.

Lee & Varaiya, Signals and Systems XV

http://LeeVaraiya.org

Preface

How to use this book

At Berkeley, the first 11 chapters of this book are covered in a 15-week, one-semester
course. Even though it leaves Laplace transforms, Z transforms, and feedback control
systems to a follow-up course, it remains a fairly intense experience. Each week consists
of three 50-minute lectures, a one-hour problem session, and one three-hour laboratory.
The lectures and problem sessions are conducted by a faculty member while the laboratory
is led by teaching assistants, who are usually graduate students, but are also often talented
juniors or seniors.

We have developed laboratory components based on MATLAB and Simulink, and a sep-
arate set based on LabVIEW. In both cases, then lab content is closely coordinated with
the lectures. The text does not offer a tutorial on LabVIEW, MATLAB, or Simulink,
although the labs include enough material so that, combined with on-line help, they are
sufficient. Some examples in the text and some exercises at the ends of the chapters de-
pend on MathScript, the mathematical expression language used by both MATLAB and
LabVIEW.

At Berkeley, this course is taken by all electrical engineering and computer science stu-
dents, and is followed by a more traditional signals and systems course. That course
covers the material in the last three chapters plus applications of frequency-domain meth-
ods to communications systems. The follow-up course is not taken by most computer
science students. In a program that is more purely electrical and computer engineering
than ours, a better approach might be to spend two quarters or two semesters on the mate-
rial in this text, since the unity of notation and approach would be better than having two
disjoint courses, the introductory one using a modern approach, and the follow-up course
using a traditional one.

Acknowledgements

Many people have contributed to the content of this book. Dave Messerschmitt concep-
tualized the first version of the course on which the book is based, and later committed
considerable departmental resources to the development of the course while he was chair
of the EECS department at Berkeley. Randy Katz, Richard Newton, and Shankar Sas-
try continued to invest considerable resources in the course when they each took over as
chair, and backed our efforts to establish the course as a cornerstone of our undergraduate

XVi Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org

Preface

curriculum. This took considerable courage, since the conceptual approach of the course
was largely unproven.

Tom Henzinger probably had more intellectual influence over the approach than any other
individual. The view of state machines, of composition of systems, and of hybrid systems
owe a great deal to Tom. Gerard Berry also contributed a great deal to our way of pre-
senting synchronous composition.

We were impressed by the approach of Harold Abelson and and Gerald Jay Sussman,
in Structure and Interpretation of Computer Programs (MIT Press, 1996), who con-
fronted a similar transition in their discipline. The title of our book shows their influ-
ence. Jim McLellan, Ron Shafer, and Mark Yoder influenced this book through their
pioneering departure from tradition in signals and systems, DSP First—A Multimedia
Approach (Prentice-Hall, 1998). Ken Steiglitz greatly influenced the labs with his inspi-
rational book, A DSP Primer: With Applications to Digital Audio and Computer Music
(Addison-Wesley, 1996). Babak Ayazifar, with his visionary treatment of the course, has
significantly influenced more recent versions of the book.

A number of people have been involved in the media applications, examples, the labo-
ratory development, and the web content associated with the book. These include Brian
Evans and Ferenc Kovac. We also owe gratitude for the superb technical support from
Christopher Brooks. Jie Liu contributed sticky masses example to the hybrid systems
chapter, and Yuhong Xiong contributed the technical stock trading example. Other exam-
ples and ideas were contributed by Steve Neuendorffer, Cory Sharp, and Tunc Simsek.

Over several years, students at Berkeley have taken the course that provided the impetus
for this book. They used successive versions of the book and the Web content. Their
varied response to the course helped us define the structure of the book and the level of
discussion. The course is taught with the help of undergraduate teaching assistants. Their
comments helped shape the laboratory material.

Parts of this book were reviewed by more than 30 faculty members around the coun-
try. Their criticisms helped us correct defects and inconsistencies in earlier versions.
Of course, we alone are responsible for the opinions expressed in the book, and the er-
rors that remain. We especially thank: Jack Kurzweil, San Jose State University; Lee
Swindlehurst, Brigham Young University; Malur K. Sundareshan, University of Arizona;
Stéphane Lafortune, University of Michigan; Ronald E. Nelson, Arkansas Tech Univer-
sity; Ravi Mazumdar, Purdue University; Ratnesh Kumar, University of Kentucky; Rahul
Singh, San Diego State University; Paul Neudorfer, Seattle University; R. Mark Nelms,

Lee & Varaiya, Signals and Systems Xvii

http://LeeVaraiya.org

Preface

Auburn University; Chen-Ching Liu, University of Washington; John H. Painter, Texas
A&M University; T. Kirubarajan, University of Connecticut; James Harris, California
Polytechnic State University in San Luis Obispo; Frank B. Gross, Florida A&M Uni-
versity; Donald L. Snyder, Washington University in St. Louis; Theodore E. Djaferis,
University of Massachusetts in Amherst; Soura Dasgupta, University lowa; Maurice Fe-
lix Aburdene, Bucknell University; and Don H. Johnson, Rice University.

Many of these reviews were solicited by Heather Shelstad of Brooks/Cole, Denise Penrose
of Morgan-Kaufmann, and Susan Hartman and Galia Shokry of Addison-Wesley, who
handled the publication of the first edition of this book. We are grateful to these editors for
their interest and encouragement. To Susan Hartman, Galia Shokry and Nancy Lombardi
we owe a special thanks; their enthusiasm and managerial skills helped us and others keep
the deadlines in bringing the first edition of the book to print. Subsequent editions build
on this.

It took much longer to write this book than we expected when we embarked on this
project. It has been a worthwhile effort nonetheless. Our friendship has deepened, and
our mutual respect has grown as we learned from each other. Rhonda Righter and Ruth
Varaiya have been remarkably sympathetic and encouraging through the many hours at
nights and on weekends that this project has demanded. To them we owe our immense
gratitude.

Xviii Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org

Signals and Systems

Contents
1.1 Signals vt i it e e e e e e e e e e e e 2
1.1.1 Audiosignals 5
Probing Further: Household electrical power 11
1.1.2 TImages i 12
Probing Further: Color and light 15
1.1.3 Videosignals 16
1.1.4 Signals representing physical attributes 17
1.1.5 Sequences. 20
1.1.6 Discrete signals and sampling 22
1.2 Systems . . o v v v vttt e e e e e e e e e e 27
1.2.1 Systemsasfunctions 28
1.2.2 Telecommunications systems 29
Probing Further: Wireless communication 32
Probing Further: LEO telephony 33
1.2.3 Audio storage and retrieval, 36
1.2.4 Modemnegotiation 37
1.2.5 Feedback control systems 38
13 Summary v v it e e e e e e e e e e e e 42
Probing Further: Modems and Encrypted speech 43

0 o = T 45

1.1. SIGNALS

1.1 Signals

Broadly speaking, a signal is a means to convey information. This printed page, for
example, is a signal. So is the sound of someone reading the page aloud. In this text, a
system is a process that generates signals or transforms signals. A person reading this
book aloud, for example, is a system that converts the printed page signal into a sound
signal. So is an electronic book reader for the blind. This book is about developing a
deep enough understanding of signals and systems to be able to understand how such a
book reader and many other systems work. We gain this understanding by dissecting the
structure of signals, examining their interpretation, and developing systematic ways to
analyze and synthesize them. Consider a few examples of signals and systems.

Example 1.1: A sound is a signal. A sequence of bits stored in a flash memory is
also a signal. An MP3 player is a system that converts such a sequence of bits into
high-quality stereo sound. A sequence of commands issued to a computer is also
a signal. An interactive voice response (IVR) system converts spoken words into
commands to a computer. IVR systems are commonly used today in call centers to
efficiently handle high call volumes, for example in customer service centers.

Many mechanical machines produce sound as they operate. As they wear, the sound
that they produce may change. Automated analysis of the sound that they pro-
duce can identify problems before the equipment fails. Such early detection is
extremely valuable, particularly in safety-critical systems, such as jet engines or
power-generation turbines. This book can help understand how to design systems
for such automated detection.

Sound signals can also be converted to images. The famous iTunes visualizer is a
beautiful example; it generates aesthetically pleasing colorful patterns on a screen
that undulate synchronously with music. An ultrasound imaging system generates
sounds with frequencies that are too high for humans to hear, and listens for their
reflections. The sounds are reflected in materials where two distinct materials meet.
These reflections can be used to safely construct images of a baby in a womb, for
example, without exposing the baby to potentially harmful radiation.

2 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org

1. SIGNALS AND SYSTEMS

Example 1.2: An image is a signal. A system that analyzes images, recogniz-
ing objects, faces, animals, etc., might form the heart of an Internet image search
engine. A system that compares images might be used to enforce copyrights. In
factory automation, it is common to use imaging systems to detect manufacturing
defects. An image enhancement system might be used in a digital camera to, for
example, automatically remove red eye, a bright reflection from the back of the
retina that occurs when a camera flash is close to the camera lens.

Example 1.3: A computer program, which is a sequence of commands, is also
a signal. Malware, short for malicious software, is software that surreptitiously
performs undesired functions on your computer. A system that detects malware
transforms the program signal into a simple yes or no answer. Either the program
contains malware or it does not. Although they are far from perfect, such sys-
tems have gotten quite sophisticated, and they can often even detect obfuscated
programs, programs that have been deliberately altered to attempt to hide their ma-
licious intent.

Example 1.4: DNA molecules contain the genetic instructions used in the devel-
opment and functioning of almost all known living organisms. A DNA molecule,
therefore, is a signal, and a biological system uses the structure of the molecule
to synthesize other molecules. The structure of a DNA molecule can be relatively
simply represented as a sequence of one of four types of nucleotides denoted by the
letters A, T, C, and G. A sequence of such letters, therefore, encodes the signal that
the DNA molecule represents.

Example 1.5: Electromagnetic radiation can function as a signal. A radio broad-
cast system, for example, converts sound signals into electromagnetic radiation,
which is then picked up by a radio antenna and converted back to sound. A tele-
vision broadcast system converts images into sequences of bits, and then converts

Lee & Varaiya, Signals and Systems 3

http://LeeVaraiya.org

1.1. SIGNALS

the sequences of bits into radio signals. A TV receiver reverses these conversions.
A radar system generates an electromagnetic signal, transmits it, listens for reflec-
tions, and then converts the reflections into images. Radar signals are routinely
used in air traffic control systems, for example, and for collision avoidance systems
in high-end cars.

One way to get a deeper understanding of a subject is to formalize it, to develop mathemat-
ical models. Such models admit manipulation with a level of confidence not achievable
with less formal models. We know that if we follow the rules of mathematics, then a
transformed model still relates strongly to the original model. There is a sense in which
mathematical manipulation preserves “truth” in a way that is elusive with almost any other
intellectual manipulation of a subject. We can leverage this truth-preservation to gain con-
fidence in the design of a system, to extract hidden information from a signal, or simply
to gain insight.

Mathematically, we model both signals and systems as functions. A signal is a function
that maps a domain, often time or space, into a range, often a physical measure such as air
pressure or light intensity. A system is a function that maps signals from its domain—its
input signals—into signals in its range—its output signals. The domain and the range are
both sets of signals; we call a set of signals a signal space. Thus, systems are functions
whose domains and ranges are signal spaces.

We use the mathematical language of sets and functions to make our models unambigu-
ous, precise, and manipulable. This language has its own notation and rules, which are
reviewed in Appendix A. We begin to use this language in this chapter. Depending on the
situation, we represent physical quantities such as time, voltage, current, light intensity,
air pressure, or the content of a memory location by variables that range over appropriate
sets. A variable has a name, such as n or Intensity, and a set of values that can be assigned
to the variable.

Example 1.6: Time may be represented by a variable n € N, where N represents
the set of natural numbers {1,2,3,--- }. We read the expression “n € N” as “n in the
set of natural numbers,” and it means that is a variable that can have any value in
N. For example, in Unix time or POSIX time, used by many computer systems to
keep track of the date and time, the value of n represents the number of seconds that

4 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org

1. SIGNALS AND SYSTEMS

have elapsed since midnight on January 1, 1970. The time at which we are writing
this paragraph is n = 1290876962, a natural number.

Time may be represented many other ways. For example, the time of day may
be represented as h :m: s, where h € {0,1,---,23} represents the hour, m €
{0,1,---,59} represents the minute, and s € {0,1,---,59} represents the second.
Mathematically, these three numbers form a three-tuple,

(h,m,s) € {0,1,---,23} x {0,1,---,59} x {0,1,--- 59},

where the x operator forms the Cartesian product of sets.

In the study of physical systems, time is often represented by a variable t € R,
where R is the set of non-negative real numbers, or ¢ € R, the real numbers. In
such a representation, the particular value t = 0 will typically have some meaning,
representing for example the time at which a system first begins functioning. Such a
model of time is often called continuous time, reflecting the fact that the set of real
numbers is a continuum. (Technically, a continuum is ordered set that is dense, in
the sense that between any two elements of the set there is another element, and for
which every non-empty ordered subset that has an upper bound has a least upper
bound. But this is more technical than we need for now.)

Example 1.7: The intensity of light reflected from a point on a page may be repre-
sented by a continuous variable x € [0, MaxIntensity], where [0, MaxIntensity] C R
represents a range of real numbers from zero to MaxIntensity, where MaxIntensity
is some maximum value of the intensity. The value x = O represents no reflected
light, indicating that the point on the page is black, whereas MaxIntensity represents
maximum reflected light, indicating that the point on the page is white.

1.1.1 Audio signals

Our ears are sensitive to sound, which physically is rapid variations in air pressure at a
point in space. A particular sound can be represented as a function

| Sound: Time — Pressure

Lee & Varaiya, Signals and Systems 5

http://LeeVaraiya.org

1.1. SIGNALS

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Time in seconds

Figure 1.1: Waveform of a speech fragment.

where Time is the domain of the function, and Pressure is the codomain.* Pressure is a
set consisting of possible values of air pressure, and Time is a set representing the time
interval over which we wish to consider the signal.

Example 1.8: A one-second segment of a voice signal is a function of the form
Voice: [0,1] — Pressure,

where [0, 1] C R represents one second of time. An example of such a function is
plotted in Figure 1.1. The horizontal axis represents times ¢ € [0, 1], and the vertical
axis represents the values Voice(t) € Pressure for eacht € [0, 1]. Such a plot is often
called a waveform.

The signal in Figure 1.1 varies over positive and negative values, averaging ap-
proximately zero. But air pressure cannot be negative, so the vertical axis does not
directly represent air pressure. It is customary to normalize the representation of

*For a review of the notation of sets and functions, see Appendix A.

6 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org

1. SIGNALS AND SYSTEMS

sound by subtracting the ambient air pressure (which averages about 101,325 pas-
cals, where one pascal (written Pa) equals one newton per square meter. Our ears,
after all, are not sensitive to constant ambient air pressure (as we will see later, our
ears are a highpass system). Thus, we take Pressure = R, the real numbers, where
negative pressure means a drop in pressure relative to ambient air pressure.

As plotted, the vertical axis in Figure 1.1 ranges from approximately —32,768 to
32,767 (notice the annotation x 10*, which indicates that the values labeling the
axis should be multiplied by 10,000). This is because the voice signal that is plotted
is actually the internal representation in a computer of the voice signal, and each
value of air pressure is represented by a 16-bit integer. Let us call the set of 16-bit
integers Integers16 = {—32768,...,32767}. Then a more precise representation of
the function would show that the codomain is Integersi6,

Voice: [0,1] — Integersl6.

When a computer plays back an audio signal, the audio hardware of the computer
is responsible for converting members of the set Integersi6 into air pressure. The
actual air pressure at a human ear will depend on the audio hardware, its volume
setting, the distance to the listener, and the acoustic properties of the media between
the audio hardware and the listener.

The previous example models time as a continuum. However, a computer cannot directly
handle such a continuum. In a computer, a sound is represented not as a continuous
waveform, but rather as a list of numbers. Each number is called a sample of the signal.
To get audio quality that is sufficient to make speech signals intelligible (voice-quality
audio), 8,000 samples for every second of speech are generally sufficient. This is what
is typically used for Internet voice signals. Voice transmission over the internet is called
voice over IP or VoIP, where IP stands for Internet protocol. To get audio quality that is
sufficient for music, 44,100 samples for every second of sound are typically used. This
is the standard rate for compact discs (CDs), and it is the most commonly used rate for
MP3 files and other music encoding formats. The tradeoff between sound quality and the
number of samples per second is considered in Chapter 11.

Example 1.9: A close-up of a section of the speech waveform of Figure 1.1 is
shown in Figure 1.2. That plot shows 100 samples. For emphasis, that plot shows

Lee & Varaiya, Signals and Systems 7

http://LeeVaraiya.org

1.1. SIGNALS

a dot for each sample rather than a continuous curve, with a stem connecting the
dot to the horizontal axis. Such a plot is called a stem plot. Since there are 8,000
samples per second, the 100 points in figure 1.2 represent 100/8,000 seconds, or
12.5 milliseconds of speech.

Such signals are said to be discrete-time signals because they are defined only at discrete
points in time. A discrete-time one-second voice signal in a computer is a function

ComputerVoice: DiscreteTime — Integerslo6,

where DiscreteTime = {0,1/8000,2/8000,...,7999/8000} is the set of sampling times.
By contrast, continuous-time signals are functions defined over a continuous interval
of time (technically, a continuum in the set R). The audio hardware of the computer
is responsible for converting the ComputerVoice function into a function of the form
Sound: Time — Pressure. That hardware, which converts an input signal into a differ-
ent output signal, is a system.

x10

of Al oAl

-1.5 I I I I I 1 1
0.188 0.190 0.192 0.194 0.196 0.198 0.200

Time in seconds

Figure 1.2: Discrete-time representation of a speech fragment.

8 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org

1. SIGNALS AND SYSTEMS

The functions Voice and ComputerVoice of the previous examples are not easily defined
by a mathematical expression that, given a value in the domain, provides a value in the
codomain. We now consider an example where there is such an expression.

Example 1.10: The sound emitted by a precisely tuned and idealized 440 Hz
tuning fork over the infinite time interval R = (—oo, o) is the function

PureTone: R — R,
where the time-to-(normalized) pressure assignment is
VteR, PureTone(t) = Psin(2n x 440¢).

(If the notation here is unfamiliar, see Appendix A.) Here, P is the amplitude of
the sinusoidal signal PureTone. It is a real-valued constant. Figure 1.3 is a graph of
a portion of this pure tone (showing only a subset of the domain, R). In the figure,
P=1.

The number 440 in this example is the frequency of the sinusoidal signal shown in Figure
1.3, in units of cycles per second or Hertz, abbreviated Hz." It simply asserts that the
sinusoid completes 440 cycles per second. Alternatively, it completes one cycle in 1/440
seconds or about 2.3 milliseconds. The time to complete one cycle, 2.3 milliseconds, is
called the period.

The Voice signal in Figure 1.1 is much more irregular than PureTone in Figure 1.3. An
important theorem, which we will study in subsequent chapters, says that, despite its
irregularity, a function like Voice is a sum of signals of the form of PureTone, but with
different frequencies. A sum of two pure tones of frequencies, say 440 Hz and 660 Hz, is
the function SumOfTones: R — R given by

VteR, SumOfTones(t) = P sin(2m x 440¢) + P> sin(27m x 660¢)

Notice that summing two signals amounts to adding the values of their functions at each
point in the domain. The two components are shown in Figure 1.4. At any point on

TThe unit of frequency called Hertz is named after physicist Heinrich Rudolf Hertz (1857-94), for his
research in electromagnetic waves.

Lee & Varaiya, Signals and Systems 9

http://LeeVaraiya.org

1.1. SIGNALS

the horizontal axis, the value of the sum is simply the addition of the values of the two
components.

A

time in milliseconds

—_

[¢)]

o

Figure 1.3: Portion of the graph of a pure tone with frequency 440 Hz.

0 1 2 3 4 5 6 7 8
time in milliseconds

Figure 1.4: Sum of two pure tones (in bold), one at 440 Hz (dashed line) and the
other at 660 Hz (solid line).

10 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org

1. SIGNALS AND SYSTEMS

Probing Further: Household electrical power

In the U.S., household current is delivered on three wires, a neutral wire and two hot
wires. The voltage between either hot wire and the neutral wire is around 110 to 120
volts, RMS (root mean square, the square root of the average of the voltage squared).
The voltage between the two hot wires is around 220 to 240 volts, RMS. The higher
voltage is used for appliances that need more power, such as air conditioners. The volt-
age between the hot wires and the neutral wire is sinusoidal with a frequency of 60 Hz.
Thus, for one of the hot wires, it is a function x: R — R where the domain represents
time and the range represents voltage, and

VteR, x(t)=170cos(60 x 2mt).

This 60 Hertz sinusoidal waveform completes one cycle in a period of 7 = 1/60 seconds.
Why is the amplitude 170 volts, rather than 120? Because the 120 voltage is RMS (root
mean square). That is,

1 T
voltagegy s = ?/ x%(t)dt volts = 120,
\ T Jo

the square root of the average of the square of the voltage.
The voltage between the second hot wire and the neutral wire is a function y: R — R

where VieR, y(t)=—170cos(60 x 27t) = —x(t).

It is the negative of the other voltage at any time ¢. This sinusoidal signal is said to have
a phase shift of 180 degrees, or © radians, compared to the first sinusoid. Equivalently,
it is said to be 180 degrees out of phase. We can now see how to get the higher voltage
for power-hungry appliances. We simply use the two hot wires rather than one hot wire
and the neutral wire. The voltage between the two hot wires is the difference, a function
z: R — R where

VieR, z(r)=x(t)—y(r) =340cos(60 x 27r).

This corresponds to 240 volts RMS, as shown in figure 1.5.

Note that the neutral wire should not be confused with the ground wire in a three-
prong plug. The ground wire is a safety feature to allow current to flow into the earth
rather than through a person.

Lee & Varaiya, Signals and Systems 11

http://LeeVaraiya.org

1.1. SIGNALS

1.1.2 Images

If an image is a grayscale picture on a 11 x 8.5 inch sheet of paper, the picture is repre-
sented by a function

Image: [0,11] x [0,8.5] — [0, MaxIntensity], (1.1)

where MaxIntensity is the maximum grayscale value (0 is black and Maxintensity is
white). The set [0, 11] x [0,8.5] defines the space of the sheet of paper. More generally, a

300

Phase 1 - Phase 2

200 Phase 2 - Neutral |

100

- 100

- 200

- 300

I I I I I I I I
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018

Figure 1.5: The voltages between the two hot wires and the neutral wire and
between the two hot wires in household electrical power in the U.S.

12 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org

1. SIGNALS AND SYSTEMS

grayscale image is a function

Image: VerticalSpace x HorizontalSpace — Intensity,

where Intensity = [0, MaxIntensity| is the intensity range from black to white. An example
is shown in Figure 1.6.

For a color picture, the reflected light is sometimes measured in terms of its RGB values
(i.e. the magnitudes of the red, green, and blue colors), and so a color picture is repre-
sented by a function

Colorlmage: VerticalSpace x HorizontalSpace — Intensity’.

The RGB values assigned by Colorlmage at any point (x,y) in its domain is the triple
(r,8,b) € Intensity’ given by

(r,g,b) = Colorlmage(x,y).

Different images will be represented by functions with different spatial domains (the size
of the image might be different), different ranges (we may consider a more or less detailed

Figure 1.6: Grayscale image on the left, and its enlarged pixels on the right.

Lee & Varaiya, Signals and Systems 13

http://LeeVaraiya.org

1.1. SIGNALS

way of representing light intensity and color than grayscale or RGB values), and different
assignments of color values to points in the domain.

Since a computer has finite memory and finite wordlength, an image is stored by dis-
cretizing both the domain and the range, similarly to the ComputerVoice function. So, for
example, your computer may represent an image by storing a function of the form

Computerlmage :

DiscreteVerticalSpace x DiscreteHorizontalSpace — Integers8

where
DiscreteVerticalSpace = {1,2,---,300},

DiscreteHorizontalSpace = {1,2,---,200},and
Integers8 = {0,1,---,255}.
It is customary to say that Computerlmage stores 300 x 200 pixels, where a pixel is an
individual picture element. The value of a pixel is

Computerlmage(row,column) € IntegersS,

where row € DiscreteVerticalSpace, column € DiscreteHorizontalSpace. In this example
the range Integers8 has 256 elements, so in the computer these elements can be repre-
sented by an 8-bit integer (hence the name of the range, Integers8). An example of such
an image is shown in Figure 1.6, where the right-hand version of the image is magnified
to show the discretization implied by the individual pixels.

A computer can store a color image in one of two ways. One way is to represent it as a
function

ColorComputerlmage
DiscreteVerticalSpace x DiscreteHorizontalSpace — Integers8> (1.2)
so each pixel value is an element of {0,1,---,255}°. Such a pixel can be represented as

three 8-bit integers. A common method that saves memory is to use a colormap. Define
the set ColorMapIndexes = {0, --- ,255}, together with a Display function,

Display: ColorMapIndexes — Intensity’. (1.3)

Display assigns to each element of ColorMapIndexes the three (r,g,b) color intensities.
This is depicted in the block diagram in Figure 1.7. Use of a colormap reduces the re-
quired memory to store an image by a factor of three because each pixel is now repre-
sented by a single 8-bit number. But only 256 colors can be represented in any given
image. The function Display is typically represented in the computer as a lookup table.

14 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org

1. SIGNALS AND SYSTEMS

Probing Further: Color and light

The human eye is sensitive to electromagnetic waves of certain frequency. The frequency
f in Hertz of a purely sinusoidal electromagnetic wave is related to its wavelength A in
meters by the formula, f = c/A, where c is the speed of light (about 3 x 10® meters/sec-
ond). The wavelengths of visible light range from about 350-400 nm (nanometers or
10~ meters) to 750-800 nm. We experience light of different wavelengths as having
different colors: violet (350 nm), indigo, blue, green, yellow, orange, red (800 nm).

The retina has three different groups of cones, each sensitive to one of the three pri-
mary colors—red, green, and blue. Other colors are perceived when these three groups
are stimulated in different combinations, as shown below:

By combining its red, green, and blue light sources in different amounts, a computer
monitor can create the perception of all colors. The color white is obtained by adding
all three primary colors, and the absence of any light is perceived as black. This “ad-
ditive” model of color perception was proposed in 1802 by Thomas Young and H.L.F.
Helmholz.

In a computer, if the amount of each primary color is typically represented by an 8-bit
word, and each color is represented by three 8-bit words, giving a total of 28 x 28 x 28 =
224 = 16,777,216 different colors. An 8-bit colormap by contrast can only generate 256
different colors.

Painting works by subtraction: different pigments of color absorb (subtract) light of
different wavelengths. The primary subtractive colors are magenta, yellow, and cyan.

The ear and eye are quite different perceptual systems. If we listen to a sound con-
sisting of the sum of two pure tones, we can distinguish the two tones. However, we
cannot perceive the difference between, say, a yellow light source and an appropriate
combination of red and green sources. The ear can be modeled as a linear time-invariant
system, see Chapter 5. The eye cannot.

Lee & Varaiya, Signals and Systems 15

http://LeeVaraiya.org

1.1. SIGNALS

red

Display : ColorMapIndexes — Intensity’ | green image display device

colorman index (specified as a colormap table) blue (e.g. monitor)
p L=

Figure 1.7: In a computer representation of a color image that uses a colormap,
pixel values are elements of the set ColorMapindexes. The function Display con-
verts these indexes to an RGB representation.

1.1.3 Video signals

A video is a sequence of still images displayed at a certain rate (frequency) ranging from
25 frames per second to much higher (for specialty video). To the human visual system,
a sequence of still images displayed at a high enough rate looks like continuous motion.

At 30 frames per second, the domain of a video signal is discrete time, FrameTimes =
{0,1/30,2/30,--- }, and its range is a set of images, ImageSet. A video signal, therefore,
is a function

Video: FrameTimes — ImageSet. (1.4)

For any time ¢ € FrameTimes, the image Video(t) € ImageSet is displayed. The signal
Video is illustrated in Figure 1.8.

An alternative way of specifying a video signal is by the function Video’ whose domain is
a product set as follows:

Video': FrameTimes x DiscreteVerticalSpace x HorizontalSpace — Intensity’.

Similarly to Figure 1.8, we can depict Video' as in Figure 1.9. The RGB value assigned
to a point (x,y) at time 7 is
(r,g,b) = Vided'(t,x,y). (1.5)

If the signals specified in (1.4) and (1.5) represent the same video, then for all ¥ € FrameTimes
and (x,y) € DiscreteVerticalSpace x HorizontalSpace,

(Video(t))(x,y) = Vided'(t,x,y). (1.6)

16 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org

1. SIGNALS AND SYSTEMS

It is worth pausing to understand the notation used in (1.6). Video is a function of ¢,
so Video(t) is an element in its range ImageSet. Since elements in ImageSet them-
selves are functions, Video(t) is a function. The domain of Video(t) is the product set
DiscreteVerticalSpace x HorizontalSpace, so (Video(t))(x,y) is the value of this func-
tion at the point (x,y) in its domain. This value is an element of Intensity®. On the
right-hand side of (1.6), Video' is a function of (¢,x,y) and so Video'(t,x,y) is an ele-
ment in its range, Im‘ensity3. The equality (1.6) asserts that for all values of #,x,y the
two sides are the same. On the left-hand side of (1.6) the parentheses enclosing Video(t)
are not necessary; we could equally well write Video(t)(x,y). However, the parentheses
improve readability.

1.1.4 Signals representing physical attributes

The change over time in the attributes of a physical object or device can be represented as
functions of time or space.

Example 1.11: The position of an airplane can be expressed as

Position: Time — R,

[] [] [] [] []
0 1/30 2/30 3/30 ... n/30
FrameTimes

Figure 1.8: lllustration of the function Video.

Lee & Varaiya, Signals and Systems 17

http://LeeVaraiya.org

1.1. SIGNALS

18

0 1/30 2/30

red, green, blue values ——>»

Figure 1.9: lllustration of the function Video'.

where for all ¢ € Time,

Position(t) = (x(1),y(t),z(t))

is its position in 3-dimensional space at time ¢. The position and velocity of the
airplane is a function
s: Time — RS, (1.7)

where
s(2) = (x(2),3(2),2(2), vx(2), vy (1), v2(2)) (1.8)
gives its position and velocity at ¢t € Time.

The position of the pendulum shown in the left panel of figure 1.10 is represented
by the function
0: Time — [—m, ™|,

where 0(¢) is the angle with the vertical made by the pendulum at time z.

Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org

1. SIGNALS AND SYSTEMS

The position of the upper and lower arms of a robot depicted in the right panel of
Figure 1.10 can be represented by the function

(0,,6)): Time — [—m,m|?,

where 0,(¢) is the angle at the elbow made by the upper arm with the vertical, and
0;(r) is the angle made by the lower arm with the upper arm at time 7. Note that
we can regard (8,,0;) as a single function with range as the product set [, 7]?
or as two functions 6, and 6; each with range [—m,nt|. Similarly, we can regard s
in (1.7) as a single function with range R® or as a collection of six functions, each
with range R, as suggested by (1.8).

Example 1.12: The spatial variation of temperature over some volume of space
can be represented by a function

AirTemp: X XY xZ — R

where X x Y x Z C R? is the volume of interest, and AirTemp(x,y,z) is the temper-
ature at the point (x,y,z).

Shoulder

0 \

Pendulum Robot Arm \\

Figure 1.10: Position of a pendulum and upper and lower arms of a robot.

Lee & Varaiya, Signals and Systems 19

http://LeeVaraiya.org

1.1. SIGNALS

1.1.5 Sequences

Above we studied examples in which temporal or spatial information is represented by
functions of a variable representing time or space. The domain of time or space may be
continuous as in Voice and Image or discrete as in ComputerVoice and Computerlmage.

In many situations, information is represented as sequences of symbols rather than as
functions of time or space. These sequences occur in two ways: as a representation of
data or as a representation of an event stream. Sequences, in fact, are special sorts of
functions.

Examples of data represented by sequences are common. A file stored in a computer in
binary form is a sequence of bits, or binary symbols, i.e. a sequence of 0’s and 1’s. A text
is a sequence of words. A sheet of music represents a sequence of notes.

20

Example 1.13: Consider an N-bit long binary file,
b1,b2,--+ by,
where each b; € Binary = {0,1}. We can regard this file as a function
File: {1,2,--- N} — Binary,

with the assignment File(n) = b, forevery n € {1,--- ,N}.

Sometimes we can give a mathematical expression for a binary signal. For instance,
the N-bit long binary file A/t consisting of an alternating sequence of 0’s and 1’s is
given by for all n,

0, neven

Alt(”):{l n odd

If instead of Binary we take the range to be EnglishWords, then an N-word long
English text is a function

EnglishText: {1,2,--- ,N} — EnglishWords.

Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org

1. SIGNALS AND SYSTEMS

In general, data sequences are functions of the form

|Data: Indices — Symbols, (1.9)

where Indices C N, where N is the set of natural numbers, is an appropriate index set
such as {1,2,---,N}, and Symbols is an appropriate set of symbols such as Binary or
EnglishWords.

One advantage of the representation (1.9) is that we can then interpret Data as a discrete-
time signal, and so some of the techniques that we will develop in later chapters for those
signals will automatically apply to data sequences. However, the domain /ndices in (1.9)
does not necessarily represent uniformly spaced instances of time. All we can say is
that if m and n are in Indices with m < n, then the m-th symbol Data(m) occurs in the
data sequence before the n-th symbol Data(n), but we cannot say how much time elapses
between the occurrence of those two symbols.

The second way in which sequences arise is as representations of event streams. An event
stream or event trace is a record or log of the significant events that occur in a system of
interest. Here are some everyday examples.

Example 1.14: When you send a file to a printer, the normal trace of events is
CommandPrintFile, FilePrinting, PrintingComplete
but if the printer has run out of paper, the trace might be
CommandPrintFile, FilePrinting, MessageOutofPaper, InsertPaper; - - -
When you enter your car the starting trace of events might be

StartEngine, SeatbeltSignOn, BuckleSeatbelt, SeatbeltSignOYff, - - -

Thus event streams are functions of the form

EventStream: Indices — EventSet.

We will see in Chapter 3 that the behavior of finite state machines is best described in
terms of event traces, and that systems that operate on event streams are often best de-
scribed as finite state machines.

Lee & Varaiya, Signals and Systems 21

http://LeeVaraiya.org

1.1. SIGNALS

1.1.6 Discrete signals and sampling

Voice and PureTone are said to be continuous-time signals because their domain Time is
a continuous interval of the form [, B] C R. The domain of Image, similarly, is a contin-
uous 2-dimensional rectangle of the form [a,b] x [c,d] C R?. The signals ComputerVoice
and Computerlmage have domains of time and space that are discrete sets. Video is also
a discrete-time signal, but in principle it could be a function of a space continuum. We
can define a function ComputerVideo where all three sets that are composed to form the
domain are discrete.

Discrete signals often arise from signals with continuous domains by sampling. We
briefly motivate sampling here, with a detailed discussion to be taken up later. Continuous
domains have an infinite number of elements. Even the domain [0, 1] C Time representing
a finite time interval has an infinite number of elements. The signal assigns a value in its
range to each of these infinitely many elements. Such a signal cannot be stored in a finite
digital memory device such as that in a computer. If we wish to store, say, Voice, we must
approximate it by a signal with a finite domain.

A common way to approximate a function with a continuous domain like Voice and Image
by a function with a finite domain is by uniformly sampling its continuous domain.

Example 1.15: If we sample a 10-second long domain of Voice,
Voice: [0,10] — Pressure,
10,000 times a second (i.e. at a frequency of 10 kHz) we get the signal
SampledVoice: {0,0.0001,0.0002,---,9.9998,9.9999,10} — Pressure, (1.10)
with the assignment

SampledVoice(t) = Voice(t),
for all 7 € {0,0.0001,0.0002, - - ,9.9999, 10}. 1.11)

Notice from (1.10) that uniform sampling means picking a uniformly spaced subset
of points of the continuous domain [0, 10].

22 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org

1. SIGNALS AND SYSTEMS

In the example, the sampling interval or sampling period is 0.0001 sec, corresponding
to a sampling frequency or sampling rate of 10,000 Hz. Since the continuous domain is
10 seconds long, the domain of SampledVoice has 100,000 points. A sampling frequency
of 5,000 Hz would give the domain {0,0.0002,---,9.9998,10}, which has half as many
points. The sampled domain is finite, and its elements are discrete values of time.

Figure 1.11 shows an exponential function Exp: [—1,1] — R defined by
Exp(x) = €.
SampledExp is obtained by sampling with a sampling interval of 0.2. So its domain is

{-1,-0.8,---,0.8,1.0}.

The continuous domain of /mage given by (1.1), which describes a grayscale image on an
8.5 by 11 inch sheet of paper, is the rectangle [0, 11] x [0,8.5], representing the space of

3 3
25 q 25

2r 2
1.5 1.5

0]

1 TF
05 1 0.5 |

0 0

1 0.5 0 0.5 1 -1 0.5 0 0.5 1

Figure 1.11: The exponential functions Exp and SampledExp, obtained by sam-
pling with a sampling interval of 0.2.

Lee & Varaiya, Signals and Systems 23

http://LeeVaraiya.org

1.1. SIGNALS

the page. In this case, too, a common way to approximate /mage by a signal with finite
domain is to sample the rectangle. Uniform sampling with a spatial resolution of say, 100
dots per inch, in each dimension, gives the finite domain D = {0,0.01,---,8.49,8.5} x
{0,0.01,---,10.99,11.0}. So the sampled grayscale picture is

SampledImage: D — [0, MaxIntensity]
with
Sampledlmage(x,y) = Image(x,y), for all (x,y) € D.
As mentioned before, each sample of the image is called a pixel, and the size of the image

is often given in pixels. The size of your computer screen display, for example, may be
600 x 800 or 768 x 1024 pixels.

Sampling and approximation

Let f be a continuous-time function, and let Sampledf be the discrete-time function ob-
tained by sampling f. Suppose we are given Sampledf, as, for example, in the left panel
of Figure 1.12. Can we reconstruct or recover f from Sampledf? This question lies at
the heart of digital storage and communication technologies. The general answer to this
question tells us, for example, what audio quality we can obtain from a given discrete
representation of a sound. The format for a compact disc is based on the answer to this
question. We will discuss it in much detail in later chapters.

For the moment, let us note that the short answer to the question above is no. For example,
we cannot tell whether the discrete-time function in the left panel of Figure 1.12 was
obtained by sampling the continuous-time function in the middle panel or the function
in the right panel. Indeed there are infinitely many such functions, and one must make a
choice. One option is to connect the sampled values by straight line segments, as shown
in the middle panel. Another choice is shown in the right panel. The choice made by your
CD player is different from both of these, as explored further in Chapter 11.

Similarly, an image like Image cannot be uniquely recovered from its sampled version
Sampledlmage. Several different choices are commonly used.

Digital signals and quantization

Even though SampledVoice in example 1.15 has a finite domain, we may yet be unable
to store it in a finite amount of memory. To see why, suppose that the range Pressure

24 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org

1. SIGNALS AND SYSTEMS

of the function SampledVoice is the continuous interval [a,b]. To represent every value
in [a,b] requires infinite precision. In a computer, where data are represented digitally
as finite collections of bits, such precision would require an infinite number of bits for
just one sample. But a finite digital memory has a finite wordlength in which we can
store only a finite number of values. For instance, if a word is 8 bits long, it can have
28 = 256 different values. So we must approximate each number in the range [a,b] by
one of 256 values. The most common approximation method is to quantize the signal.
A common approach is to choose 256 uniformly-spaced values in the range [a,b], and
to approximate each value in [a,b] by the one of these 256 values that is closest. An
alternative approximation, called truncation, is to choose the largest of the 256 values
that is less than or equal to the desired value.

Example 1.16: Figure 1.13 shows a PureTone signal, SampledPureTone ob-
tained after sampling, and a quantized DigitalPureTone obtained using 4-bit or 16-

3 3 3
25F 1 25t 4 25t

2 2t 2
15 151 15

1 1 1
05t 1 05f 1 osf

0 0 ‘ 0

-1 0 1 -1 0 1 -1 0 1

Figure 1.12: The discrete-time signal on the left is obtained by sampling the
continuous-time signal in the middle or the one on the right.

Lee & Varaiya, Signals and Systems 25

http://LeeVaraiya.org

1.1. SIGNALS

level truncation. PureTone has continuous domain and continuous range, while
SampledPureTone (depicted with circles) has discrete domain and continuous
range, and DigitalPureTone (depicted with x’s) has discrete domain and discrete
range. Only the last of these can be precisely represented on a computer.

Itis customary to call a signal with continuous domain and continuous range like PureTone
an analog signal, and a signal with discrete domain and range, like DigitalPureTone, a
digital signal.

Example 1.17: In digital telephones, voice is sampled every 125usec, or at a
sampling frequency of 8,000 Hz. Each sample is quantized into an 8-bit word, or
256 levels. This gives an overall rate of 8,000 x 8 = 64,000 bits per second. The

0.8 - b

0.4 [q

02 B

Figure 1.13: PureTone (continuous curve), SampledPureTone (circles), and
DigitalPureTone signals (x’s).

26 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org

1. SIGNALS AND SYSTEMS

worldwide digital telephony network, therefore, is composed primarily of channels
capable of carrying 64,000 bits per second, or multiples of this (so that multiple
telephone channels can be carried together). In cellular phones, voice samples are
further compressed to bit rates of 8,000 to 32,000 bits per second.

1.2 Systems

Systems are functions that transform signals. There are many reasons for transforming
signals. A signal carries information. A transformed signal may carry the same informa-
tion in a different way. For example, in a live concert, music is represented as sound. A
recording system may convert that sound into a sequence of numbers stored on a magnetic
disk drive. The original signal, the sound, is difficult to preserve for posterity. The disk
has a more persistent representation of the same information. Thus, storage is one of the
tasks accomplished by systems.

A system may transform a signal into a form that is more convenient for transmission.
Sound signals cannot be carried by the Internet. There is simply no physical mechanism in
the Internet for transporting rapid variations in air pressure. The Internet provides instead
a mechanism for transporting sequences of bits. A system must convert a sound signal
into a sequence of bits. Such a system is called an encoder or coder. At the far end, a
decoder is needed to convert the sequence back into sound. When a coder and a decoder
are combined into the same physical device, the device is often called a codec.

A system may transform a signal to hide its information so that snoops do not have access
to it. This is called encryption. To be useful, we need matching decryption.

A system may enhance a signal by emphasizing some of the information it carries and
deemphasizing some other information. For example, an audio equalizer may compen-
sate for poor room acoustics by reducing the magnitude of certain low frequencies that
happen to resonate in the room. In transmission, signals are often degraded by noise or
distorted by physical effects in the transmission medium. A system may attempt to reduce
the noise or reverse the distortion. When the signal is carrying digital information over
a physical channel, the extraction of the digital information from the degraded signal is
called detection.

Lee & Varaiya, Signals and Systems 27

http://LeeVaraiya.org

1.2. SYSTEMS

Systems are also designed to control physical processes such as the heating in a room,
the ignition in an automobile engine, the flight of an aircraft. The state of the physical
process (room temperature, cylinder pressure, aircraft speed) is sensed. The sensed signal
is processed to generate signals that drive actuators, such as motors or switches. Engineers
design a system called the controller which, on the basis of the processed sensor signal,
determines the signals that control the physical process (turn the heater on or off, adjust
the ignition timing, change the aircraft flaps) so that the process has the desired behavior
(room temperature adjusts to the desired setting, engine delivers more torque, aircraft
descends smoothly).

Systems are also designed for translation from one format to another. For example, a
command sequence from a musician may be transformed into musical sounds. Or the
detection of risk of collision in an aircraft might be translated into control signals that
perform evasive maneuvers.

1.2.1 Systems as functions

Consider a system S that transforms input signal x into output signal y. The system is a
function, so y = S(x). Suppose x: D — R is a signal with domain D and range R. For
example, x might be a sound, x: R — Pressure. The domain of § is the set X of all such
sounds, which we write

X=[D—R|={x|x: DR} (1.12)

This notation reads “X, also written [D — R}, is the set of all x such that x is a function
from D to R.” This set is called a signal space or function space. A signal or function
space is a set of all functions with a given domain and range.

Example 1.18: The set of all sound segments with duration [0,1] and range
Pressure is written
[[0,1] — Pressure].

Notice that square brackets are used for both a subset of reals, as in [0, 1], and for
a function space, as in [D — R|, although obviously the meanings of these two
notations are very different.

28 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org

1. SIGNALS AND SYSTEMS

The set ImageSet considered in section 1.1.3 is the function space
ImageSet = [DiscreteVerticalSpace x HorizontalSpace — Intensity3].

Since this is a set, we can define functions that use it as a domain or range, as we
have done above with

Video: FrameTimes — ImageSet.
Similarly, the set of all binary files of length N is
BinaryFiles = [Indices — Binary).

where Indices = {1,--- ,N}.

A system S is a function mapping a signal space into a signal space,

S:[D—R|—[D—R.

Systems, therefore, are much like signals, except that their domain and range are both
signal spaces. Thus, if x € [D — R] and y = S(x), then it must be that y € [D' — R/|.
Furthermore, if z is an element of D', z € D', then

(S(x))(z) R

<
—
N
S~—
Il
U
—~
=
N—
—
8\l
S~—
Il

The parentheses around S(x) in (S(x))(z) are not necessary, but may improve readability.

1.2.2 Telecommunications systems

We give some examples of systems that occur in or interact with the global telecommu-
nications network. This network is unquestionably one of the most remarkable accom-
plishments of humankind. It is astonishingly complex, composed of hundreds of distinct
corporations and linking billions of people. It originated with a basic service, POTS, or
plain-old telephone service, but the network has evolved into a global, high-speed, wire-
less and wired digital network that carries not just voice, but also video, images, and
computer data, including much of the traffic in the Internet.

Lee & Varaiya, Signals and Systems 29

http://LeeVaraiya.org

1.2. SYSTEMS

Figure 1.14 depicts a small portion of the global telecommunications network. POTS ser-
vice is represented at the upper right, where a twisted pair of copper wires connects a
central office to a home telephone. This twisted pair is called the local loop or subscriber
line. At the central office, the twisted pair is connected to a line card, which usually con-
verts the signal from the telephone immediately into digital form. The line card, in turn, is

7
7
/
/
/
/
i
!
/
i
i
i
i
i
|
|
1
H
:
1
1
H
v
H
i
i
4
i
1
i
I
\
\
\
\
\
\
\
AN

\\\

Satgflite dish

The global
telecommunications
network
Microwave Tower [m]
~~~~~~~~~~ \ Optical Fiber
Cable PubHE Switch
"""""""" Coax Cablé

/
J

T1 line

Computer

Modem

Large Business Customer

PBX

Telephone

Home _Customer

Computer

Voiceband Data
Modem
Home Customer |

ISDN
Modem Telephone
Small Business/Home

DSL
Modem Telephone

Small Business/Home

Figure 1.14: A portion of the global telecommunications network.

30

Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

1. SIGNALS AND SYSTEMS

connected to a switch, which routes incoming and outgoing telephone connections. The
Berkeley central office is located on Bancroft, between Oxford and Shattuck.

The digital representation of a voice signal, a sequence of bits, is routed through the
telephone network. Usually it is combined with other bit sequences, which are other
voices or computer data, and sent over high-speed links implemented with optical fiber,
microwave radio, coaxial cable, or satellites.

Of course, a telephone conversation usually involves two parties, so the network delivers
to the same line card a digital sequence representing the far-end speaker. That digital
sequence is decoded and delivered to the telephone via the twisted pair. The line card,
therefore, includes a codec.

The telephone itself, of course, is a system. It transforms the electrical signal that propa-
gates down the twisted pair into a sound signal, and transforms a local sound signal into
an electrical signal that can propagate down the twisted pair.

POTS can be abstracted as shown in Figure 1.15. The entire network is reduced to a model
that accepts an electrical representation of a voice signal and transports it to a remote
telephone. In this abstraction, the digital nature of the telephone network is irrelevant.
The system simply transports (and degrades somewhat) a voice signal.

DTMF

Even in POTS, not all of the information transported is voice. At a minimum, the tele-
phone needs to be able to convey to the central office a telephone number in order to

" voice-like signal

Telephone

{ voice-like signal EI='

Telephone

Line Card Line Card

POTS

Figure 1.15: Abstraction of plain-old telephone service (POTS).

Lee & Varaiya, Signals and Systems 31


http://LeeVaraiya.org

1.2. SYSTEMS

Probing Further: Wireless communication

The telephone network has been steadily freeing itself of its dependence on wires. Cel-
lular telephones, which came into widespread use in the 1990s, use radio waves to con-
nect a small, hand-held telephone to a nearby base station. The base station connects
directly to the telephone network.

There are three major challenges in the design of cellular networks. First, radio spec-
trum is scarce. Frequencies are allocated by regulatory bodies, often constrained by
international treaties. Finding frequencies for new technologies is difficult. Thus, wire-
less communication devices have to be efficient in their use of the available frequencies.
Second, the power available to drive a cellular phone is limited. Cellular phones must
operate for long periods of time using only small batteries that fit easily within the hand-
set. Although battery technology has been improving, the power that these batteries can
deliver severely limits the range of a cellular phone (how far it can be from a base sta-
tion) and the processing complexity (the microprocessors in a cellular phone consume
considerable power). Third, networking is complicated. In order to be able to route tele-
phone calls to a cellular phone, the network needs to know where the phone is (which
base station is closest). Moreover, the network needs to support phone calls in moving
vehicles, which implies that a phone may move out of range of one base station and into
the range of another during the course of a telephone call. The network must hand off
the call seamlessly.

Although “radio telephones” have existed for a long time, particularly for maritime
applications where wireline telephony is impossible, it was the cellular concept that
made it possible to offer radio telephony to large numbers of users. Radio waves prop-
agating along the surface of the earth lose power approximately proportionally to the
inverse of the fourth power of distance. That is, if at distance d meters from a transmitter
your receive w watts of radio power, then at distance 2d you will receive approximately
w/2* = w/16 watts of radio power. This fourth-power propagation loss was tradition-
ally considered to be a hindrance to wireless communication. It had to be overcome by
boosting the transmitted power. The cellular concept turns this hindrance into an ad-
vantage. It observes that since the loss is so high, beyond a certain distance the same
frequencies can be re-used without significant interference. The service area is divided
into cells. A second benefit is that the distance to base station is smaller than it would
be in a more centralized system, so less radio power is required.

32 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

1. SIGNALS AND SYSTEMS

establish a connection. A telephone number is not a voice signal. It is intrinsically dis-
crete. Since the system is designed to carry voice signals, one option is to convert the

Probing Further: LEO telephony

Ideally, a cellular phone, with its one phone number, could be called anywhere in the
world, wherever it happens to be, without the caller needing to know where it is. The
technological and organizational infrastructure has evolved to make this possible in most
places. When a phone “roams” out of its primary service area, it negotiates with the
local service provider in a new area for service. If that service provider has a business
agreement with the customer’s main service provider, then it provides service. This
requires complex networking so that telephone calls to the customer are routed to the
correct locale.

However, digital cellular service is difficult to make universal, with many remote areas
not served. Providing such service by installing base stations is expensive. Moreover,
marine service away from coastlines is technically impossible with cellular technology.

One candidate technology for truly global telephony services is based on low-earth-
orbit (LEO) satellites. One such project (which failed in the marketplace) was the Irid-
ium project, spearheaded by Motorola, and so named because in the initial conception,
there would be 77 satellites. The iridium atom has 77 electrons. The idea is that enough
satellites are put into orbit that one is always near enough to communicate with a hand-
held telephone. When the orbit is low enough that a hand-held telephone can reach the
satellite (a few hundred kilometers above the surface of the earth), the satellites move
by fairly quickly. As a consequence, during the course of a telephone conversation, the
connection may have to be handed off from one satellite to another. In addition, in order
to be able to serve enough users simultaneously, each satellite has to re-use frequencies
according to the cellular concept. To do that, it focuses multiple beams on the surface of
the earth using multi-element antenna arrays.

As of this writing, this approach has not yet proved economically viable. The
investment already has been huge, with at least one high-profile bankruptcy already,
so the risks are high. Better networking of terrestrial cellular services may provide
formidable competition, particularly as service improves to rural areas. The LEO
approach, however, has one advantage that terrestrial services cannot hope to match
anytime soon: truly worldwide service. The satellites provide service essentially
everywhere, even in remote wilderness areas and at sea.

Lee & Varaiya, Signals and Systems 33


http://LeeVaraiya.org

1.2. SYSTEMS

telephone number into a voice-like signal. A system is needed with the structure shown
in Figure 1.16. The block labeled “DTMF” is a system that transforms a sequence of
numbers (coming from the keypad on the left) into a voice-like signal.

N N N

T T T

(@] (o) N~

o (42) N~

[a\} (4p) <t
697 Hz. 1 2 3

voice-like

770 Hz. 4 5 6 numbers signal

DTMF —>

A 4

852 Hz. 7 8 9

941 Hz. * 0 #

Figure 1.16: DTMF converts numbers from a keypad into a voice-like signal.

2
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
time in seconds

Figure 1.17: Waveform representing the “0” key in DTMF.

34 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

1. SIGNALS AND SYSTEMS

The DTMF standard—dual-tone, multi-frequency—provides precisely such a mecha-
nism. As indicated at the left in the figure, when the customer pushes one of the buttons
on the telephone keypad, a sound is generated that is the sum of two sinusoidal signals.
The frequencies of the two sinusoids are given by the row and column of the key. For
example, a “0” is represented as a sum of two sinusoids with frequencies 941 Hz and
1336 Hz. The waveform for such a sound is shown in Figure 1.17. The line card in the
central office measures these frequencies to determine which digit was dialed.

Signal degradation

A voice received via the telephone network is different from the original in several re-
spects. These differences can be modeled by a system that degrades the voice signal.

First, there is a loss of information because of sampling and quantization in the encoder,
as discussed in the section 1.1.6. Moreover, the media that carry the signal, such as the
twisted pair, are not perfect. They distort the signal. One cause of distortion is addition of
noise to the signal. Noise, by definition, is any undesired component in the signal. Noise
in the telephone network is sometimes audible as background hiss, or as crosstalk, i.e.,
leakage from other telephone channels into your own. Another degradation is that the
medium attenuates the signal, and this attenuation depends on the signal frequency. The
line card, in particular, usually contains a bandlimiting filter that discards the high fre-
quency components of the signal. This is why telephone channels do not transport music
well. Finally, the signal propagates over a physical medium at a finite speed, bounded by
the speed of light, and so there is a delay between the time you say something and the
time when the person at the other end hears what you say. Light travels through 1 km
of optical fiber in approximately 5 us, so the 5,000 km between Berkeley and New York
causes a delay of about 25 ms, which is not easily perceptible.*

+ A phone conversation relayed by satellite has a much larger delay. Most satellites traditionally used
in the telecommunications network are geosynchronous, meaning that they hover at the same point over
the surface of the earth. To do that, they have to orbit at a height of 22,300 miles or 35,900 kilometers. It
takes a radio signal about 120 ms to traverse that distance; since a signal has to go up and back, there is an
end-to-end delay of at least 240 ms (not counting delays in the electronics). If you are using this channel for
a telephone conversation, then the round-trip delay from when you say something to when you get a reaction
is a minimum of 480 ms. This delay can be quite annoying, impeding your ability to converse until you got
used to it. If you use Internet telephony, the delays are even larger, and they can be irregular depending upon
how congested the Internet is when you call.

Lee & Varaiya, Signals and Systems 35


http://LeeVaraiya.org

1.2. SYSTEMS

Communications engineering is concerned with how to minimize the degradation for all
kinds of communication systems, including radio, TV, cellular phones, and computer
networks (such as the Internet).

1.2.3 Audio storage and retrieval

We have seen how audio signals can be represented as sequences of numbers. Digital
audio storage and retrieval is all about finding a physical and persistent representation for
these numbers. These numbers can be converted into a single sequence of bits (binary
digits) and then “printed” onto some physical medium from which they can later be read
back. The transformation of sound into its persistent representation can be modeled as a
system, as can the reverse or playback process.

36

Example 1.19: In the case of compact discs (CDs), the physical medium is a layer
of aluminum on a platter into which tiny pits are etched. In the playback device, a
laser aimed at the platter uses an interference pattern to determine whether or not
a pit exists at a particular point in the platter. These pits, thus, naturally represent
binary digits, since they can have two states (present or not present).

While a voiceband data modem converts bit sequences into voice-like signals, a
musical recording studio does the reverse, creating a representation of the sound
that is a bit sequence,

RecordingStudio: Sounds — BitStreams.

There is a great deal of engineering in the details, however. For instance, CDs are
vulnerable to surface defects, which may arise in manufacturing or in the hands
of the user. These defects may obscure some of the pits, or fool the reading laser
into detecting a pit where there is none. To guard against this, a very clever error-
correcting code called a Reed-Solomon code is used. The coding process can be
viewed as a function

Encoding: BitStreams — RedundantBitStreams.

where RedundantBitStreams C BitStreams is the set of all possible encoded bit se-
quences. These bit sequences are redundant, in that they contain more bits than

Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

1. SIGNALS AND SYSTEMS

are necessary to represent the original bit sequence. The extra bits are used to de-
tect errors, and (sometimes) to correct them. Of course, if the surface of the CD
is too badly damaged, even this clever scheme fails, and the audio data will not be
recoverable.

CDs also contain meta data, which is extra information about the audio signal.
This information allows the CD player to identify the start of a musical number and
its length, and sometimes the title and the artist.

The CD format can also be used to contain purely digital data. Such a CD is called a
CD ROM (read-only memory). It is called this because, like a computer memory,
it contains digital information. But unlike a computer memory, that information
cannot be modified.

DVD (digital video discs) take this concept much further, including much more
meta data. They may eventually replace CDs. They are entirely compatible, in that
they can contain exactly the same audio data that a CD can. DVD players can play
CDs, but not the reverse, however. DVDs can also contain digital video information
and, in fact, any other digital data. DAT (digital audio tape) is also a competitor
to CDs, but has failed to capture much of a market.

1.2.4 Modem negotiation

A very different kind of system is the one that manages the establishment of a connec-
tion between two voiceband data modems. These two modems are at physically different
locations, are probably manufactured by different manufacturers, and possibly use differ-
ent communication standards. Both modems convert bit streams to and from voice-like
signals, but other than that, they do not have much in common.

When a connection is established through the telephone network, the answering modem
emits a tone that announces “I am a modem.” The initiating modem listens for this tone,
and if it fails to detect it, assumes that no connection can be established and hangs up.
If it does detect the tone, then it answers with a voice-like signal that announces “I am a
modem that can communicate according to ITU standard x,” where x is one of the many
modem standard published by the International Telecommunication Union, or ITU.

The answering modem may or may not recognize the signal from the initiating modem.
The initiating modem, for example, may be a newer modem using a standard that was

Lee & Varaiya, Signals and Systems 37


http://LeeVaraiya.org

1.2. SYSTEMS

established after the answering modem was manufactured. If the answering modem does
recognize the signal, then it responds with a signal that says “good, I too can communi-
cation using standard x, so let’s get started.” Otherwise, it remains silent. The initiating
modem, if it fails to get a response, tries another signal, announcing “I am a modem that
can communicate according to ITU standard y,” where y is typically now an older (and
slower) standard. This process continues until the two modems agree on a standard.

Once agreement is reached, the modems need to make measurements of the telephone
channel to compensate for its distortion. They do this by sending each other pre-agreed
signals called training signals, defined by the standard. The training signal is distorted
by the channel, and, since the receiving modem knows the signal, it can measure the
distortion. It uses this measurement to set up a device called an adaptive equalizer.
Once both modems have completed their setup, they begin to send data to one another.

As systems go, modem negotiation is fairly complex. It involves both event sequences
and voice-like signals. The voice like signals need to be analyzed in fairly sophisticated
ways, sometimes producing events in the event sequences. It will take this entire book
to analyze all parts of this system. The handling of the event sequences will be treated
using finite state machines, and the handling of the voice-like signals will be treated using
frequency-domain concepts and filtering.

1.2.5 Feedback control systems

Feedback control systems are composite systems where a plant embodies a physical pro-
cess whose behavior is guided by a control signal. A plant may be a mechanical device,
such as the power train of a car, or a chemical process, or an aircraft with certain inertial
and aerodynamic properties, for example. Sensors attached to the plant produce signals
that are fed to the controller, which then generates the control signal. This arrangement,
where the plant feeds the controller and the controller feeds the plant, is a complicated
sort of composite system called a feedback control system. It has extremely interesting
properties which we will explore in much more depth in subsequent chapters.

In this section, we construct a model of a feedback control system using the syntax of
block diagrams. The model consists of several interconnected components. We will iden-
tify the input and output signals of each component and how the components are inter-
connected, and we will argue on the basis of a common-sense physics how the overall
system will behave.

38 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

1. SIGNALS AND SYSTEMS

Example 1.20: Consider a forced air heating system, which heats a room in a
home or office to a desired temperature. Our first task is to identify the individual
components of the heating system. These are

e a furnace/blower unit (which we will simply call the heater) that heats air and
blows the hot air through vents into a room,
e a temperature sensor that measures the temperature in a room, and

e the control system that compares the specified desired temperature with the
sensed temperature and turns the furnace/blower unit on or off depending on
whether the sensed temperature is below or above the demanded temperature.

The interconnection of these components is shown in Figure 1.18.

Our second task is to specify the input and output signals of each component sys-
tem (the domain and range of the function), ensuring the input-output matching
conditions. The heater produces hot air depending on whether it is turned on or off.
So its input signal is simply a function of time which takes one of two values, On
or Off. We call input to the heater (a signal) OnOff,

OnOff: Time — {On,Off },
and we take Time = R, the non-negative reals. So the input signal space is
OnOffProfiles = [Ry — {On, Off }].

(Recall that the notation [D — R] defines a function space, as explained in Section
1.2.1.) When the heater is turned on it produces heat at some rate that depends on
the capacity of the furnace and blower. We measure this heating rate in BTUs per
hour. So the output signal of the heater, which we name Heat is of the form

Heat: Ry — {0,B.},

where B, is the heater capacity measured in BTU/hour. If we name the output signal
space HeatProfiles, then

HeatProfiles = R, — {0,B.}].
Thus the Heater system is described by a function

Heater: OnOffProfiles — HeatProfiles. (1.13)

Lee & Varaiya, Signals and Systems 39


http://LeeVaraiya.org

1.2. SYSTEMS

40

Common-sense physics tells us that when the heater is turned on the room will
begin to warm up and when the heater is turned off the room temperature will fall
until it reaches the outside temperature. So the room temperature depends on both
the heat delivered by the heater and the outside temperature. Thus the input signal
to the room is the pair (Heat, OutsideTemp). We can take OutsideTemp to be of the
form

OutsideTemp: R — [min,max],

where [min, max] is the range of possible outside temperatures, measured in degrees
Celsius, say. The output signal of the room is of course the room temperature,

RoomTemp: Ry — [min,max].

If we denote
OutsideTempProfiles = R — [min,max]],

and
RoomTempProfiles = [R — [min,max]],

then the behavior of the Room system is described by a function
Room: HeatProfiles x OutsideTempProfiles — RoomTempProfiles (1.14)
In a similar manner, the Sensor system is described by a function
Sensor: RoomTempProfiles — SensedTempProfiles (1.15)
with input signal space RoomTempProfiles and output signal space

SensedTempProfiles = R — [min,max]).

The Controller is described by the function
Controller: DesiredTempProfile x SensedTempProfile — OnOffProfile, (1.16)

where
DesiredTempProfiles = [R . — [min, max]].

We have constructed a model where the input-output matching condition is satisfied
everywhere.

Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

1. SIGNALS AND SYSTEMS

The overall forced air heating system (the shaded part of Figure 1.18) has a pair of
input signals, desired temperature and outside temperature, and one output signal,
room temperature. So it is described by the function

ForcedHeat: DesiredTempProfiles x OutsideTempProfiles
— RoomTempProfiles.

If we are given the input signal values x of desired temperature and the value y of
outside temperature, we can compute the value z = ForcedHeat(x,y) by solving the
following four simultaneous equations

u= Controller(x,w)

v= Heater(u)

z=Room(y,v)
Sensor(z)

(1.17)

Given x and y, we must solve these four equations to determine the four unknown
functions u, v, w, z of which u, v, w are the internal signals, and z is the output signal.
Of course to solve these simultaneous equations, we need to specify the four system
functions. So far we have simply given names to those functions and identified
their domain and range. To complete the specification we must describe how those
functions assign output signals to input signals.

If the sensor is functioning properly we expect Sensor’s output signal to be the
room temperature, that is, for all z and for all r € R,

w(t) = Sensor(z)(t) = z(t).

A thermostatic controller has a simple behavior: it turns the heater on if the sensed
temperature falls below the desired temperature by a certain amount, say &, and
it turns the heater off if the sensed temperature rises above the desired temperature
by, say 8. That is, for all x,w and for allt € R,

On, ifw(t)—x(t) < -9

u(t) = Controller(x,w)(t) = { off, ifw(t)—x(t)>5

Suppose finally that the desired temperature is set to some constant, say x*, i.e. for
allr e R,
x(t) =x".

Lee & Varaiya, Signals and Systems 41


http://LeeVaraiya.org

1.3. SUMMARY

We can expect the behavior depicted in Figure 1.19. When w(z) — x* drops below
—9y, the controller will turn on the heater, the room temperature will increase until
w(t) — x* rises above J,, and then the controller will turn off the heater. Thus the
room temperature will fluctuate around the desired temperature, x*.

1.3 Summary

Signals are functions that represent information. We studied examples of three classes of
signals. In the first class are functions of discrete or continuous time and space that occur
in human perception and eletromechanical sensors. In the second class are functions of
time and space representing attributes of physical objects or devices. The third class of
signals consist of sequences of symbols representing data or the occurrences of events. In
each case, the domain and the range can be defined precisely.

Systems are functions that transform signals. We looked at telecommunication systems,
where a network that was originally designed for carrying voice signals is used for many
other kinds of signals today. One way to accomplish this is to design systems such as
modems that transform signals so that they masquerade as voice-like signals. We also
looked at system models for signal degradation and for storage of signals. We looked
at systems that are primarily concerned with discrete events and command sequences,
and we examined a feedback control system. The telephone system and the forced air
heating system were both described using block diagrams as interconnections of simpler
component systems. In all cases, systems were given as functions where the domain and
the range are function spaces, or sets of functions.

42 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

1. SIGNALS AND SYSTEMS

Probing Further: Modems and Encrypted speech

POTS service is designed to carry speech signals. With proper encoding, however, it can

carry any signal that resembles speech in certain technical ways that we will discuss.

Data can be transmitted over POTS networks using a voiceband data modem, shown

just below the upper right in Figure 1.14. This used to provide a routine way to connect

to the Internet, but has since been supplanted (mostly) by broadband connections.
Data are represented by bit sequences, which are functions of the form

BitSequence: Indices — Binary, |

where Indices C N, the natural numbers, and Binary = {0, 1}. In order for a bit sequence
to traverse a POTS phone line, it has to be transformed into something that resembles
a voice signal. Furthermore, a system is needed to transform the voice-like signal back
into a bit sequence. A modem does this. The word modem is a contraction of modulator,
demodulator. Pairs of modems are used at opposite ends of a POTS connection, each
with a transmitter and a receiver to achieve bidirectional (called full duplex) communi-
cation.

One of the strangest uses is to transmit digitally represented and encrypted voice sig-
nals. Here is a depiction:

voice-like
voice signal bit sequence bit sequence signal
—— > encoder » encryption » modulator
y
et telephone
network
voice signal bit sequence bit sequence
<+—— | decoder [« decryption |« demodulator 4
voice-like
signal

What is actually sent through the telephone network sounds like hiss, which by itself
provides a modicum of privacy. Casual eavesdroppers will be unable to understand
the encoded speech. However, this configuration also provides protection against
sophisticated listeners. A listener that is able to extract the bit sequence from this
sound will still not be able to reconstruct the voice signal because the bit sequence is
encrypted.

Lee & Varaiya, Signals and Systems 43


http://LeeVaraiya.org

1.3. SUMMARY

yl OutsideTemp

DesiredTemp OonOff Heat RoomTemp
x—) Controller —u) Heater —v) Room Z >
SensedTemp
w Sensor | -
ForcedHeat

Figure 1.18: The interconnected components of a forced air heating system.

>

Figure 1.19: With a thermostatic controller the room temperature will fluctuate
around the desired temperature setting, x*.

44

Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

1. SIGNALS AND SYSTEMS

Exercises

Each problem is annotated with the letter E, T, C which stands for exercise, requires some
thought, requires some conceptualization. Problems labeled E are usually mechanical,
those labeled T require a plan of attack, those labeled C usually have more than one

defensible answer.

1. E The function x : R — R given by
Vi eR  x(r) = sin(27m x 440¢)

is a mathematical example of a signal in the signal space [R — R]. Give a mathe-
matical example of a signal x in each of the following signal spaces.

(@ [Z—R]

(b) [R —R?]

(© [{0,1,---,600} x {0,1,---,400} — {0,1,---,255}]

(d) Describe a practical application for the signal space [{0,1,---,600} x {0, 1,---,400}
{0,1,---,255}]. That is, what might a function in this space represent?

2. C For each of the continuous-time signals below, represent the signal in the form of
f: X — Y and as a sketch like Figure 1.1. Carefully identify the range and domain
in each case.

(a) The voltage across the terminals of a car battery.
(b) The closing prices on each day of a share of a company.
(c) The position of a moving vehicle on a straight one-lane road of length L.

(d) The simultaneous position of two moving vehicles on the same straight one-
lane road of length L.

(e) The sound heard in both of your ears.

3. E In digital telephony, voice is sampled at a rate of 8,000 samples/second, so the
sampling period is 1/8000 = 125 us (microseconds). What is the sampling period
and the sampling frequency of sound in a compact disc (CD)?

Lee & Varaiya, Signals and Systems 45


http://LeeVaraiya.org

EXERCISES

46

4. E Figure 1.4 displays the plots of two sinusoidal signals and their sum. Sketch

by hand the plots of the four functions, Step, Triangle, Sum, Diff, all with domain
[—1, 1] and range R, where the four functions are defined by: V¢ € [—1, 1],

Triangle(t) = 1—1|t|,
Step(t) = 0ifr<0, =1ift >0,
Sum(t) = Triangle(t)+ Step(t),
Diff (t) = Triangle(t)— Step(t).

5. C The following examples of spatial information can be represented as a signal in

the form of f: X — Y. Specify a reasonable choice for the range and domain in
each case.

(a) Animage impressed on photographic paper.
(b) An image stored in computer memory.

(c) The height of points on the surface of the earth.
(d) The location of the chairs in a room.

(e) The household voltage in Europe, which has frequency 50 Hz and is 210 volts
RMS.

. C The image called Albers consists of an eight-inch yellow square in the center of

a white twelve-inch square background. Express Albers as a function, by choosing
the domain, range, and function assignment.

. E How many bits are there in a 1024 x 768 pixel image in which each pixel is

represented as a 16-bit word? How long would it take to download this image over
a 28 Kbps voice-band modem, a 384 Kbps DSL modem, a 10 Mbps Ethernet local
area network?

. C Represent these examples as data or event sequences. Specify reasonable choices

for the range and domain in each case.

(a) The result of 100 tosses of a coin,

(b) The sequence of button presses inside an elevator,

(c) The sequence of main events in a soda vending machine,
(d) Your response to a motorist who is asking directions,

(e) A play-by-play account of a game of chess.

Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

1. SIGNALS AND SYSTEMS

9. C Formulate the following items of information as functions. Specify reasonable
choices for the domain and range in each case.

(a) The population of U.S. cities,

(b) The white pages in a phone book (careful: the white pages may list two iden-
tical names, and may list the same phone number under two different names),

(c) The birth dates of students in class,
(d) The broadcast frequencies of AM radio stations,

(e) The broadcast frequencies of FM radio stations, (look at your radio dial, or at
the web page:

http://www.eecs.berkeley.edu/ eal/eecs20
/sidebars/radio/index.html.

10. E Use Matlab to plot the graph of the following continuous-time functions de-
fined over [—1, 1], and on the same plot display 11 uniformly spaced samples (0.2
seconds apart) of these functions. Are these samples good representations of the
waveforms?

(@) f:[—1,1] = R, where for all x € [—1,1], f(x) = e *sin(10mx).
(b) Chirp: [—1,1] — R, where for all t € [—1,1], Chirp(t) = cos(10mz?).

11. E Suppose the pendulum of Figure 1.10 is rotating counter-clockwise at a speed
of one revolution per second over the five-second interval [0,5]. Sketch a plot of
the resulting function: 6 : [0,5] — [—m, 7). Assume 6(0) = 0. Also specify this
function mathematically. Your plot is discontinuous, but the pendulum’s motion is
continuous. Explain this apparent inconsistency.

12. T There is a large difference between the sets X, Y, and [X — Y]. This exercise
explores some of that difference.

(a) Suppose X = {a,b,c} and Y = {0, 1}. List all the functions from X to Y, i.e.
all the elements of [X — Y]. Note that part of the problem here is to figure out
how to list all the functions.

(b) If X has m elements and Y has n elements, how many elements does [X — Y]
have?

Lee & Varaiya, Signals and Systems 47


http://LeeVaraiya.org

EXERCISES

(c) Suppose

Colormaplmages =
[DiscreteVerticalSpace x DiscreteHorizontalSpace

— ColorMaplIndexes).

Suppose the domain of each image in this set has 6,000 pixels and the range
has 256 values. How many distinct images are there? Give an approximate
answer in the form of 10". Hint: a® = 1071°¢10(@)

48 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

Defining Signals and Systems

Contents
2.1 Definingfunctions . ... ........... .00 .. 50
2.1.1 Declarative assignment . . . . . . . . ... ... ... 52
2.1.2 Graphs . . . ... 54
Probing Further: Relations . . . . . ... .. ... ... .. ..... 56
2.1.3 Tables . . . . . ... 57
2.14 Procedures . . . ... ... ... 58
2.1.5 Composition . . . ... ... 58
2.1.6  Declarative vs. imperative . . . . . . .. ... ... ... .. 62
Probing Further: Declarative and imperative . . . . . ... ... .. 63
2.2 Definingsignals . ... ... .0t ittt 66
2.2.1 Declarative definitions . . . . . . .. ... ... L. 66
2.2.2 Imperative definitions . . . . . .. ... ... 66
2.23 Physicalmodeling . . . ... ... ... ... L. 68
23 Definingsystems . . . . . o v v v ittt e e e e e e e 68
Probing Further: Physics of a Tuning Fork . . . . . ... ... ... 70
2.3.1 Memoryless systems and systems with memory . . . . . . . . 71
2.3.2 Differential equations . . . . . . .. ... ..., 72
2.3.3 Difference equations . . . . . . ... ... 74
Basics: Trigonometric Identities . . . . . . .. ... ... ...... 76
Basics: Summations . . . . . .. ... 0o 77
2.3.4 Composing systems using block diagrams . . . . . . ... .. 78
Probing Further: Composition of graphs . . . . . . . . .. .. .... 80
7 B 1111111 P ) 82
Exercises . ... ..ot ittt e e e e 84

49



2.1. DEFINING FUNCTIONS

The previous chapter describes the representation of signals and systems as functions,
concentrating on how to select the domain and range. This chapter is concerned with how
to give more complete definitions of these functions. In particular, we need an assignment
rule, which specifies how to assign an element in the range to each element in the domain.

There are many ways to give an assignment rule. A theme of this chapter is that these dif-
ferent ways have complementary uses. Procedural descriptions of the assignment rule, for
example, are more convenient for synthesizing signals or constructing implementations of
a system in software or hardware. Mathematical descriptions are more convenient for an-
alyzing signals and systems and determining their properties.

In practice it is often necessary to use several descriptions of assignment rules in combi-
nation, because of their complementary uses. In designing systems, a practicing engineer
is often reconciling these diverse views to ensure, for instance, that a particular hardware
device or piece of software indeed implements a system that is specified mathematically.
We begin with a discussion of functions in general, and then specialize to signals and
systems.

2.1 Defining functions

A function f: X — Y assigns to each element in X a single element in Y, as illustrated in
Figure 2.1. This assignment can be defined by declaring the mathematical relationship
between the value in X and the value in Y, by graphing or enumerating the possible
assignments, by giving a procedure for determining the value in Y given a value in X, or
by composing simpler functions. We go over each of these in more detail in this section.

Example 2.1: In Section 1.1.5 we mentioned that sequences are a special kind
of function. An infinite sequence s is a function that maps the natural numbers
into some set Y, as illustrated in Figure 2.2. This function fully defines any infinite
sequence of elements in Y.

50 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

2. DEFINING SIGNALS AND SYSTEMS

)

|

X |
! |

|

Y1
X2 y2
XS y3
|
X4 } " (y4
vy
‘o
\,
X fiX—>7Y Y

Figure 2.1: A function f: X — Y assigns to each element in X a single element in
Y.

N1
Y2
Y3

by
\ T 3> y4

'y

‘o

\,

Naturals s : Naturals — Y Y

Figure 2.2: An infinite sequence s is a function s: N — Y that assigns to each
element in N a single elementin Y.

Lee & Varaiya, Signals and Systems 51


http://LeeVaraiya.org

2.1. DEFINING FUNCTIONS

2.1.1 Declarative assignment

Consider the function Square: R — R given by
VxeR, Square(x)=x>. 2.1

In (2.1), we have used the universal quantifier symbol ‘V’, which means ‘for all’ or ‘for
every’ to declare the relationship between values in the domain of the function and values
in the range. Statement (2.1) is read: “for every value of x in R, the function Square
evaluated at x is assigned the value x> The expression “Square(x) = x*” in (2.1) is an
assignment. !

Expression (2.1) is an instance of the following prototype for defining functions. Define
f: X —=Yhby

VxeX, f(x)=expression in x. (2.2)

In this prototype, f is the name of the function to be defined, such as Square, X is the
domain of f, Y is the range of f, and ‘expression in x” specifies the value in Y assigned to

f().

The prototype (2.2) does not say how the ‘expression in x’ is to be evaluated. In the
Square example above, it was specified by the algebraic expression Square(x) = x>. Such
a definition of a function is said to be declarative, because it declares properties of the
function without directly explaining how to construct the function.

Example 2.2: Here are some examples of functions of complex variables. (See
Appendix B for a review of complex variables.)

The magnitude of a complex number is given by abs: C — R, where C is the set
of complex numbers and R is the set of set of non-negative real numbers, and

Vz=x+iyeC, abs(z)=+/(x2+y?).

The complex conjugate of a number, conjugate: C — C, is given by

Vz=x+iyeC, conjugate(z)=x—1iy.

L)

ISee Appendix A for a discussion of the use of “=” as an assignment, vs. its use as an assertion.

52 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

2. DEFINING SIGNALS AND SYSTEMS

The exponential of a complex number, exp: C — C, is given by

€9 n

VzeC, exp(z):ZZ—.

|
n=0 wx

If this notation is unfamiliar, see box on page 77.) It is worth emphasizing that
the last definition is declarative: it does not give a procedure for calculating the
exponential function, since the sum is infinite. Such a calculation would never
terminate.

Example 2.3: The signum function gives the sign of a real number, signum: R —
{-1,0,1},

-1 ifx<0
VxeR, signum(x)=4 0 ifx=0 (2.3)
1 ifx>0

The right side of this assignment tabulates three expressions for three different sub-
sets of the domain. Below we will consider a more extreme case of this where every
value in the domain is tabulated with a value in the range.

Example 2.4: The size of a matrix, size: Matrices — N x N, is given by
V' M € Matrices, size(M) = (m,n),

where m 1s the number of rows of the matrix M, » is the number of columns of M,
and Matrices is the set of all matrices.

This definition relies not only on formal mathematics, but also on the English sen-
tence that defines m and n. Without that sentence, the assignment would be mean-
ingless.

Lee & Varaiya, Signals and Systems 53


http://LeeVaraiya.org

2.1. DEFINING FUNCTIONS

2.1.2 Graphs

Consider a function f: X — Y. To each x € X, f assigns the value f(x) in Y. The pair
(x, f(x)) is an element of the product set X x Y. The set of all such pairs is called the
graph of f, written graph(f). Using the syntax of sets, graph(f) is the subset of X x Y
defined by

graph(f) ={(x,y) [x€ X and y = f(x)}, 2.4)

or slightly more simply,

graph(f) ={(x,f(x)) | x € X}.

The vertical bar | is read “such that,” and the expression after it is a predicate that defines
the set.”

When X C R and Y C R, we can plot graph(f) on a page.

Example 2.5: Consider the graph of the function Square,
graph(Square) = {(x,x*) | x € R},

which is plotted in Figure 2.3. In that figure, the horizontal and vertical axes repre-
sent the domain and the range, respectively (more precisely, a subset of the domain
and the range). The rectangular region enclosed by these axes represents the prod-
uct of the domain and the range (every point in that region is a member of (R x R)).
The graph is visually rendered by placing a black dot at every point in that region
that is a member of graph(Square). The resulting picture is the familiar plot of the
Square function.

While the graph of f: X — Y is a subset of X x Y, it is a very particular sort of subset.
For each element x € X, there is exactly one element y € Y such that (x,y) € graph(f). In
particular, there cannot be more than one such y € Y, and there cannot be no such y € Y.
This is, in fact, what we mean when we say that f is a function.

2See appendix A for a review of this notation.

54 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

2. DEFINING SIGNALS AND SYSTEMS

09

0.8

0.7

0.6

05

0.4

03[

0.2

01

Figure 2.3: Graph of Square

Example 2.6: Let X ={1,2} and Y = {a,b}. Then
{(1,a),(2,a)}

is the graph of a function, but
{(1,a),(1,b)}

is not, because two points a and b are assigned to the same point, 1, in the domain.
Neither is
{(1,a)},

because no point in the range is assigned to the point 2 in the domain.

The graph of Square, graph(Square), is given by the algebraic expression (x,x?). In other
cases, no such algebraic expression exists. For example, Voice is specified through its
graph in Figure 1.1, not through an algebraic expression. Thus, graphs can be used to
define functions that cannot be conveniently given by declarative assignments.

Lee & Varaiya, Signals and Systems 55


http://LeeVaraiya.org

2.1. DEFINING FUNCTIONS

Relation C X x Y Y

Figure 2.4: Any subset of X x Y is a relation.

Consider again the prototype in (2.2),
VxeX, f(x)= expressioninx
The graph of f is
graph(f) = {(x,y) € X xY | y = expression in x}.

The expression ‘y = expression in x’ is a predicate in the variable (x,y) and so this proto-
type definition conforms to the prototype new set constructor given in (A.4) of Appendix
A:

NewSet = {z € Set | Pred(z)}.

Probing Further: Relations

The graph of a function f: X — Y is a subset of X X Y, as defined in (2.4). An arbitrary
subset of X x Y is called a relation. A relation is a set of tuples (x,y) that pair an element
x € X with an element y € Y, as suggested in Figure 2.4. For relations, it is common to
call X the domain and Y the codomain. A function is a special kind of relation in which
for every x € X there is exactly one y € Y such that (x,y) is an element of the relation.
So a particular relation R C X x Y is a function if for every x € X there is a y; € Y such
that (x,y;) € R, and if in addition (x,y,) € R, then y; = y».

56 Lee & Varaiya, Signals and Systems



http://LeeVaraiya.org

2. DEFINING SIGNALS AND SYSTEMS

Name ‘ Marks ‘
John Brown 90.0
Jane Doe 91.2

Table 2.1: Tabular representation of Score.

Since the graph of f is a set, we can define the function f via its graph using the same

techniques we use to define sets.

2.1.3 Tables

If f: X — Y has finite domain, then graph(f) C X x Y is a finite set, so it can be specified
simply by a list of all its elements. This list can be put in the form of a table. This table

defines the function.

Example 2.7: Suppose the function

Score: Students — [0,100]

gives the outcome of the first midterm exam for each student in the class. Obvi-
ously, this function cannot be given by an algebraic declarative assignment. But it

can certainly be given as a table, as shown in table 2.1.

Example 2.8: The command nslookup on a networked computer is a function that

maps hostnames into their IP (Internet) address. For example, if you type:

nslookup cory.eecs.berkeley.edu

you get the IP address 128.32.134.240. The domain name server attached to your
machine stores the nslookup function as a table.

Lee & Varaiya, Signals and Systems

57


http://LeeVaraiya.org

2.1. DEFINING FUNCTIONS

2.1.4 Procedures

Sometimes the value f(x) that a function f assigns to an element x € domain(f) is ob-
tained by executing a procedure.

Example 2.9: Here is a Matlab procedure to compute the factorial function
fact: {1,---,10} — N,

where N is the set of natural numbers:

fact (1) = 1;
for n = 2:10

fact(n) = n * fact(n-1);
end

Unlike previous mechanisms for defining a function, this one gives a constructive method
to determine an element in the range given an element in the domain. This style is called
imperative to distinguish it from declarative. The relationship between these two styles
is interesting, and quite subtle. It is explored further in Section 2.1.6.

2.1.5 Composition

Functions can be combined to define new functions. The simplest mechanism is to con-
nect the output of one function to the input of another. We have been doing this informally
to define systems by connecting components in block diagrams.

If the first function is f; and the second is f, then we write the function composition as
f>o fi. That is, for every x in the domain of f,

(f20 fi)(x) = f2(fi(x)).

A fundamental requirement for such a composition to be valid is that the range of f;
must be a subset of the domain of f,. In other words, any output from the first function

58 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

2. DEFINING SIGNALS AND SYSTEMS

/s

fa

Figure 2.5: Function composition: f3 = f> o fi.

must be in the set of possible inputs for the second. Without this input-output connection
restriction, the interconnection would be meaningless.?

It is worth pausing to study the notation f> o f;. Assume fi: X — Y and f: X' —Y'.
Then if Y C X’, we can define

f3=rfofi,
where f3: X — Y’ such that

VxeX, filx)=rf(fix) (2.5)

Notice that f; is applied first, and then f,. Why is fj listed second in f, o f1? This
convention simply mirrors the ordering of f>(fi(x)) in (2.5). We can visualize f3 as in
Figure 2.5.

Example 2.10: Consider the representation of a color image using a colormap.
The decoding of the image is depicted in Figure 1.7. The image itself might be
given by the function

Colormaplmage: DiscVerticalSpace x DiscHorizontalSpace

— ColorMaplndexes.

3We just called an element in the domain of a function its input and the corresponding value of the function
its output. This interpretation of domain as inputs and range as outputs is natural, and it is the reason that
systems are described by functions.

Lee & Varaiya, Signals and Systems 59


http://LeeVaraiya.org

2.1. DEFINING FUNCTIONS

The function
Display : ColorMapIndexes — Intensity’

decodes the colormap indexes. If ColorMaplndexes has 256 values, it could be
identified with the set IntegersS of all 8-bit words, as we have seen. If we compose
these functions

ColorComputerlmage = Display o ColormapImage
then we get the decoded representation of the image

ColorComputerlmage:  DiscVerticalSpace x DiscHorizontalSpace
= Intensity3.

ColorComputerlmage describes how an image looks when it is displayed, whereas
Colormaplmage describes how it is stored in the computer.

If f: X — X, i.e. the domain and range of f are the same, we can form the function

fP=fof.

We can compose f2 with f to form f3, and so on.

60

Example 2.11:  Consider the function S: R?> — R?, where the assignment
(y1,y2) = S(x1,x2) is defined by matrix multiplication,

yi| |1 2 X1
EIR | &
The function §? = SoS: R? — R? is also defined by matrix multiplication, and the
corresponding matrix is the square of the matrix in (2.6).

Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

2. DEFINING SIGNALS AND SYSTEMS

To see this, let (yi,y2) = S(x1,x2) and (z1,22) = S(y1,y2) = (S0 S)(x1,x2). Then

we see that
21 _ L 2] [wm] 1 2 1 2 x|
Vé) o 3 4 2 - 3 4 3 4 X2
[ Y2 |
A
Tt 2P x]l [7 10 [x
T |3 4 x| 15 2] | x
i — 2
A

Example 2.12: Consider another example in the context of the telephone system.
Let Voices be the set of possible voice input signals of the form

Voice: Time — Pressure.
Voices is a function space,
Voices = [Time — Pressure].

A telephone converts a Voice signal into a signal in the set

LineSignals = [Time — Voltages).
Thus, we could define

Mouthpiece: Voices — LineSignals.
The twisted wire pair may distort this signal, so we define a function
LocalLoop: LineSignals — LineSignals.

The input to the line card therefore is

(LocalLoop o Mouthpiece)(Voice).

Lee & Varaiya, Signals and Systems 61


http://LeeVaraiya.org

2.1. DEFINING FUNCTIONS

Similarly let BitStreams be the set of possible bitstreams of the form:
BitStream: DiscreteTime — Binary

where DiscreteTime = {0,1/64,000,2/64,000,---}, since there are 64,000 bit-
s/sec. So,
BitStreams = [DiscreteTime — Binary).

The encoder in a line card can be mathematically described as a function
Encoder: LineSignals — BitStreams
or, with more detail, as a function

Encoder: [Time — Voltages| — [DiscreteTime — Binary.

The digital telephone network itself might be modeled as a function
Network: BitStreams — BitStreams.

We can continue in this fashion until we model the entire path of a voice signal
through the telephone network as the function composition

Earpiece o LocalLoop, o Decoder o Network o Encoder

oLocalLoop, o Mouthpiece. 2.7)

Given a complete definition of each of these functions, we would be well equipped
to understand the degradations experienced by a voice signal in the telephone net-
work.

2.1.6 Declarative vs. imperative

Declarative definitions of functions assert a relationship between elements in the domain
and elements in the range. Imperative definitions give a procedure for finding an element
in the range given one in the domain. Often, both types of specifications can be given for
the same function. However sometimes the specifications are subtly different.

62 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

2. DEFINING SIGNALS AND SYSTEMS

Consider the function

SquareRoot: Ry — R

defined by the statement “SquareRoot(x) is the unique value of y € R such that y> = x.”
This declarative definition of SquareRoot does not tell us how to calculate its value at
any point in its domain. Nevertheless, it defines SquareRoot perfectly well. By contrast,
an imperative definition of SquareRoot would give us a procedure, or algorithm, for cal-
culating SquareRoot(x) for a given x. Call the result of such an algorithm J. Since the
algorithm would yield an approximation in most cases, $* would not be exactly equal to
x. So the declarative and imperative definitions are not always the same.

Any definition of a function following the prototype (2.2) is a declarative definition. It
does not give a procedure for evaluating ‘expression in x’.

Probing Further: Declarative and imperative

The declarative approach establishes a relation between the domain and the range of a
function. For example, the equation

y =sin(x)/x

can be viewed as defining a subset of R x R. This subset is the graph of the function
Sinc: R — R.

The imperative approach also establishes a function, but it is a function that maps the
program state before the statement is executed into a program state after the statement is
executed. Consider for example the Java statement

y = Math.sin (x)/x;

Considering only this statement (rather than a larger program), the program state is the
value of the two variables, x and y. Suppose that these have been declared to be of type
double, which in Java represents double-precision floating-point numbers encoding
according to an IEEE standard. Let the set Doubles be the set of all numbers so encoded,
and note that NaN € Doubles, not a number, the result of division by zero. The set of
possible program states is therefore Doubles x Doubles. The Java statement therefore
defines a function

Statement: (Doubles x Doubles) — (Doubles x Doubles).

Lee & Varaiya, Signals and Systems 63


http://LeeVaraiya.org

2.1. DEFINING FUNCTIONS

64

Example 2.13: As another example where declarative and imperative definitions
differ in subtle ways, consider the following mathematical equation:
_ sin(x)

(2.8)
X

Consider the following Java statement:
y = Math.sin (x)/x;

or an equivalent Matlab statement
y = sin(x)/x

Superficially, these look very similar to (2.8). There are minor differences in syntax
in the Java statement, but otherwise, it is hard to tell the difference. But there are
differences. For one, the mathematical equation (2.8) has meaning if y is known and
x is not. It declares a relationship between x and y. The Java and Matlab statements
define a procedure for computing y given x. Those statements have no meaning if
y is known and x is not.

The mathematical equation (2.8) can be interpreted as a predicate that defines a
function, for example the function Sinc: R — R, where

graph(Sinc) = {(x,y) | x € R,y = sin(x) /x}. (2.9)

The Java and Matlab statements can be interpreted as imperative definitions of a
function. Confusingly, many programming languages, including Matlab, use the
term “function” to mean something a bit different from a mathematical function.
They use it to mean a procedure that can compute an element in the range of
a function given an element in its domain. Under certain restrictions (avoiding
global variables for example), Matlab functions do in fact compute mathematical
functions. But in general, they do not. .

To interpret the Java and Matlab statements as imperative definitions of a function,
note that given an element in the domain, they specify how to compute an element
in the range. However, these two statements do not define the same function as

Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

2. DEFINING SIGNALS AND SYSTEMS

in (2.9). To see this, consider the value of y when x = 0. Given the mathematical
equation, it is not entirely trivial to determine the value of y. You can verify that
y = 1 when x = 0 using I’Hopital’s rule, which states that if f(a) = g(a) =0, then

f) f'x)

e ey

(2.10)

if the limit exists, where f’(x) is the derivative of f with respect to x, and g'(x) is
the derivative of g with respect to x.

In contrast, the meaning of the Java and Matlab statements is that y = 0/0 when
x = 0, which Java and Matlab (and most modern languages) define to be NaN, not
a number. Thus, given x = 0, the procedures yield different values for y than the
mathematical expression. (An exception is symbolic algebra programs, such as
Mathematica or Maple, which will evaluate sin(x)/x to 1 when x = 0. These pro-
grams use sophisticated, rule-based solution techniques, and, in effect, recognize
the need and apply 1I’Hopital’s rule.)

We can see from the above example some of the strengths and weaknesses of imperative
and declarative approaches. Given only a declarative definition, it is difficult for a com-
puter to determine the value of y. Symbolic mathematical software, such as Maple and
Mathematica, is designed to deal with such situations, but these are very sophisticated
programs. In general, using declarative definitions in computers requires quite a bit more
sophistication than using imperative definitions.

Imperative definitions are easier for computers to work with. But the Java and Matlab
statements illustrate one weakness of the imperative approach: it is arguable that y = NaN
is the wrong answer, so the Java and Matlab statements have a bug. This bug is unlikely
to be detected unless, in testing, these statements happen to be executed with the value
x = 0. A correct Java program might look like this:

if (x == 0.0) y = 1.0;
else y = Math.sin(x)/x;

Thus, the imperative approach has the weakness that ensuring correctness is more dif-
ficult. Humans have developed a huge arsenal of techniques and skills for thoroughly

Lee & Varaiya, Signals and Systems 65


http://LeeVaraiya.org

2.2. DEFINING SIGNALS

understanding declarative definitions (thus lending confidence in their correctness), but
we are only beginning to learn how to ensure correctness in imperative definitions.

2.2 Defining signals

Signals are functions. Thus, both declarative and imperative approaches can be used to
define them.

2.2.1 Declarative definitions

Consider for example an audio signal s, a pure tone at 440 Hz (middle A on the piano
keyboard). Recall that audio signals are functions Sound: Time — Pressure, where the
set Time C R represents a range of time and the set Pressure represents air pressure.* To
define this function, we might give the declarative description

V't € Time, s(t)=sin(440 x 2mz). (2.11)
In many texts, you will see the shorthand
s(t) = sin(440 x 2mt)

used as the definition of the function s. Using the shorthand is only acceptable when
the domain of the function is well understood from the context. This shorthand can be
particularly misleading when considering systems, and so we will only use it sparingly.
A portion of the graph of the function (2.11) is shown in Figure 1.3.

2.2.2 Imperative definitions

We can also give an imperative description of such a signal. When thinking of signals
rather than more abstractly of functions, there is a subtle question that arises when we
attempt to construct an imperative definition. Do you give the value of s(¢) for a particular
t? Or for all ¢ in the domain? Suppose we want the latter, which seems like a more

4Recall further that we normalize Pressure so that zero represents the ambient air pressure. We also use
arbitrary units, rather than a physical unit such as millibars.

66 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

2. DEFINING SIGNALS AND SYSTEMS

complete definition of the function. Then we have a problem. The domain of this function
may be any time interval, or all time! Suppose we just want one second of sound. Define
t = 0 to be the start of that one second. Then the domain is [0,1]. But there are an
(uncountably) infinite number of values for 7 in this range! No Java or Matlab program
could provide the value of s() for all these values of 7.

Since a signal is function, we give an imperative description of the signal exactly as we
did for functions. We give a procedure that has the potential of providing values for s(z),
given any ¢.

Example 2.14: We could define a Java method as follows:

double s (double t) {
return (Math.sin (440x2xMath.PIxt));
}

Calling this method with a value for t as an argument yields a value for s (t) . Java
(and most object-oriented languages) use the term “method” for most procedures.

Another alternative is to provide a set of samples of the signal.

Example 2.15: In Matlab, we could define a vector t that gives the values of time
that we are interested in:

t = [0:1/8000:11;

In the vector t there are 8001 values evenly spaced between 0 and 1, so our sam-
pling rate is 8000 samples per second. Then we can compute values of s for these
values of t and listen to the resulting sound:

S = cos (2xpix440+*t);
sound (s, 8000)

The vector s also has 8001 elements, representing evenly spaced samples of one
second of A-440.

Lee & Varaiya, Signals and Systems 67


http://LeeVaraiya.org

2.3. DEFINING SYSTEMS

2.2.3 Physical modeling

An alternative way to define a signal is to construct a model for a physical system that
produces that signal.

Example 2.16: A pure tone might be defined as a solution to a differential equation
that describes the physics of a tuning fork.

A tuning fork consists of a metal finger (called a tine) that is displaced by striking
it with a hammer. After being displaced, it vibrates. If the tine has no friction, it
will vibrate forever. We can denote the displacement of the tine after being struck
at time zero as a function y: R, — R. If we assume that the initial displacement
introduced by the hammer is one unit, then using our knowledge of physics we can
determine that for all + € R, the displacement satisfies the differential equation

y(t) = —ety(r) (2.12)

where ® is constant that depends on the mass and stiffness of the tine, and and
where J(¢) denotes the second derivative with respect to time of y (see box).

It is easy to verify that y given by
VyeR:, y(t)=cos(wo) (2.13)

is a solution to this differential equation (just take its second derivative). Thus,
the displacement of the tuning fork is sinusoidal. This displacement will couple
directly with air around the tuning fork, creating vibrations in the air (sound). If
we choose materials for the tuning fork so that @y = 27 x 440, then the tuning fork
will produce the tone of A-440 on the musical scale.

2.3 Defining systems

All of the methods that we have discussed for defining functions can be used, in princi-
ple, to define systems. However, in practice, the situation is much more complicated for
systems than for signals. Recall from Section 1.2.1 that a system is a function where the
domain and range are sets of signals called signal spaces. Elements of these domains and

68 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

2. DEFINING SIGNALS AND SYSTEMS

displacement restorative force
— —

tine

\

Figure 2.6: A tuning fork.

ranges are considerably more difficult to specify than, say, an element of R or Z. For this
reason, it is almost never reasonable to use a graph or a table to define a system. Much
of the rest of this book is devoted to giving precise ways to define systems where some
analysis is possible. Here we consider some simple techniques that can be immediately
motivated. Then we show how more complicated systems can be constructed from sim-
pler ones using block diagrams. We give a rigorous meaning to these block diagrams so
that we can use them without resorting to perilous intuition to interpret them.

Consider a system S where
S:[D—R]—[D'—R. (2.14)

Suppose that x € [D — R| and y = S(x). Then we call the pair (x,y) a behavior of the
system. A behavior is an input, output pair. The set of all behaviors is

Behaviors(S) = {(x,y) | x € [D — R] and y = S(x)}.

Giving the set of behaviors is one way to define a system. Explicitly giving the set
Behaviors, however, is usually impractical, because it is a huge set, typically infinite (see
boxes on pages 681 and 683). Thus, we seek other ways of talking about the relationship
between a signal x and a signal y when y = S(x).

Lee & Varaiya, Signals and Systems 69


http://LeeVaraiya.org

2.3. DEFINING SYSTEMS

To describe a system, one must specify its domain (the space of input signals), its range
(the space of output signals), and the rule by which the system assigns an output signal
to each input signal. This assignment rule is more difficult to describe and analyze than
the input and output signals themselves. A table is almost never adequate, for example.
Indeed for most systems we do not have effective mathematical tools for describing or

Probing Further: Physics of a Tuning Fork

A tuning fork consists of two fingers called tines, as shown in Figure 2.6. If you displace
one of these tines by hitting it with a hammer, it will vibrate with a nearly perfect sinu-
soidal characteristic. As it vibrates, it pushes the air, creating a nearly perfect sinusoidal
variation in air pressure that propogates as sound. Why does it vibrate this way?

Suppose the displacement of the tine (relative to its position at rest) at time ¢ is given
by x(¢), where x: R — R. There is a force on the tine pushing it towards its at-rest
position. This is the restorative force of the elastic material used to make the tine. The
force is proportional to the displacement (the greater the displacement, the greater the
force), so

F(t) = —kx(t),

where k is the proportionality constant that depends on the material and geometry of the
tine. In addition, Newton’s second law of motion tells us the relationship between force
and acceleration,

F(t) =ma(t),

where m is the mass and a(r) is the acceleration at time ¢. Of course,

2
alt) = ©x) = 500,
SO
mi(t) = —kx(t)
or

i(t) = —(k/m)x(t).

Comparing with (2.12), we see that ®f = k/m.

A solution to this equation needs to be some signal that is proportional to its own
second derivative. A sinusoid as in (2.13) has exactly this property. The sinusoidal
behavior of the tine is called simple harmonic motion.

70 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

2. DEFINING SIGNALS AND SYSTEMS

y(@) = (F())(®) = fx(1)

Figure 2.7: A memoryless system F has an associated function f that can be
used to determine its output y(¢) given only the current input x(¢) at time 7. In
particular, it does not depend on values of the function x for other values of time.

understanding their behavior. Thus, it is useful to restrict our system designs to those we
can understand. We first consider some simple examples.

2.3.1 Memoryless systems and systems with memory

Memoryless systems are characterized by the property that previous input values are not
remembered when determining the current output value. More precisely, a system F :
[R — Y] — [R — Y] is memoryless if there is a function f : ¥ — Y such that

VieRandVxe [R—>Y], (F(x)()=f(x()).

This is illustrated in Figure 2.7. In other words, at any time ¢, the output (F(x))(¢) depends
only on the input x(¢) at that same time 7; in particular, it does not depend on 7 nor on
previous or future values of x.

Specification of a memoryless system reduces to specification of the function f. If Y is
finite, then a table may be adequate.

Lee & Varaiya, Signals and Systems 71


http://LeeVaraiya.org

2.3. DEFINING SYSTEMS

Example 2.17: Consider a continuous-time system with input x and output y,
where for all t € R,
¥(t) = 2*(r).

This example defines a simple system, where the value of the output signal at each
time depends only on the value of the input signal at that time. Such systems are
said to be memoryless because you do not have to remember previous values of the
input in order to determine the current value of the output.

By contrast, here is an example of a system with memory.

Example 2.18: Consider a continuous-time system with input x and output y =
F(x) such thatVr € R,

0= /thx(‘c)dr.

By a change of variables this can also be written

)= % /O =

This system is clearly not memoryless. It has the effect of smoothing the input
signal. We will study it and many related systems in detail in later chapters.

2.3.2 Differential equations

Consider a class of systems given by functions S: ContSignals — ContSignals where
ContSignals is a set of continuous-time signals. Depending on the scenario, we could
have ContSignals = [Time — R] or ContSignals = [Time — C], where Time = R or Time =
R. These are often called continuous-time systems because they operate on continuous-
time signals. Frequently, such systems can be defined by differential equations that relate
the input signal to the output signal.

72 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

2. DEFINING SIGNALS AND SYSTEMS

Example 2.19: Consider a particle constrained to move forward or backwards
along a straight line with an externally imposed force. We will consider this particle
to be a system where the output is its position and the externally imposed force is
the input.

Denote the position of the particle by x: Time — R, where Time = R,. By con-
sidering only the non-negative reals, we are assuming that the model has a starting
time. We denote the acceleration by a: Time — R. By Newton’s law, which relates
force, mass, and acceleration,

f(t) = ma(t),
where f(¢) is the force at time #, and m is the mass. By the definition of acceleration,
VieRy, (1)=a(t)=f(t)/m,

where i(¢) denotes the second derivative with respect to time of x. If we know the
initial position x(0) and initial speed x(0) of the particle at time 0, and if we are
given the input force f, we can evaluate the position at any ¢ by integrating this
differential equation

x(t) = x(0) +x(0 t+/ / T)/m)dt|ds (2.15)

We can regard the initial position and velocity as inputs, together with force, in
which case the system is a function

Particle: RxR x [Ry — R] — [Ry — R],
where for any inputs (x(0),%(0), f), x = Particle(x(0),%(0), f) must satisfy (2.15).

Suppose for example that the inputis (1,—1, f) wherem=1landVt € R, f(¢) = 1.
We can calculate the position by carrying out the integration in (2.15) to find that

VieRy, x(t)=1-—1+0.5

Suppose instead that x(0) = x(0) =0 and V7 € R, f(¢) = cos(wot), where @y is
some fixed number. Again, we can carry out the integration to get

t)—1
//cos o) duds——M

Lee & Varaiya, Signals and Systems 73


http://LeeVaraiya.org

2.3. DEFINING SYSTEMS

Notice that the position of the particle is sinusoidal. Notice further that the ampli-
tude of this sinusoid decreases as my increases. Intuitively, this has to be the case.
If the externally imposed force is varying more rapidly back and forth, the particle
has less time to respond to each direction of force, and hence its excursion is less.
In subsequent chapters, we will study how the response of certain kinds of systems
varies with the frequency of the input.

2.3.3 Difference equations

Consider a class of systems given by functions S: DiscSignals — DiscSignals where
DiscSignals is a set of discrete-time signals. Depending on the scenario, we could have
DiscSignals = [Z — R] or DiscSignals = [Z — C], or even DiscSignals = [Ny — R], or
DiscSignals = [Ng — C]. These are often called discrete-time systems because they op-
erate on discrete-time signals. Frequently, such systems can be defined by difference
equations that relate the input signal to the output signal.

74

Example 2.20: Consider a system
S: [No — R] = [Ng — R]
where for all x € [Ny — R], S(x) =y is given by
VneZ, yn)=(xn)+x(n—1))/2.

The output at each index is the average of two of the inputs. This is a simple
example of a moving average system, where typically more than two input values
get averaged to produce an output value.

Suppose that x = u, the unit step function, defined by

{ 1 ifn>0

VneZ, un)= 0 otherwise

(2.16)

We can easily calculate the output y,

1 ifn>1
VneZ, yn)=< 1/2 ifn=0
0 otherwise

Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

2. DEFINING SIGNALS AND SYSTEMS

The system smoothes the transition of the unit step a bit.

A slightly more interesting input is a sinusoidal signal given by
VneZ, x(n)=cos(2nfn).
The output is given by
VneZ, y(n)=(cos(2mfn)+cos(2nf(n—1)))/2.
Using the trigonometric identities in the box on page 76 this can be written as

y(n) =Rcos(2nfn+0)

where
B sin(—2mf)
9 = arctan(m)/z,
R = 2+42cos(2nf)

As in the previous example, a sinusoidal input stimulates a sinusoidal output with
the same frequency. In this case, the amplitude of the output varies (in a fairly
complicated way) as a function of the input frequency. We will examine this phe-
nomenon in more detail in subsequent chapters by studying the frequency response
of such systems.

Example 2.21: The general form for a moving average is given by

1 M—1
V' n € Integers, y(n)= i Z x(n—k),
k=0

where x is the input and y is the output. (If this notation is unfamiliar, see box on
page 77.)

This system is called an M-point moving average, since at any # it gives the average
of the M most recent values of the input. It computes an average, just like example
2.18 but the integral has been replaced by its discrete counterpart, the sum.

Lee & Varaiya, Signals and Systems 75


http://LeeVaraiya.org

2.3. DEFINING SYSTEMS

Moving averages are widely used on Wall Street to smooth out momentary fluctuations in
stock prices to try to determine general trends. We will study the smoothing properties of
this system. We will also study more general forms of difference equations of which the
moving average is a special case.

The examples above give declarative definitions of systems. Imperative definitions re-
quire giving a procedure for computing the output signal given the input signal. It is clear
how to do that with the memoryless system, assuming that an imperative definition of the
function f is available, and with the moving average. The integral equation, however, is
harder to define imperatively. An imperative description of such systems that is suitable
for computation on a computer requires approximation via solvers for differential equa-
tions. Simulink, for example, which is part of the Matlab package, provides such solvers.
Alternatively, an imperative description can be given in terms of analog circuits or other
physical systems that operate directly on the pertinent continuous domain. Discrete-time
systems often have reasonable imperative definitions as state machines, considered in
detail in the next chapter.

Basics: Trigonometric Identities

The following trigonometric identities will prove useful repeatedly:

Acos(0+a) +Bcos(0+ ) = Ccos® — Ssin® = Rcos(6+ ¢)

where
C =Acoso+Bcosf
S =Asino+ Bsinf
R =V/C*+$?
¢ =arctan(S/C)

76 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

2. DEFINING SIGNALS AND SYSTEMS

Basics: Summations

In example 2.21, a discrete-time moving average system is defined by

M-1

1
V' n € Integers, y(n)= Vi kg?) x(n—k),
=1
where x is the input and y is the output. The notation Y indicates a sum of M terms.
k=0

The terms are x(n — k), where k takes on values from 0 to M — 1. Thus,

M—1
/;)X(n—k) =x(n) +x(n—1)+-+x(n—M+1).

Such summations are related to integrals. Example 2.18 describes a continuous-time
system with input x and output y where

l t
VieR, y@)= M/I_Mx(r)dr.

This is similar to the discrete-time moving average in that it sums values of x, but it
sums over a continuum of values of the dummy variable T. In the discrete-time version,
the sum is over discrete values of the dummy variable k, which takes only integer val-
ues. The summation notation has an ambiguity that it does not share with the integral
notation. In particular, it is not clear how to interpret an expression like

M—1
Y 1+2.
k=0

There are two possibilities, depending on whether the 2 is included in the summation
or is interpreted as being outside the summation. One possibility gives a sum of 3M,
while the other gives M 4 2. In integration, this ambiguity does not occur because of the
explicit reference to the dummy variable as dt. In particular, it is clear that

T T
/ 1+2dr7é/ ldTt+2.
0 0

The left integral is equal to 37, while the right integral is 7" + 2.

Lee & Varaiya, Signals and Systems 77


http://LeeVaraiya.org

2.3. DEFINING SYSTEMS

2.3.4 Composing systems using block diagrams

We have been using block diagrams informally to describe systems. But it turns out that
block diagrams can have as rigorous and formal a meaning as mathematical notations.
We begin the exploration of this concept here, and pursue it much further in Chapter 4.

A block diagram is a visual syntax for describing a system as an interconnection of other
(component) systems, each of which emphasizes one particular input-to-output transfor-
mation of a signal. A block diagram is a collection of blocks interconnected by arrows.
Arrows are labeled by signals. Each block represents an individual system that transforms
an incoming or input signal into an outgoing or output signal.

A block diagram, which is a composition of systems, is itself a system. We can use
function composition, as discussed in Section 2.1.5, to give a precise meaning to this
larger system. A block represents a function, and the connection of an output from one
block to the input of another represents the composition of their two functions. The only
requirement for interconnecting two blocks is that the output of the first block must be an
acceptable input for the second.

Block diagrams can be much more readable than symbolic function composition, particu-
larly for complicated interconnections. They also offer a natural hierarchy, where we can
combine blocks to hide certain signals and component systems and to emphasize others.

For certain sorts of blocks, composing them in a block diagram results in a new system
whose properties are easy to determine. In chapter 4 we will show how to combine state
machine blocks to define a new state machine. In Chapter 8 we will show how to combine
filter blocks to define new filter blocks. Here, we consider the composition of blocks
when all we know about the blocks is that they represent functions with a given domain
and range. No further structure is available.

The simplest block diagram has a single block, as in Figure 2.8. The block represents a
system with input signal x and output signal y. Here, x denotes a variable over the set X,
and y denotes a variable over the set Y. The system is described by the function S: X — Y.
Both X and Y are sets of functions or signals. Therefore the variables x and y themselves
denote functions.

In general, a system obtained by a cascade composition of two blocks is given by the
composition of the functions describing those blocks. In figure 2.9 the function S de-
scribes the system obtained by connecting the systems S and S,, with § = S, 057, i.e.

VxeX, S(x)=82(81(x)).

78 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

2. DEFINING SIGNALS AND SYSTEMS

xeX yeY
—_—> S XY —>
X =[Dy— Ry] Y=[Dy— Ry]

Figure 2.8: The simplest block diagram represents a function S that maps an input
signal x € X to an output signal y € Y. The domain and range of the input are Dy
and Ry, repectively, and of the output, Dy and Ry.

xeX yEY 7EZ
—>»| S, XY ———>»| S, Y Z |————>
X=[D—R] Y=[D'— R Z=[D"—R"]
S: X—=Z

Figure 2.9: The cascade composition of the two systems is described by S =
S>08;.

The combined system has input signal x, output signal z, and internal signal y. (The
internal signal is not visible in the input or output of the combined system.) Of course,
the range of the first system must be contained by the domain of the second for this
composition to make sense. In the figure, the typical case is shown where this range and
domain are the same. The voice path in (2.7) is an example of cascade composition.

Consider two more block diagrams with slightly more complicated structure. Figure 2.10
is similar to Figure 2.9. The system described by S, is the same as before, but the system
described by S, has a pair of input signals (w,y) € W x Y. The combined system has
the pair (x,w) € X x W as input signal, z as output signal, y as internal signal, and it is
described by the function S: X x W — Z, where

V(x,w) e X xW, S(x,w)=8(w,S1(x)). (2.17)

Lee & Varaiya, Signals and Systems 79


http://LeeVaraiya.org

2.3. DEFINING SYSTEMS

Probing Further: Composition of graphs

We suggest a general method for writing down a declarative specification of the intercon-
nected system S in Figure 2.9 in terms of the subsystems S; and S> and the connection
restriction that the output of S; be acceptable as an input of S;.

We describe S and S, by their graphs,

graph(Sy) = {(x,y1) €X XY [ y1 = Si1(x)},

graph(S2) = {(v2,2) €Y xZ [ z=$2(32)},

and we specify the connection restriction as the predicate

y1=Y2.

We use different dummy variables y; and y; to distinguish between the two systems and
the connection restriction.
The graph of the combined system S is then given by

graph(S) = {(x,2) €X xZ|3Jy1,In2
(x,y1) € graph(S1) A (y2,2) € graph(S2) Ay1 = ya}.

Here, A denotes logical conjunction, “and.” It is now straightforward to show that
graph(S) = graph(S, 0 S;) so that S = S, 0.

In the case of the cascade composition of Figure 2.9 this elaborate method is unnec-
essary, since we can write down S = S; oS simply by inspecting the figure. But for
feedback connections, we may not be able to write down the combined system directly.

There are three other reasons to understand this method. First, we use it later to
obtain a description of interconnected state machines from their component machines.
Second, this method is used to describe electronic circuits. Third, if we want a computer
to figure out the description of the interconnected system from a description of the
subsystems and the connection restrictions, we have to design an algorithm that the
computer must follow. Such an algorithm can be based on this general method.

80 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

2. DEFINING SIGNALS AND SYSTEMS

weWw
>
W= [Dy, — Ryl
7EZ
S, WxY—=Z
Z=[D;— Ry]
xeX yeYy
—>» S, X—>7Y
S:WxX—=2Z

Figure 2.10: The combined system with input signals x,w and output signal z is
described by the function S, where V (x,w), S(x,w) = S2(w,S1(x)).

Notice that it is now much harder to define this system using the function composition
notation, o, yet the block diagram makes its definition evident. In fact, the block diagram
notation is much more flexible.

The system of Figure 2.11 is obtained from that of figure 2.10 by connecting the output
signal z to the input signal w. As a result the new system has input signal x, output signal
Z, internal signals y and w, and it is described by the function §’: X — Z, where

VxeX, S(x)=3S5(5x),S(x)). (2.18)

The connection of z to w is called a feedback connection because the output z is fed back
as input w. Of course, such a connection has meaning only if Z, the range of S5, is a subset
of W. The system in Figure 2.11 is again difficult to define using function composition
notation, o, yet again the block diagram definition is clear.

There is one enormous difference between (2.17) and (2.18). Expression (2.17) serves as
a definition of the function S: to every (x,w) in its domain S assigns the value given by
the right-hand side which is uniquely determined by the given functions S| and S;. But in
expression (2.18) the value S’(x) assigned to x may not be determined by the right-hand
side of (2.18), since the right-hand side itself depends on §'(x). In other words, (2.18) is
an equation that must be solved to determine the value of §'(x) for a given x; i.e. §'(x) =y
where y is a solution of

y=5(,81(x)). (2.19)

Lee & Varaiya, Signals and Systems 81


http://LeeVaraiya.org

2.4. SUMMARY

ze€ W
ZCW
7EZ
SzWXY—>Z
Z=[D,— R,
xeX yeY
— S5, XY ——>
S':X—=Z

Figure 2.11: The combined system is described by the function §’, where §'(x) =
$2(8'(x),S1(x)).

Such a solution, if it exists, is called a fixed point. We now face the difficulty that this
equation may have no solution, exactly one solution, or several solutions. Another diffi-
culty is that the value y that solves (2.19) is not a number but a function. So it will not
be easy to solve such an equation. Since feedback connections always arise in control
systems, we will study how to solve them. We will first solve them in the context of state
machines, which are introduced in the next chapter.

All of these block diagrams follow the same principles. They use component systems
to define composite systems. To be useful, of course, it is necessary to be able to infer
properties of the composite systems. Fortunately, this is often the case, although feedback
connections will prove subtle. This idea is explored further in chapters 4 and 8.

2.4 Summary

Signals and systems both are modeled as functions. It is often straightforward to figure
out the domain and range of a particular signal and system. It is more difficult to specify
the function’s assignment rule. Since the domain and range of a system are themselves
signal spaces, the assignment rule for a system is more complex than for a signal. The
domain and range signal spaces of a system can be quite different: a modem converts bit
sequences into sounds, an encoder converts sounds into bit sequences.

82 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

2. DEFINING SIGNALS AND SYSTEMS

The assignment rule of a function takes a declarative or imperative form. The declarative
form is usually mathematical, as in: define Chirp : [—1,1] — R by

Vi€ [—1,1], Chirp(t) = cos(20ms?).

The imperative form is a procedure to evaluate the function at an arbitrary point in its
domain. The procedure may involve a table lookup (if the domain is finite) or a computer
program. If the domain is infinite, the evaluation procedure may only yield an approxi-
mation of the declarative form of the “same” function.

A physical system is often described using differential or difference equations that em-
body its “law of motion.” A mechanical system’s law of motion is derived from Newton’s
laws. An electrical circuit’s law of motion is derived from Kirchhoff’s laws and the laws
of the circuit’s constitutive elements: resistors, capacitors, inductors, transistors.

Most systems are built by composing smaller subsystems. The composition may be ex-
pressed in the visual syntax of block diagrams or, mathematically, using function compo-
sition. Feedback is the most complex form of system composition: a feedback specifica-
tion requires the solution of a fixed point equation.

Lee & Varaiya, Signals and Systems 83


http://LeeVaraiya.org

EXERCISES

Exercises

Each problem is annotated with the letter E, T, C which stands for exercise, requires some
thought, and requires some conceptualization. Problems labeled E are usually mechani-
cal, those labeled T require a plan of attack, those labeled C usually have more than one
defensible answer.

1. E The broadcast signal of an AM radio station located at 110 on your dial has a
carrier frequency of 110 kHz. An AM signal that includes the carrier has the form

V't € Time, AMSignal(t) = (1+m(t))sin(2m x 110,000¢),

where m is an audio signal like Voice in figure 1.1, except that V ¢ € Time, |m(t)| < 1.
Since you cannot easily plot such a high frequency signal, give an expression for
and plot AMSignal (using Matlab) for the case where Time = [0, 1], m(t) = cos(mt),
and the carrier frequency is 20 Hz.

2. T This problem studies the relationship between the notion of delay and the graph
of a function.

(a) Consider two functions f and g from R into R where V7 € R, f(¢) =t and
g(t) = f(t —1to), where t is a fixed number. Sketch a plot of f and g forzp =1
and ) = —1. Observe that if 7y > 0 then graph(g) is obtained by moving
graph(f) to the right, and if #p < 0 by moving it to the left.

(b) Show thatif f: R — R is any function whatsoever, and V 7, g(r) = f(t —to),
then if (z,y) € graph(f), then (t +1t,y) € graph(g). This is another way of
saying that if 7o > 0 then the graph is moved to the right, and if 7y < O then the
graph is moved to the left.

(c) If ¢ represents time, and if #o > 0, we say that g is obtained by delaying f.
Why is it reasonable to say this?

3. E Indicate whether the following statements are true or false.

@ [{1,2,3} = {a,b}] C [N — {a,b}]
(b) {g|g=graph(f)Nf: X Y} CXxY
() F: [R—R]—[R—R],suchthatVs€R,andVx € [R — R],

(F(x))(t) = sin(27 - 440r)

is a memoryless system.

84 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

2. DEFINING SIGNALS AND SYSTEMS

raph(g)
graph(f’) srepms

Figure 2.12: Graphs of two functions. The bold line is the graph.

(d) Let f: R— R and g: R — R, where g is obtained by delaying f by T € R.
That is,
VieR, g(t)=f(t—n1).

Then graph(g) C graph(f).

4. E Figure 2.12 shows graphs of two functions f: [-1,1] — [-1,1]and g: [-1,1] —
[—1,1]. For each case, define the function by giving an algebraic expression for its
value at each point in its domain. This expression will have several parts, similar to
the definition of the signum function in (2.3). Note that g(0) = 0 for the graph on
the right. Plot graph(f og) and graph(go f).

5. T Let X = {a,b,c}, Y = {1,2}. For each of the following subsets G C X x Y,
determine whether G is the graph of a function from X to Y, and if it is, describe
the function as a table.

@ G={(a,1),(b;1),(c,;2)}
(b) G={(a,1),(a,2),(b,1),(c,2)}
© G={(a,1),(h;2)}
6. C A router in the Internet is a switch with several input ports and several output
ports. A packet containing data arrives at an input port at an arbitrary time, and

the switch forwards the packet to one of the outgoing ports. The ports of different
routers are connected by transmission links. When a packet arrives at an input port,

Lee & Varaiya, Signals and Systems 85


http://LeeVaraiya.org

EXERCISES

86

the switch examines the packet, extracting from it a destination address d. The
switch then looks up the output port in its routing table, which contains entries of
the form (d,outputPort). It then forwards the packet to the specified output port.
The Internet works by setting up the routing tables in the routers.

Consider a simplified router with one input port and and two output ports, named
01, O,. Let D be the set of destination addresses.

(a) Explain why the routing table can be described as a subset T C D x {O0},0,}.
(b) Isitreasonable to constrain T to be the graph of a function from D — {0, 0,}?
Why?

(c) Assume the signal at the input port is a sequence of packets. How would you
describe the space of input signals to the router and output signals from the
router?

(d) How would you describe the switch as a function from the space of input
signals to the space of output signals?

7. C For each of the following expressions, state whether it can be interpreted as an

assignment, an assertion, or a predicate. More than one choice may be valid because
the full context is not supplied.

(@) x=135,

(b) A={5},

(c) x>5,

(d) 3>5,

(e) x>5Ax<3.

8. T A logic circuit with m binary inputs and n binary outputs is shown in Figure 2.13.

It is described by a function F: X — Y where X = Binary™ and Y = Binary". (In
a circuit, the signal values 1 and 0 in Binary correspond to voltage High and Low,
respectively.) How many such distinct logic functions F are there?

. E The function H : [R; — R] — [Ny — R] given by: Vx € [R; — R],

Vne Ny, H(x)(n)=x(10n),

is a mathematical example of a system with input signal space [R; — ] and output
signal space [Ny — R]. Give a mathematical example of a system H whose

Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

2. DEFINING SIGNALS AND SYSTEMS

x; € Binary y1 € Binary
—_— —>

F : Bin™ — Bin"

Xx,, € Binary ¥, € Binary
—> —
Figure 2.13: The logic circuit has m binary inputs (xi,--- ,x,) and n binary outputs

(yl,"' ayn)-

(a) input and output signal spaces both are [Ny — Binary).
(b) input signal space is [No — R] and output signal space is [No — {0, 1}].
(c) input signal space is [Z — R] and output signal space is [R — R].

10. E Consider the functions
g:Y—-R and f:N—-Y.
where Y is a set.

(a) Draw a block diagram for (go f), with one block for each of g and f, and
label the inputs and output of the blocks with the domain and range of g and

f.
(b) Suppose Y is given by

Y =[{1,,100} - R]

(Thus, the function f takes a natural number and returns a sequence of length
100, while the function g takes a sequence of length 100 and returns a real
number.)

Suppose further that g is given by: forally e Y,

100
g(y) =Y (i) =y(1)+y(2) +---+y(100),
i=1

and f by: forallx € Nand z € {1,---,100},
(f(x))(z) = cos(2mz/x).

Lee & Varaiya, Signals and Systems 87


http://LeeVaraiya.org

EXERCISES

11.

12.

88

(Thus, x gives the period of a cosine waveform, and f gives 100 samples of
that waveform.) Give a one-line Matlab expression that evaluates (g o f)(x)
for any x € N. Assume the value of x is already in a Matlab variable called x.

(c) Find (go f)(1).

T The following system S takes a discrete-time signal x € X and transforms it into
a discrete-time signal y € Y whose value at index 7 is the average of the previous 4
values of x. Such a system is called a moving average. Suppose that X =Y = [N —
R], where N is the set of natural numbers. More precisely, the system is described
by the function S such that for any x € X, y = S(x) is given by

() A+ x(n)] /4 for 1 <n <4
y("){ (n—3) +x(n—2) +x(n—1) +x(n)]/4 forn>4

Notice that the first three samples are averages only if we assume that samples prior
to those that are available have value zero. Thus, there is an initial transient while
the system collects enough data to begin computing meaningful averages.

Write a Matlab program to calculate and plot the output signal y for time 1 <n <20
for the following input signals:
(a) xis a unit step delayed by 10, i.e. x(n) = 0 for n <9 and x(n) = 1 for n > 10.
(b) x is a unit step delayed by 15.

(c) x alternates between +1 and -1, i.e. x(n) = 1 for n odd, and x(n) = —1 for n
even. Hint: Try computing cos(nn) for n € N.

(d) Comment on what this system does. Qualitatively, how is the output signal
different from the input signal?

T The following system is similar to problem 11, but time is continuous. Now
X =Y = [R — R] and the system F: X — Y is defined as follows. For all x € X

andr € R -
(FE)0 =15 [+l

Show that if x is the sinusoidal signal
VteR x(t)=sin(wr),
then y is also sinusoidal

VteR, y(t)=Asin(or+9¢).

Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

2. DEFINING SIGNALS AND SYSTEMS

You do not need to give precise expressions for A and ¢, but just show that the
result has this form. Also, show that as ® gets large, the amplitude of the output
gets small. Higher frequencies, which represent more abrupt changes in the input,
are more attenuated by the system than lower frequencies.

Hint: The following fact from calculus may be useful:

i ds = ! b
/a sin(ws)ds = 6(cos(ma)—cos(m ))-

Also, the identity in the footnote on page 76 might be useful to show that the output
is sinusoidal with the appropriate frequency.

13. E Suppose that f: R — R and g: R — Z such that for all x € R,

1 ifx>0

glx)=< 0 ifx=0

-1 ifx<O

and
fx)=1+nx.
(a) Define h =go f.
(b) Suppose that

F:[R—-R] —» [R—R]
G:R—R] —» [R—Z]

such that for all s € [R — R] and x € R,
(F(s)(x) = fls(x)
(G(s)(x) = g(s(x))

where f and g are as given above. Sketch a block diagram for H = Go F,
where you have one block for each of G and F. Label the inputs and outputs
of your blocks with the domain and range of the functions in the blocks.

(c) Lets € [R — R] be such that for all x € R,
s(x) = cos(mx).

Define u where
u=(GoF)(s).

Give the domain, range, and assignment rule for u.

Lee & Varaiya, Signals and Systems 89


http://LeeVaraiya.org

EXERCISES

14. T Let D = DiscSignals = [Z — R] and let
G:DxD—D
such that for all x,y € D and for all n € Z,
(G(x,y))(n) = x(n) = y(n—1).

Now suppose we construct a new system H as follows:

H

Define H (as much as you can).

15. T Consider a similar system H to that in the previous problem,

H

but where now x € R, and y € R,. The inputs and outputs are no longer signals,
but rather just non-negative real numbers. So G: Ry x R, — R,. Block diagrams,
of course, work just as well for such simpler functions.

In this problem, we explore fixed points by considering a classic algorithm for
calculating the square root of a non-negative real number. Let the function G above
be given by

Vx,yeRy, G(x,y)=0.5(y+x/y). (2.20)

(a) Show that for a given x € R, if the fixed point exists, then H: Ry — R, is
given by
\V/.XGR+, H(x):\/;c

90 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

2. DEFINING SIGNALS AND SYSTEMS

(b) To use the system above to calculate a square root, we simply start with a
guess for y, say 1, and calculate G(x,y) repeatedly until it converges to a
stable value for y. That stable value is the fixed point. Do this calculation for
x =4 and for x = 12, repeating the evaluation of G until you obtain a close
approximation to the true square root. You may want to use Matlab for this.

Lee & Varaiya, Signals and Systems 91


http://LeeVaraiya.org

EXERCISES

92 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

State Machines

Contents
3.1 Structure of statemachines . . . ... ................ 94
3.1.1 Updates . . . .. ... . 95
3.1.2 Stuttering . . . . . ..o 97
3.2 Finitestatemachines ... ...................... 98
3.2.1 State transition diagrams . . . . . . ... ... 99
322 Updatetable . .. ... ... ... ... .. ... . ... 103
3.3 Nondeterministic state machines . . . ................ 107
3.3.1 State transition diagram . . . . . ... ... ... 107
3.3.2 Setsand functionsmodel . . . . .. . ... ... ... .... 110
3.4 Simulationrelations . ... ... ... .. ... .. . . ..., 112
34.1 Relatingbehaviors . . . . ... ... ... L. 119
35 SUMMATY . ¢ ¢ v v v vt e e e et e et e e e e e e e e e e 121
EXercises . . . o v v i i i i it ittt ettt et 129

Systems are functions that transform signals. The domain and the range of these functions
are both signal spaces, which significantly complicates specification of the functions. A
broad class of systems can be characterized using the concept of state and the idea that
a system evolves through a sequence of changes in state, or state transitions. Such
characterizations are called state-space models.

A state-space model describes a system procedurally, giving a sequence of step-by-step
operations for the evolution of a system. It shows how the input signal drives changes in

93



3.1. STRUCTURE OF STATE MACHINES

state, and how the output signal is produced. It is thus an imperative description. Imple-
menting a system described by a state-space model in software or hardware is straight-
forward. The hardware or software simply needs to sequentially carry out the steps given
by the model. Conversely, given a piece of software or hardware, it is often useful to
describe it using a state-space model, which yields better to analysis than more informal
descriptions.

In this chapter, we introduce state-space models by discussing systems with a finite (and
relatively small) number of states. Such systems typically operate on event streams, of-
ten implementing control logic. For example, the decision logic of modem negotiation
described in Chapter 1 can be modeled using a finite state model. Such a model is much
more precise than the English-language descriptions that are commonly used for such
systems.

3.1 Structure of state machines

A description of a system as a function involves three entities: the set of input signals, the
set of output signals, and the function itself,

F: InputSignals — OutputSignals.
For a state machine, the input and output signals have the form
EventStream: Nog — Symbols,

where No = {0,1,2,---}, and Symbols is an arbitrary set. The domain of these signals
represents ordering but not necessarily time (neither discrete nor continuous time). The
ordering of the domain means that we can say that one event occurs before or after another
event. But we cannot say how much time elapsed between these events. In Chapter 5 we
will study how state-space models can be used with functions of time.

A state machine constructs the output signal one symbol at a time by observing the input
signal one symbol at a time. Specifically, a state machine StateMachine is a 5-tuple,

StateMachine = (States, Inputs, Outputs, update, initialState) (3.1

where States, Inputs, Outputs are sets, update is a function, and initialState € States. The
meaning of these names is:

94 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

3. STATE MACHINES

States is the state space,

Inputs is the input alphabet,

Outputs is the output alphabet,

initialState € States is the initial state, and

update: States x Inputs — States X Outputs is the update function.

This five-tuple is called the sets and functions model of a state machine.

Inputs and Outputs are the sets of possible input and output symbols. The set of input
signals consists of all infinite sequences of input symbols,

InputSignals = [Ny — Inputs).
The set of output signals consists of all infinite sequences of output symbols,

OutputSignals = [No — Outputs].

Let x € InputSignals be an input signal. A particular symbol in the signal can be written
x(n) for any n € Ny. We write the entire input signal as a sequence

This sequence defines the function x in terms of symbols x(n) € Inputs, which represent
particular input symbols.

We reiterate that the index 7 in x(n) does not refer to time, but rather to the step number.
This is an ordering constraint only: step n occurs after step n — 1 and before step n+ 1.
The state machine evolves (i.e. moves from one state to the next) in steps.’

3.1.1 Updates

The interpretation of update is this. If s(n) € States is the current state at step n, and
x(n) € Inputs is the current input symbol, then the current output symbol and the next
state are given by

(s(n+1),y(n)) = update(s(n),x(n)).

1Of course the steps could last a fixed duration of time, in which case there would be a simple relation-
ship between step number and time. The relationship may be a mixed one, where some input symbols are
separated by a fixed amount of time and some are not.

Lee & Varaiya, Signals and Systems 95


http://LeeVaraiya.org

3.1. STRUCTURE OF STATE MACHINES

Thus the update function makes it possible for the state machine to construct the output
signal step by step by observing the input signal step by step.

The state machine StateMachine of (3.1) defines a function
F: InputSignals — OutputSignals 3.2)

such that for any input signal x € InputSignals the corresponding output signal is y = F (x).
However, it does much more than just define this function. It also gives us a procedure for
evaluating this function on a particular input signal. The state response (s(0),s(1),---)
and output signal y are constructed as follows:
s(0) = initialState, (3.3)
Vn>0, (s(n+1),y(n)) = update(s(n),x(n)), (3.4)
Observe that if the initial state is changed, the function F' will change, so the initial state
is an essential part of the definition of a state machine.

Each evaluation of (3.4) is called a reaction because it defines how the state machine
reacts to a particular input symbol. Note that exactly one output symbol is produced for
each input symbol. Thus, it is not necessary to have access to the entire input sequence
to start producing output symbols. This feature proves extremely useful in practice, since
it is usually impractical to have access to the entire input sequence (it is infinite in size!).
The procedure summarized by (3.3)—(3.4) is causal, in that the next state s(n+ 1) and
current output symbol y(n) depend only on the initial state s(0) and current and past input
symbols x(0),x(1),--- ,x(n).

It is sometimes convenient to decompose update into two functions:

nextState : States X Inputs — States is the next state function,
output: States X Inputs — Outputs is the output function.

The interpretation is this. If s(n) is the current state, and x(n) is the current input symbol
at step n, the next state is
s(n+1) = nextState(s(n),x(n)),
and the current output symbol is
y(n) = output(s(n),x(n)).
Evidently, for all s(n) € States and x(n) € Inputs,
(s(n+1),y(n)) = update(s(n),x(n)) = (nextState(s(n),x(n)),output(s(n),x(n)).

96 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

3. STATE MACHINES

3.1.2 Stuttering

A state machine produces exactly one output symbol for each input symbol. For each
input symbol, it may also change state (of course, it could also remain in the same state
by changing back to the same state). This means that with no input symbol, there is
neither an output symbol nor a change of state.

Later, when we compose simpler state machines to construct more complicated ones, it
will prove convenient to be explicit in the model about the fact that no input triggers no
output and no state change. We do that by insisting that the input and output symbol sets
include a stuttering symbol, typically denoted absent. That is,

absent € Inputs, and absent € Outputs.
Moreover, we require that for any s € States,
update(s,absent) = (s,absent). (3.5)

This is called a stuttering reaction because no progress is made. An absent input symbol
triggers an absent output symbol and no state change. Now any number of absent sym-
bols may be inserted into the input sequence, anywhere, without changing the non-absent
output symbols. Stuttering reactions will prove essential for hybrid systems models, con-
sidered in Chapter 6.

Example 3.1: Consider a 60-minute parking meter. There are three (non-
stuttering) input symbols: in5 and in25 which represent feeding the meter 5 and
25 cents respectively, and tick which represents the passage of one minute. The
meter displays the time in minutes remaining before the meter expires. When in5
occurs, this time is incremented by 5, and when in25 occurs it is incremented by
25, up to a maximum of 60 minutes. When tick occurs, the time is decremented
by 1, down to a minimum of 0. When the remaining time is 0, the display reads
expired.

We can construct a finite state machine model for this parking meter. The set of
states is
States = {0,1,2,...,60}.

The input and output alphabets are

Inputs = {in5,in25,tick,absent},

Lee & Varaiya, Signals and Systems 97


http://LeeVaraiya.org

3.2. FINITE STATE MACHINES

Outputs = {expired, 1,2, ...,60,absent}.

The initial state is
initialState = 0.

The update function
update: States X Inputs — States X Outputs
is given by, V s(n) € States, x(n) € Inputs,

(0, expired)
if x(n) = tick A\ (s(n) =0Vs(n)=1)
(s(n) —1,5(n) 1)
if x(n) = tick Ns(n) > 1
(min(s(n)+5,60), min(s(n) +5,60))
if x(n) = in5
(min(s(n) + 25,60), min(s(n) + 25, 60))
if x(n) = in25
(s(n),absent)
if x(n) = absent

update(s(n),x(n)) =

where min is a function that returns the minimum of its arguments.

If the input sequence is (in25 1ick®,in5  tick' - - ), for example, then the output
sequence is

(expired,25,24,...,6,5,10,9,8,--- 2, 1, expired, - - -).

Here, we are using the common notation tick'® to mean a sequence of 10 consecu-
tive ticks.

3.2 Finite state machines

Often, States is a finite set. In this case, the state machine is called a finite state machine,
abbreviated FSM. FSMs yield to powerful analytical techniques because, in principle, it
is possible to explore all possible sequences of states. The parking meter above is a finite

98

Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

3. STATE MACHINES

state machine. The remainder of this chapter and the next chapter will focus on finite state
machines. We will return to infinite state systems in Chapter 5.

When the number of states is small, and the input and output alphabets are finite (and
small), we can describe the state machine using a very readable and intuitive diagram
called a state transition diagram.

Example 3.2: A verbal description of an automatic telephone answering service
or voice-mail service might go like this.

When a call arrives, the phone rings. If the phone is not picked up, then
on the third ring, the service answers. It plays a pre-recorded greeting
requesting that the caller leave a message (“‘Hello, sorry I can’t answer
your call right now ... Please leave a message after the beep”), then
records the caller’s message, and then automatically hangs up. If the
phone is answered before the third ring, the service does nothing.

Figure 3.1 shows a state transition diagram for the state machine model of this
answering service.

You can probably read the diagram in Figure 3.1 without any further explanation. It is
sufficiently intuitive. Nonetheless, we will explain it precisely.

3.2.1 State transition diagrams

Figure 3.1 consists of bubbles linked by arcs. (The arcs are also called arrows.) In this
bubbles-and-arcs syntax each bubble represents one state of the answering service, and
each arc represents a transition from one state to another. The bubbles and arcs are
annotated, i.e. they are labeled with some text. The execution of the state machine consists
of a sequence reactions, where each reaction involves a transition from one state to another
(or back to the same state) along one of the arcs. The tables at the bottom of the figure are
not part of the state transition diagram, but they improve our understanding of the diagram
by giving the meanings of the names of the states, input symbols, and output symbols.

The notation for state transition diagrams is summarized in Figure 3.2. Each bubble is
labeled with the name of the state it represents. The state names can be anything, but they

Lee & Varaiya, Signals and Systems 99


http://LeeVaraiya.org

3.2. FINITE STATE MACHINES

must be distinct. The state machine of Figure 3.1 has five states. The state names define
the state space,

States = {idle,countl,count2,play greeting, recording}.

Each arc is labeled by a guard and (optionally) an output. If an output symbol is given,
it is separated from the guard by a forward slash, as in the example {ring}/answer going
from state count2 to play greeting. A guard specifies which input symbols might trigger
the associated transition. It is a subset of the Inputs, the input alphabet, which for the
answering service is

Inputs = {ring, offhook,end greeting, end message,absent}.

In Figure 3.1, some guards are labeled “else.” This special notation designates an arc that
is taken when there is no match on any other guard emerging from a given state. The arc
with the guard else is called the else arc. Thus, else is the set of all input symbols not
included in any other guard emerging from the state. More precisely, for a given state,
else is the complement with respect to Inputs of the union of the guards on emerging arcs.
For example in Figure 3.1, for state recording,

else = {ring,end greeting}.
For the example in Figure 3.2, else is defined by

else = {i € Inputs | i ¢ (guardl U guard2)}.

If no else arc is specified, and the set else is not empty, then the else arc is implicitly a self
loop, as shown by the dashed arc in figure 3.2. A self loop is an arc that transitions back
to the same state. When the else arc is a self loop, then the stuttering symbol may be a
member of the set else.

Initially, the system of Figure 3.1 is in the idle state. The initial state is indicated by
the bold arc on the left that leads into the state idle. Each time an input symbol arrives,
the state machine reacts. It checks the guards on arcs going out of the current state and
determines which of them contains the input symbol. It then takes that transition.

Two problems might occur.

e The input symbol may not be contained in the guard of any outgoing arc. In our
state machine models, for every state, there is at least one outgoing transition that

100 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

3. STATE MACHINES

matches the input symbol (because of the else arc). This property is called recep-
tiveness; it means that the machine can always react to an input symbol. That is,
there is always a transition out of the current state that is enabled by the current
input symbol. (The transition may lead back to current state if it is a self loop.) Our
state machines are said to be receptive.

e More than one guard going out from the current state may contain the input symbol.
A state machine that has such a structure is said to be nondeterministic. The
machine is free to choose any arc whose guard contains the input symbol, so more
than one behavior is possible for the machine. Nondeterministic state machines
will be discussed further below. Until then, we assume that the guards are always
defined to give deterministic state machines. Specifically, the guards on outgoing
arcs from any state are mutually exclusive. In other words, the intersection of any
two guards on outgoing arcs of a state is empty, as indicated in Figure 3.2. Of
course, by the definition of the else set, for any guard that is not else, it is true that
guardNelse = 0.

A sequence of input symbols thus triggers a sequence of state transitions. The resulting
sequence of states is called the state response.

Example 3.3: In Figure 3.1, if the input sequence is
(ring, ring, offhook, - - )
then the state response is
(idle,countl,count2,idle,---).

The ellipsis (“---”) are there because the answering service generally responds to
an infinite input sequence, and we are showing only the beginning of that response.
This behavior can be compactly represented by a trace,

rin rin offhook
idle J countl j count?2 ﬂh—> idle - - -
A trace represents the state response together with the input sequence that triggers

it. This trace describes the behavior of the answering service when someone picks
up a telephone extension after two rings.

Lee & Varaiya, Signals and Systems 101


http://LeeVaraiya.org

3.2. FINITE STATE MACHINES

A more elaborate trace illustrates the behavior of the answering service when it
takes a message:

idle % countl % count2 % play greeting (3.6)

end greetin, end message
g_} grecording — 5 idle

A state machine also produces outputs. In Figure 3.1, the output alphabet is
Outputs = {answer,record,recorded,absent}.

An output symbol is produced as part of a reaction. The output symbol that is produced
is indicated after a slash on an arc. If the arc annotation shows no output symbol, then the
output symbol is absent.

Example 3.4: The output sequence for the trace (3.6) is
(absent,absent,answer, record, recorded, - - - ).

There is an output symbol for every input symbol, and some of the output symbols
are absent.

It should be clear how to obtain the state response and output sequence for any input
sequence. We begin in the initial state and then follow the state transition diagram to
determine the successive state transitions for successive input symbols. Knowing the
sequence of transitions, we also know the sequence of output symbols.

Shorthand

State transition diagrams can get very verbose, with many arcs with complicated labels.
A number of shorthand options can make a diagram clearer by reducing the clutter.

e If no guard is specified on an arc, then that transition is always taken when the state
machine reacts and is in the state from which arc emerges, as long as the input is

102 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

3. STATE MACHINES

not the stuttering symbol. That is, giving no guard is equivalent to giving the entire
set Inputs as a guard, minus the stuttering symbol. The stuttering symbol, recall,
always triggers a transition back to the same state, and always produces a stuttering
symbol on the output.

e Any clear notation for specifying subsets can be used to specify guards. For ex-
ample, if Inputs = {a,b,c}, then the guard {b,c} can be given by —a (read “not
a’).

e An else transition for a state need not be given explicitly. It is an implied self-loop
if it is not given. This is why it is shown with a dashed line in Figure 3.2.

e The output symbol is the stuttering symbol of Outputs if it is not given.

These shorthand notations are not always a good idea. For example, the else transitions
often correspond to exceptional (unexpected) input sequences, and staying in the same
state might not be the right behavior. For instance, in Figure 3.1, all else transitions are
shown explicitly, and all exceptional input sequences result in the machine ending up in
state idle. This is probably reasonable behavior, allowing the machine to recover. Had
we left the else transitions implicit, we would likely have ended up with less reasonable
behavior. Use your judgment in deciding whether or not to explicitly include else transi-
tions.

3.2.2 Update table

An alternative way to describe a finite state machine is by an update table. This is simply
a tabular representation of the state transition diagram.

For the diagram of Figure 3.1, the table is shown in Figure 3.3. The first column lists the
current state. The remaining columns list the next state and the output symbol for each of
the possible input symbols.

The first row, for example, corresponds to the current state idle. If the input symbol is
ring, the next state is count! and the output symbol is absent. Under any of the other
input symbols, the state remains idle and the output symbol remains absent.

Lee & Varaiya, Signals and Systems 103


http://LeeVaraiya.org

3.2. FINITE STATE MACHINES

Types of State Machines

The type of state machines introduced in this section are known as Mealy machines,
after G. H. Mealy, who studied them in 1955. Their distinguishing feature is that output
symbols are associated with state transitions. That is, when a transition is taken, an output
symbol is produced. Alternatively, we could have associated output symbols with states,
resulting in a model known as Moore machines, after F. Moore, who studied them in
1956. In a Moore machine, an output symbol is produced while the machine is in a
particular state. Mealy machines turn out to be more useful when they are composed
synchronously, as we will do in the next chapter. This is the reason that we choose this
variant of the model.

It is important to realize that state machine models, like most models, are not unique. A
great deal of engineering judgment goes into a picture like Figure 3.1, and two engineers
might come up with very different pictures for what they believe to be the same system.
Often, the differences are in the amount of detail shown. One picture may show the
operation of a system in more detail than another. The less detailed picture is called an
abstraction of the more detailed picture. Also likely are differences in the names chosen
for states, input symbols and output symbols, and even in the meaning of the input and
output symbols. There may be differences in how the machine responds to exceptional
circumstances (input sequences that are not expected). For example, what should the
answering service do if it gets the input sequence (ring, end greeting,end message)? This
probably reflects a malfunction in the system. In figure 3.1, the reaction to this sequence
is easy to see: the machine ends up in the idle state.

Given these likely differences, it becomes important to be able to talk about abstraction
relations and equivalence relations between state machine models. This turns out to be
a fairly sophisticated topic, one that we touch upon below in Section 3.3.

The meaning of state

We have three equivalent ways of describing a state machine: sets and functions, the state
transition diagram, and the update table. These descriptions have complementary uses.
The table makes obvious the sparsity of output symbols in the answering service example.
The table and the diagrams are both useful for a human studying the system to follow its
behavior in different circumstances. The sets and functions and the table are useful for

104 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

3. STATE MACHINES

building the state machine in hardware or software. The sets and functions description is
also useful for mathematical analysis.

Of course, the tables and the transition diagram can be used only if there are finitely
many states and finitely many input and output symbols, i.e. if the sets States, Inputs, and
Outputs are finite. The sets and functions description is often equally comfortable with
finite and infinite state spaces. We will discuss infinite-state systems in Chapter 5.

Like any state machine, a telephone answering service is a state-determined system.
Once we know its current state, we can tell what its future behavior is for any future input
symbols. We do not need to know what input symbols in the past led to the current state
in order to predict how the system will behave in the future. In this sense we can say the
current state of the system summarizes the past history of the system. This is, in fact, the
key intuitive notion of state.

The number of states equals the number of patterns we need to summarize the past his-
tory. If this is intrinsically finite, then a finite-state model exists for the system. If it is
intrinsically infinite, then no finite-state model exists. We can often determine which of
these two situations applies using simple intuition. We can also show that a system has
a finite-state model by finding one. Showing that a system does not have a finite-state
model is a bit more challenging.

Example 3.5: Consider the example of a system called CodeRecognizer whose
input and output signals are sequences of 0 and 1 (with arbitrarily inserted stuttering
symbols, which have no effect). The system outputs recognize at the end of every
subsequence 1100 in the input, and otherwise it outputs absent. If the input x is
given by a sequence

(x(O),x(l), o ')7

and the output y is given by the sequence
(y(O),y(l), o ')a
then, if none of the input symbols is absent,

3(n) = { recognize if (x(n—3),x(n—2),x(n—1),x(n)) = (1,1,0,0)

absent otherwise (3.7)

Intuitively, in order to determine y(n), it is enough to know whether the previous
pattern of (non-absent) inputs is 0, 1, 11, or 110. If this intuition is correct, we

Lee & Varaiya, Signals and Systems 105


http://LeeVaraiya.org

3.2. FINITE STATE MACHINES

can implement CodeRecognizer by a state machine with four states that remember
the patterns O, 1, 11, 110. The machine of Figure 3.4 does the job. The fact that
we have a finite-state machine model of this system shows that this is a finite-state
system.

The relationship in this example between the number of states and the number of input
patterns that need to be stored suggests how to construct functions mapping input se-
quences to output sequences that cannot be realized by finite state machines. Here is a
particularly simple example of such a function called Equal.

Example 3.6: An input signal of Equal is a sequence of 0 and 1 (again with
stuttering symbols arbitrarily inserted). At each step, Equal outputs equal if the
previous inputs contain an equal number of 0’s and 1’s; otherwise Equal outputs
notEqual. In other words, if the input sequence x is the sequence (x(0),x(1),---),
with no stuttering symbols, then the output sequence y = F(x) is given by

equal
if if number of 1’s is the same as 0’s
VneNy, yn) = inx(0),--- ,x(n) (3.8)
notEqual

if otherwise

Intuitively, in order to realize Equal, the machine must remember the difference
between the number of 1’s and O’s that have occurred in the past. Since these
numbers can be arbitrarily large, the machine must have infinite memory, and so
Equal cannot be realized by a finite-state machine.

We give a mathematical argument to show that Equal cannot be realized by any
finite-state machine. The argument uses contradiction.

Suppose that a machine with N states realizes Equal. Consider an input sequence
that begins with N 1’s, (1,---,1,x(N),---). Let the state response be

Since there are only NV distinct states, and the state response is of length at least N +
1, the state response must visit at least one state twice. Call that state o.. Suppose

106 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

3. STATE MACHINES

s(m) = s(n) = a, with m < n < N. Then the two sequences 10" and 1”0™ must
lead to the same state, hence yield the same last output symbol on entering state
o. Recall that 1” means a sequence of m consecutive 1’s, similarly for 0. But the
last output symbol for 1”0™ should be equal, and the last output symbol for 10"
should be notEqual, which is a contradiction. So our hypothesis that a finite-state
machine realizes Equal must be wrong! Exercise 6 asks you to construct an infinite
state machine that realizes Equal.

3.3 Nondeterministic state machines

There are situations in which it is sufficient to give an incomplete model of a system. Such
models are more compact than complete models because they hide inessential details.
This compactness will often make them easier to understand.

A useful form of incomplete model is a nondeterministic state machine. A nondetermin-
istic state machine often has fewer states and transitions than would be required by a
complete model. The state machines we have studied so far are deterministic.

3.3.1 State transition diagram

The state transition diagram for a state machine has one bubble for each state and one arc
for each state transition. Nondeterministic machines are no different. Each arc is labeled
with by “guard/output,” where

guard C Inputs and output € Outputs.

In a deterministic machine, the guards on arcs emerging from any given state are mutually
exclusive. That is, they have no common symbols. This is precisely what makes the
machine deterministic. For nondeterministic machines, we relax this constraint. Guards
can overlap. Thus, a given input symbol may appear in the guard of more than one
transition, which means that more than one transition can be taken when that input symbol
arrives. This is precisely what makes the machine nondeterministic.

Lee & Varaiya, Signals and Systems 107


http://LeeVaraiya.org

3.3. NONDETERMINISTIC STATE MACHINES

Example 3.7: Consider the state machine shown in Figure 3.5. It begins in state
a and transitions to state b the first time it encounters a 1 on the input. It then stays
in state b arbitrarily long. If it receives a 1 at the input, it must stay in state b. If it
receives a 0, then it can either stay in b or transition to a. Given the input sequence

(07 1707 170a 1?' )
then the following are all possible state responses and output sequences:
(a7a7baa7b7a7b7' . )

(07170717())17"')

(a,a,b,b,b,a,b,---)
(07151717()’17"')

(a)aabab7b7b7b7"')
(07171)171517"')

(a7a7b7a7b7b7b7”')
(071707171717.”)

Nondeterminism can be used to construct an abstraction of a complicated machine,
which is a simpler machine that has all the behaviors of the more complicated machine.

Example 3.8: Consider again the 60-minute parking meter. Its input alphabet is
Inputs = {coin5, coin25,tick,absent}.

Upon arrival of coin3, the parking meter increments its count by five, up to a maxi-
mum of 60 minutes. Upon arrival of coin25, it increments its count by 25, again up

108 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

3. STATE MACHINES

to a maximum of 60. Upon arrival of fick, it decrements its count by one, down to
a minimum of zero.

A deterministic state machine model is illustrated schematically in Figure 3.6(a).
The state space is
States = {0,1,---,60},

which is too many states to draw conveniently. Thus, patterns in the state space are
suggested with ellipsis “---”.

Suppose that we are interested in modeling the interaction between this parking
meter and a police officer. The police officer does not care what state the parking
meter is in, except to determine whether the meter has expired or not. Thus, we
need only two nonstuttering output symbols, so

Outputs = {safe, expired,absent}.

The symbol expired is produced whenever the machine enters state 0.

The model has enough states that a full state transition diagram is tedious and com-
plex enough that it might not be useful for generating insight about the design.
Moreover, the detail that is modeled may not add insight about the interaction with
a police officer.

Figure 3.6(b) is a nondeterministic model of the same parking meter. It has three
states,
States = {0,1,more}.

The input symbols coin5 and coin25 in state O or 1 cause a transition to state more.
The input symbol fick in state more nondeterministically moves the state to 1 or
leaves it in more.

The top state machine has more detail than the bottom machine. Shortly, we will
give a precise meaning to the phrase ‘has more detail’ using the concept of sim-
ulation. For the moment, note that the bottom machine can generate any output
sequence that the top machine generates, for the same input sequence. But the bot-
tom machine can also generate output sequences that the top machine cannot. For
example, the sequence

(expired, safe, safe, expired,- ),
in which there are two safe output symbols between two expired output symbols

is not a possible output sequence of the top machine, but it is a possible output

Lee & Varaiya, Signals and Systems 109


http://LeeVaraiya.org

3.3. NONDETERMINISTIC STATE MACHINES

sequence of the bottom machine. In the top machine, successive expired output
symbols must be separated by O or at least five safe output symbols. This detail is
not captured by the bottom machine. But in modeling the interaction with a police
officer, this detail may not be important, so omitting it may be entirely appropriate.

The machines that we design and build, including parking meters, are usually determin-
istic. However, the state space of these machines is often very large, much larger than in
this example, and it can be difficult to understand their behavior. We use simpler nonde-
terministic machine models that hide inessential details of the deterministic machine. The
analysis of the simpler model reveals some properties, but not all properties, of the more
complex machine. The art, of course, is in choosing the model that reveals the properties
of interest.

3.3.2 Sets and functions model

The state machines we have been studying, with definitions of the form (3.1), are de-
terministic. If we know the initial state and the input sequence, then the entire state
trajectory and output sequence can be determined. This is because any current state
s(n) and current input symbol x(n) uniquely determine the next state and output sym-
bol (s(n+1),y(n)) = update(s(n),x(n)).

In a nondeterministic state machine, the next state is not completely determined by the
current state and input symbol. For a given current state s(n) and input symbol x(n), there
may be more than one next state. So we cannot characterize the machine by the function
update(s(n),x(n)) because there is no single next state. Instead, we define a function
possibleUpdates so that possibleUpdates(s(n),x(n)) is the set of possible next states and
output symbols. Whereas a deterministic machine has update function

update: States x Inputs — States X Outputs,
a nondeterministic machine has a (nondeterministic) state transition function
possibleUpdates: States x Inputs — §(States x Outputs), (3.9)
where g@(State X Outputs) is the powerset of States X Outputs.
In order for a nondeterministic machine to be receptive, it is necessary that

V s(n) € States,x(n) € Inputs  possibleUpdates(s(n),x(n)) # 0.

110 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

3. STATE MACHINES

Recall that a receptive machine accepts any input symbol in any state, makes a state
transition (possibly back to the same state), and produces an output symbol. That is, there
is no situation where the reaction to an input symbol is not defined.

Operationally, a nondeterministic machine arbitrarily selects the next state and current
output symbol from possibleUpdates given the current state and current input symbol.
The model says nothing about how the selection is made.

Similar to deterministic machines, we can collect the specification of a nondeterministic
state machine into a 5-tuple

StateMachine = (States, Inputs, Outputs, possibleUpdates, initialState). (3.10)

The possibleUpdates function is different from the update function of a deterministic
machine.

Deterministic state machines of the form (3.1) are a special case of nondeterministic ma-
chines in which possibleUpdates(s(n),x(n)) consists of a single element, namely update(s(n),x(,
In other words,

possibleUpdates(s(n),x(n)) = {update(s(n),x(n))}.

Thus, any deterministic machine, as well as any nondeterministic machine, can be given
by (3.10).

In the nondeterministic machine of (3.10), an input sequence may give rise to many
state responses and output sequences. If (x(0),x(1),x(2),---) is an input sequence, then
(s(0),s(1),s(2),---) is a (possible) state trajectory and (y(0),y(1),y(2),---) is a (possible)
output sequence provided that
s(0) = initialState
Vn>0, (s(n+1),y(n)) € possibleUpdates(s(n),x(n)).

A deterministic machine defines a function from an input sequence to an output sequence,

F: InputSignals — OutputSignals,

where
InputSignals = [Ny — Inputs],

and
OutputSignals = [No — Outputs].

Lee & Varaiya, Signals and Systems 111


http://LeeVaraiya.org

3.4. SIMULATION RELATIONS

We define a behavior of the machine to be a pair (x,y) such that y = F(x), i.e., a be-
havior is a possible input, output pair. A deterministic machine is such that for each
x € InputSignals, there is exactly one y € OutputSignals such that (x,y) is a behavior.

We define the set
Behaviors C InputSignals x OutputSignals, 3.11)

where

Behaviors = {(x,y) € InputSignals x OutputSignals
| v is a possible output sequence for input sequence x}.

For a deterministic state machine, the set Behaviors is the graph of the function F.

For a nondeterministic machine, for a given x € InputSignals, there may be more than one
y € OutputSignals such that (x,y) is a behavior. The set Behaviors, therefore, is no longer
the graph of a function. Instead, it defines a relation—a generalization of a function where
there can be two or more distinct elements in the range corresponding to the same element
in the domain. The interpretation is still straightforward, however: if (x,y) € Behaviors,
then input sequence x may produce output sequence y.

3.4 Simulation relations

Two different state machines with the same input and output alphabets may be equivalent
in the sense that for the same input sequence, they produce the same output sequence. We
explore this concept of equivalence in this section.

Example 3.9: The three state machines in Figure 3.7, have the same input and
output alphabets:

Inputs = {1,absent} and Outputs = {0, 1, absent}.

Machine (a) has the most states. However, its behavior is identical to that of (b).
Both machines produce an alternating sequence of two 1’s and one 0 as they receive
a sequence of 1’s at the input. The machine in (c¢) is non-deterministic. It has more
behaviors than (a) or (b): it can produce any sequence that has at least one 1 between
any two zero’s. Thus (c) is more general, or more abstract than the machines (a) or

(b).

112 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

3. STATE MACHINES

To study the relationships between the machines in Figure 3.7 we introduce the concept of
simulation. The machine in (¢) is said to simulate (b) and (a). Simulation can be viewed
as a form of abstraction of state machines.

Example 3.10: In Figure 3.6, the bottom machine can generate any output se-
quence that the top machine generates, for the same input sequence. The reverse is
not true; there are output sequences that the bottom machine can generate that the
top machine cannot. The bottom machine is an abstraction of the top one. We will
see that the bottom machine simulates the top machine (but not vice versa).

To understand simulation, it is easiest to consider a matching game between one machine
X and another Y. We wish to determine whether Y simulates X. If it does, ¥ may be
equivalent to X, or it may be an abstraction of X.

The game starts with both machines in their initial states. The first machine X is allowed
to react to an input symbol. If this machine is nondeterministic, it may have more than
one possible reaction; it is permitted to choose any one of these reactions. The second
machine ¥ must react to the same input symbol such that it produces the same output
symbol. If it is non-deterministic, it is free to pick, from among the possible reactions,
any one that matches the output symbol of machine X that will permit it to continue
to match the output symbols of machine X in future reactions. Machine Y “wins” this
matching game (it simulates X) if it can always match the output symbol of machine X.
We then say that machine Y simulates X. If X can produce an output symbol that Y cannot
match, then Y does not simulate X.

Example 3.11: We wish to determine whether (c) simulates (b) in figure 3.7. The
game starts with the two machines in their initial states, which we jointly denote by
the pair

so = (Oand3,0) € Statesy, x States.

Machine (b) (the one being simulated) moves first. Given an input symbol, it reacts.
If it is nondeterministic, then it is free to react in any way possible, although in this
case, (b) is deterministic, so it will have only one possible reaction. Machine (c)
then has to match the move taken by (b); given the same input symbol, it must
react such that it produces the same output symbol.

Lee & Varaiya, Signals and Systems 113


http://LeeVaraiya.org

3.4. SIMULATION RELATIONS

There are two possible input symbols to machine (b), 1 and absent. If the input
symbol is absent, the machine reacts by stuttering. Machine (c) can match this by
stuttering as well. For this example, it will always do to match stuttering moves by
stuttering, so we will not consider them further.

Excluding the stuttering input symbol, there is only one possible input symbol to
machine (b), 1. The machine reacts by producing the output symbol 1 and changing
to state /and4. Machine (c) can match this by taking the only possible transition
out of its current state, which also produces output symbol 1. The resulting states
of the two machines are denoted

s1 = (land4,1t05) € States), x States..

From here, again there is only one non-stuttering input symbol possible, so (b) re-
acts by moving to 2and5 and producing the output symbol 1. Now (c) has two
choices, but in order to match (b), it chooses the (self-loop) transition, which pro-
duces 1. The resulting states are

52 = (2and5, 1t05) € Statesy, x States..

From here, (b) reacts to the non-stuttering input symbol by moving to Oand3 and
producing output symbol 0. To match this move, (c) selects the transition that
moves the state to 0, producing 0. The resulting states are sg, back to where we
started. So we know that (c) can always match (b).

The “winning” strategy of the second machine can be summarized by the set

Sh.e = {50,51,52} C States;, x States.

The set Sj . in this example is called a simulation relation; it shows how (c) simulates (b).
A simulation relation associates states of the two machines. Suppose we have two state
machines, X and Y, which may be deterministic or nondeterministic. Let

and

114

X = (Statesy , Inputs, Outputs, possibleUpdatesy , initialStatey ),

Y = (Statesy ,Inputs, Outputs, possibleUpdatesy , initialStatey ).

Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

3. STATE MACHINES

The two machines have the same input and output alphabets. If either machine is deter-
ministic, then its possibleUpdates function always returns a set with only one element in
it.

If Y simulates X, the simulation relation is given as a subset of Statesx x Statesy. Note

the ordering here; the machine that moves first in the game, X, the one being simulated,
is first in Statesy X Statesy.

To consider the reverse scenario, if X simulates Y, then the relation is given as a subset of
Statesy X Statesy. In this version of the game Y must move first.

We can state the “winning” strategy mathematically. We say that Y simulates X if there
is a subset S C Statesx x Statesy such that
1. (initialStatex ,initialStatey) € S, and

2. If (sx(n),sy(n)) € S, then V x(n) € Inputs, and
V (sx(n+1),yx(n)) € possibleUpdatesy (sx (n),x(n)),
there is a (sy (n+1),yy(n)) € possibleUpdatesy (sy(n),x(n)) such that:
(@) (sx(n+1),sy(n+1)) €S, and
(b) yx(n) = yr(n).

This set S, if it exists, is called the simulation relation. It establishes a correspondence
between states in the two machines.

Example 3.12: Consider again the state machines in Figure 3.7. The machine in
(b) simulates the one in (a). The simulation relation is a subset

Sap C€{0,1,2,3,4,5} x {Oand3, 1and4,2and5}.

The names of the states in (b) (which are arbitrary) are suggestive of the appropriate
simulation relation. Specifically,
Sap = {(0,0and3),(1,1and4),(2,2and5),
(3,0and3), (4, land4),(5,2and5)}.
The first condition of a simulation relation, that the initial states match, is satisfied

because (0,0and3) € S, . The second condition can be tested by playing the game,
starting in each pair of states in S .

Lee & Varaiya, Signals and Systems 115


http://LeeVaraiya.org

3.4. SIMULATION RELATIONS

Start with the two machines in one pair of states in S, 5, such as the initial states
(0,0and3). Then consider the moves that machine (a) can make in a reaction.
Ignoring stuttering, if we start with (0,0and3), (a) must move to state 1 (given
input 1). Given the same input symbol, can (b) match the move? To match the
move, it must react to the same input symbol, produce the same output symbol, and
move to a state so that the new state of (a) paired with the new state of (b) is in S 5.
Indeed, given input symbol 1, (b) produces output symbol 1, and moves to state
land4 which is matched to state 1 of (a).

It is easy (albeit somewhat tedious to do by hand) to check that this matching can
be done from any starting point in S, 5.

This example shows how to use the game to check that a particular subset of Statesx x
Statesy is a simulation relation. Thus, the game can be used either to construct a simula-
tion relation or to check whether a particular set is a simulation relation.

For the machines in Figure 3.7, we have shown that (c) simulates (b) and that (b) sim-
ulates (a). Simulation is transitive, meaning that we can immediately conclude that (c)
simulates (a). In particular, if we are given simulation relations S, ;, C States, x Statesy,
((b) simulates (a)) and S, . C States;, x States. ((c) simulates (b)), then

Sac= {(s4,5c) € States, x States, | there exists s, € S where

(Sa,Sp) € Sap and (sp,5c) € Sp.c} (3.12)

is a simulation relation showing that (c¢) simulates (a).

Example 3.13: For the examples in Figure 3.7, we have already determined that

Sap = {(0,0and3),(1,land4),(2,2and5),
(3,0and3), (4, 1and4),(5,2and5)}.

and
Sp.c = {(0and3,0), (1and4, 1t05), (2and5, 1t05)}.

From (3.12) we can conclude that
Sac ={(0,0),(1,1105),(2,1105),(3,0), (4, It05), (5, 1t05) },

which further supports the suggestive choices of state names.

116 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

3. STATE MACHINES

Simulation relations are not (necessarily) symmetric.

Example 3.14: For the examples in Figure 3.7, (b) does not simulate (c). To see
this, we can attempt to construct a simulation relation by playing the game. Starting
in the initial states,

so = (Oand3,0),

we allow (c) to move first. Presented with a nonstuttering input symbol, 1, it pro-
duces 1 and moves to /t05. Machine (b) can match this by producing 1 and moving
to land4. But from state /t05, (c) can now produce 0 with input symbol 1, which
(b) cannot match. Thus, the game gets stuck, and we fail to construct a simulation
relation.

Consider another example, one that illustrates that there may be more than one simulation
relation between two machines.

Example 3.15: In Figure 3.8, it is easy to check that (c) simulates (a) and (b). We
now verify that (b) simulates (a) and also (a) simulates (b) by determining that not
only can (b) match any move (a) makes, but (a) can also match any move (b) makes.
Note that (a) is nondeterministic, and in two of its states it has two distinct ways of
matching the moves of (b). It can arbitrarily choose from among these possibilities
to match the moves of (b).

If from state 1 it always chooses to return to state 0, then the simulation relation is
Sp.a = {(0and2,0),(land3,1)}.

Otherwise, if from state 2 it always chooses to return to state 1, then the simulation
relation is

Sb.a = {(0and2,0),(1and3,1),(0and2,2)}.

Otherwise, the simulation relation is
Sh.a = {(0and2,0),(1and3,1),(0and2,2),(1and3,3)}.

All three are valid simulation relations. Thus, the simulation relation is not unique.

Lee & Varaiya, Signals and Systems 117


http://LeeVaraiya.org

3.4. SIMULATION RELATIONS

A common use of simulation is to establish a relationship between a more abstract model
and a more detailed model. In the example above, (c) is a more abstract model of either
(b) or (a). It is more abstract in the sense that it loses detail. For example, it has lost the
property that 0’s and 1’s alternate in the output sequence. We now give a more compelling
example of such abstraction, where the abstraction dramatically reduces the number of
states while still preserving some properties of interest.

118

Example 3.16: In the case of the parking meter, the bottom machine in Figure
3.6 simulates the top machine. Let A denote the top machine, and let B denote the
bottom machine. We will now identify the simulation relation.

The simulation relation is a subset S C {0, 1,---,60} x {0, 1,more}. It is intuitively
clear that 0 and 1 of the bottom machine correspond to 0 and 1, respectively, of the
top machine. Thus, (0,0) € S and (1,1) € S. It is also intuitive that more corre-
sponds to all of the remaining states 2, - - - 60 of the top machine. So we propose to
define the simulation relation as

S={(0,0),(1,1)} U{(sa,more) | 2 < s4 <60} (3.13)

We now check that S is indeed a simulation relation, as defined above.

The first condition of a simulation relation, that the initial states match, is satisfied
because (0,0) € S. The second condition is more tedious to verify. It says that for
each pair of states in S, and for each input symbol, the two machines can transition
to a pair of new states that is also in S, and that these two transitions produce the
same output symbol. Since machine A is deterministic, there is no choice about
which transition it takes and which output symbol it produces. In machine B, there
are choices, but all we require is that one of the choices match.

The only state of machine B that actually offers choices is more. Upon receiving
tick, the machine can transition back to more or down to 1. In either case, the output
symbol is safe. It is easy to see that these two choices are sufficient for state more
to match states 2,3,...60 of machine A.

Thus the bottom machine indeed simulates the top machine with the simulation
relation (3.13).

Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

3. STATE MACHINES

3.4.1 Relating behaviors

A simulation relation establishes a correspondence between two state machines, one of
which is typically much simpler than the other. The relation lends confidence that analyz-
ing the simpler machine indeed reveals properties of the more complicated machine.

This confidence rests on a theorem and corollary that we will develop in this section.
These results relate the input/output behaviors of state machines that are related by simu-
lation.

Given an input sequence x = (x(0),x(1),x(2),---), if a state machine can produce the
output sequence y = (y(0),y(1),y(2),--+), then (x,y) is said to be a behavior of the state
machine. The set of all behaviors of a state machine obviously satisfies

Behaviors C InputSignals x OutputSignals.

Theorem Let B simulate A. Then
Behaviorsy C Behaviorsg.
This theorem is easy to prove. Consider a behavior (x,y) € Behaviors,. We need to show
that (x,y) € Behaviorsp.
Let the simulation relation be S. Find all possible state responses for A
sa = (s4(0),s4(1),--+)

that result in behavior (x,y). (If A is deterministic, then there will be only one.) The
simulation relation assures us that we can find a state response for B

SBp = (SB<0),SB(1),' . )

where (s4(i),sp(i)) € S, such that given input symbol x, B produces y. Thus, (x,y) €
Behaviorsg.

Intuitively, the theorem simply states that B can match every move of A and produce
the same output sequence. It also implies that if B cannot produce a particular output
sequence, then neither can A. This is stated formally in the following corollary.

Corollary Let B simulate A. Then if

(x,y) ¢ Behaviorsg

Lee & Varaiya, Signals and Systems 119


http://LeeVaraiya.org

3.4. SIMULATION RELATIONS

then
(x,y) & Behaviors,.

The theorem and corollary are useful for analysis. The general approach is as follows.
We have a state machine A. We wish to show that its input-output function satisfies
some property. That is, every behavior satisfies some condition. We construct a simpler
machine B whose input-output relation satisfies the same property, and where B simulates
A. Then the theorem guarantees that A will satisfy this property, too. That is, since all
behaviors of B satisfy the property, all behaviors of A must also. This technique is useful
since it is often easier to understand a simple state machine than a complex state machine
with many states.

Conversely, if there is some property that we must assure that no behavior of A has, it is
sufficient to find a simpler machine B which simulates A and does not have this property.
This scenario is typical of a safety problem, where we must show that dangerous outputs
from our system are not possible.

Example 3.17: For the parking meter of Figure 3.6, for example, we can use the
nondeterministic machine to show that if a coin is inserted at step n, the output
symbol at steps n and n+ 1 is safe. By the corollary, this is sufficient to show that
the deterministic machine cannot do any differently. We do not have to directly
consider the deterministic machine.

It is important to understand what the theorem says, and what it does not say. It does
not say, for example, that if Behaviorsqy C Behaviorsg then B simulates A. In fact, this
statement is not true. Consider the two machines in Figure 3.9, where

Inputs = {1,absent},

Outputs = {0, 1,absent}.

These two machines have the same behaviors. The non-stuttering output symbols are
(1,0) or (1,1), selected nondeterministically, assuming the input sequence has at least
two non-stuttering symbols. However, (b) does not simulate (a). The two machines are
not equivalent despite the fact that their input/output behaviors are the same.

120 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

3. STATE MACHINES

To see this, we play the matching game. Machine (a) is allowed to move first. Ignoring
stuttering, it has no choice but to move from a to b and produce output symbol 1. Machine
(b) can match this two ways; it has no basis upon which to prefer one way to match it over
another, so it picks one, say moving to state f. Now it is the turn of machine (a), which
has two choices. If it choses to move to d, then machine (b) cannot match its move. (A
similar argument works if (b) picks state /.) Thus, machine (b) does not simulate machine
(a), despite the fact that Behaviorsy C Behaviorsg.?

3.5 Summary

State machines are models of systems whose input and output signal spaces consist of se-
quences of symbols. There are three ways of defining state machines: sets and functions,
state transition diagram, and the update table. The state machine model gives a step-by-
step procedure for evaluating the output signal. This is a state-determined system: once
we know the current state, we can tell the future behavior for any future input symbols.

A state machine can be non-deterministic: given the current state and current input sym-
bol, it may have more than one possible next state and current output symbol. Non-
determistic machines typically arise through abstraction of deterministic machines. Two
state machines, with the same input and output alphabets, may be related through simula-
tion. Simulation is used to understand properties of the behavior of one machine in terms
of the behaviors of another (presumably simpler) machine.

ZRecall that in our notation C allows the two sets to be equal.

Lee & Varaiya, Signals and Systems 121


http://LeeVaraiya.org

3.5. SUMMARY

122

{absent}

{ring } /answer

play
greeting

{absent}

record {end greeting } /record

ing

{end message, offhook } /recorded
{absent}

states

idle: nothing is happening

countl: one ring has arrived

count2: two rings have arrived

play greeting: playing the greeting message
recording : recording the message

inputs

ring - incoming ringing signal

offhook - a telephone extension is picked up

end greeting - greeting message is finished playing
end message - end of message detected (e.g. dialtone)
absent - no input of interest.

outputs

answer - answer the phone and start the greeting message
record - start recording the incoming message

recorded- recorded an incoming message

absent - default output when there is nothing interesting to say

Figure 3.1: State transition diagram for a telephone answering service.

Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

3. STATE MACHINES

else guardl/outputl

guard?2/output2

initial state indicator.

-0.2in
state machine:
(States, Inputs, Outputs, update, initialState)
update: States x Inputs — States x Outputs
initialState € States

elements:
-0.2instate € States
outputl ,output2 € Outputs
guardl, guard2 C Inputs
else = {i € Inputs | i ¢ (guardl U guard2)}

determinacy: (There is at most one possible reaction to an input symbol)

guardl Nguard2 =0
-0.2in

Figure 3.2: Summary of notation in state transition diagrams, shown for a single
state with two outgoing arcs and one self loop.

Lee & Varaiya, Signals and Systems 123


http://LeeVaraiya.org

3.5. SUMMARY

current (next state, output symbol) under specified input symbol
state ring [ offhook [ end greeting [ end message [ absent
idle (countl, (idle, (idle, (idle, (idle,
absent) absent) absent) absent) absent)
countl (count2, (idle, (idle, (idle, (countl,
absent) absent) absent) absent) absent)
count2 (play greeting,| (idle, (idle, (idle, (count2,
answer) absent) absent) absent) absent)
play greeting | (idle, (idle, (recording, (idle, (play greeting,
absent) absent) record) absent) absent)
recording (idle, (idle, (idle, (idle, (recording,
absent) recorded) | absent) recorded) absent)

Figure 3.3: Update table for the telephone answering service specifies next state
and current output symbol as a function of current state and current input symbol.

Figure 3.4: A machine that implements CodeRecognizer. It outputs recognize at
the end of every input subsequence 1100, otherwise it outputs absent.

124 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

3. STATE MACHINES

10} ' {0,1}/1
{0}/0

Figure 3.5: A simple nondeterministic state machine.

{coin25}/safe {coin25}/safe

ins . {coin5,
ik {coins} {eoind} {coin25}  coin2s5y/
{nc. }d {coin5}/safe safe Isafe /safe safe
expir !

{tick}/expired {tick}/safe {tick}/safe {tick}/safe

(a)

{coin5, coin25} | safe

{coin5, coin25, tick} /

{tick}, wfe

{tick}/expired {tick}/safe

(b)

Figure 3.6: Deterministic and nondeterministic models for a 60 minute parking
meter.

Lee & Varaiya, Signals and Systems 125


http://LeeVaraiya.org

3.5. SUMMARY

@ {11
@ {131 0 1to5 {131
—J

{1}/0
(11/0

(b) ()

Figure 3.7: Three state machines where (a) and (b) simulate one another and (c)
simulates (a) and (b).

126 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

3. STATE MACHINES

{1}/0 {131 {1}/0
{131 {1}/0 {131
(a)
{1}/0 {1}/0
m {1}/1
{11

(b) ()

Figure 3.8: Three state machines where (a) and (b) simulate each other and (c)
simulates (a) and (b)

Lee & Varaiya, Signals and Systems 127


http://LeeVaraiya.org

3.5. SUMMARY

Figure 3.9: Two state machines with the same behaviors where (b) does not
simulate (a).

128 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

3. STATE MACHINES

Exercises

In some of the following exercises you are asked to design state machines that carry
out a given task. The design is simple and elegant if the state space is properly chosen.
Although the state space is not unique, there often is a natural choice. As usual, each
problem is annotated with the letter E, T, C which stands for exercise, requires some
thought, requires some conceptualization. Problems labeled E are usually mechanical,
those labeled T require a plan of attack, those labeled C usually have more than one
defensible answer.

1. E A state machine with
Inputs = {a,b,c,d,absent},
has a state s with two emerging arcs with guards
guardl = {a}

and
guard2 = {a,b,d}.

(a) Is this state machine deterministic?

(b) Define the set else for state s and specify the source and destination state for
the else arc.

2. E For the answering service example of figure 3.1, assume the input sequence is

(offhook, offhook, ring, offhook, ring, ring, ring, offhook, - - - ).

This corresponds to a user of the answering service making two phone calls, an-
swering a third after the first ring, and answering a second after the third ring.

(a) Give the state response of the answering service.
(b) Give the trace of the answering service.

(c) Give the output sequence.
3. E Consider the alphabets
Inputs = Outputs = Binary = {0, 1}.

Note that there is no stuttering input or output symbols here. This simplifies the
notation in the problem somewhat.

Lee & Varaiya, Signals and Systems 129


http://LeeVaraiya.org

EXERCISES

(a) Construct a state machine that uses these alphabets such that given any input
sequence (x(0),x(1),---) without stuttering symbols, the output sequence is
given by, V n € Ny,

[ 1 ifn>2A(x(n—2),x(n—1),x(n)) =(1,1,1)
yn) = { 0 otherwise

In words, the machine outputs 1 if the current input symbol and the two pre-
vious input symbols are all 1’s, otherwise it outputs 0. (Had we included a
stuttering symbol, the above equation would be a bit more complicated.)

(b) For the same input and output alphabet, construct a state machine that out-

puts 1 if the current input symbol and two previous input symbols are either
(1,1,1) or (1,0,1), and otherwise it outputs 0.

4. E A modulo N counter is a device that can output any integer between 0 and

130

N — 1. The device has three input symbols, increment, decrement, and reset, plus,
as always, a stuttering symbol absent; increment increases the output integer by 1;
decrement decreases this integer by 1; and reset sets the output symbol to 0. Here
increment and decrement are modulo N operations. Unless otherwise stated, you
may assume that the counter begins at 0.

Note: Modulo N numbers work as follows. For any integer m, m mod N = k where
0 <k < N — 1 is the unique integer such that N divides (m — k). Thus there are only
N distinct modulo-N numbers, namely, 0,--- ,N — 1.

(a) Give the state transition diagram of this counter for N = 4.
(b) Give the update table of this counter for N = 4.

(c) Give a description of the state machine by specifying the five entities that
appear in (3.1); again assume N = 4.

(d) Take N = 3. Calculate the state response for the input sequence
(increment*, decrement’,- - -)

starting with initial state 1, where s” means s repeated » times. You may give
the state response for the first seven reactions only.

. T The state machine UnitDelay is defined to behave as follows. On the first non-

stuttering reaction (when the first non-stuttering input symbol arrives), the output
symbol a is produced. On subsequent reactions (when subsequent input symbols
arrive), the input symbol that arrived at the previous non-stuttering reaction is pro-
duced as an output symbol.

Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

3. STATE MACHINES

(a) Assume the input and output alphabets are
Inputs = Outputs = {a,b,c,absent}.

Give a finite state machine that implements UnitDelay for this input set. Give
both a state transition diagram and a definition of each of the components in
(3.1).

(b) Assume the input and output sets are
Inputs = Outputs = NoU {absent},

and that on the first non-stuttering reaction, the machine produces 0 instead
of a. Give an (informal) argument that no finite state machine can implement
UnitDelay for this input set. Give an infinite state machine by defining each
of the components in (3.1).

6. T Construct an infinite state machine that realizes Equal.

7. C An elevator connects two floors, 1 and 2. It can go up (if it is on floor 1), down
(if it is on floor 2) and stop on either floor. Passengers at any floor may press a
button requesting service. Design a controller for the elevator so that (1) every
request is served, and (2) if there is no pending request, the elevator is stopped.
For simplicity, do not be concerned about responding to requests from passengers
inside the elevator.

8. T The state machine in Figure 3.10 has the property that it outputs at least one
1 between any two 0’s. Construct a two-state nondeterministic state machine that
simulates this one and preserves that property.

{0}/1 {1}/0 {131 {1}/1
‘t‘t‘ ‘ :
{031 {0}/1 {0}/1

Figure 3.10: Machine that outputs at least one 1 between any two 0’s.

Lee & Varaiya, Signals and Systems 131


http://LeeVaraiya.org

EXERCISES

9. T For the nondeterministic state machine in Figure 3.11 the input and output al-
phabets are
Inputs = Outputs = {0, 1,absent}.

(a) Define the possibleUpdates function (3.9) for this state machine.

(b) Define the relation Behaviors in (3.11) for this state machine. Part of the chal-
lenge here is to find a way to describe this relation compactly. For simplicity,
ignore stuttering; i.e. assume the input symbol is never absent.

10. E The state machine in Figure 3.12 implements CodeRecognizer, but has more
states than the one in Figure 3.4. Show that the two machines simulate each other
by giving simulation relations.

11. E The state machine in Figure 3.13 has input and output alphabets
Inputs = {1,a},
Outputs = {0,1,a},

where a (short for absent) is the stuttering symbol. State whether each of the fol-
lowing is in the set Behaviors for this machine. In each of the following, the ellipsis

{0}/0
° £0,13}/0

{1}/0

{0,1}/1

Figure 3.11: Nondeterministic state machine for Exercise 9.

132 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

3. STATE MACHINES

3

‘..” means that the last symbol is repeated forever. Also, in each case, the input
and output signals are given as sequences.

(a) ((171717171)"')7(0717170707"'))
{0}

{0}/recognize

{0}

Figure 3.12: A machine that implements CodeRecognizer, but has more states
than the one in Figure 3.4.

Figure 3.13: State machine for problem 11.

Lee & Varaiya, Signals and Systems 133


http://LeeVaraiya.org

EXERCISES

() ((1,1,1,1,1,---),(0,1,1,0,a,---))
© ((a,1,a,1,a,--+),(a,1,a,0,a,---))
@ ((1,1,1,1,1,---),(0,0,a,a,a,---))
e ((1,1,1,1,1,---),(0,a,0,a,a,---))

12. E The state machine in Figure 3.14 has
Inputs = {1,absent},

Outputs = {0, 1,absent}.

Find a state machine with only two states that simulates the one in Figure 3.14 and
that is simulated by the one in Figure 3.14, and give the simulation relations.

13. E You are told that state machine A has
Inputs = {1,2,absent},

Outputs = {1,2,absent},
States = {a,b,c,d}.

but you are told nothing further. Do you have enough information to construct a
state machine B that simulates A? If so, give such a state machine, and the simula-
tion relation.

Figure 3.14: A machine that has more states than it needs.

134 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

3. STATE MACHINES

14. E Construct a state machine with Inputs = {0, 1,absent}, Outputs = {r,absent},
that outputs » whenever the input signal (without stuttering symbols) contains the
sequence (0,0,0), otherwise it outputs absent. More precisely, if x = (x(0),x(1),---)
is the input sequence then y = (y(0),y(1),---) is the output sequence, where

r, if (x(n—2),x(n—1),x(n)) = (0,0,0)
y(n) = { absent  otherwise

15. T Consider a state machine where
Inputs = {1, absent},
Outputs = {0, 1,absent},
States = {a,b,c,d,e, [},
initialState = a,

and the update function is given by the following table (ignoring stuttering):

’ (currentState, inputSymbol) ‘ (nextState, outputSymbol) ‘

(a,1) (b,1)
(b,1) (c,0)
(c, 1) (d,0)
(d,1) (e,1)
(e, 1) (£,0)
(f:1) (a,0)

(a) Draw the state transition diagram for this machine.
(b) Ignoring stuttering, give the Behaviors relation for this machine.

(c) Find a state machine with three states that simulates this one and that is simu-
lated by this one. Draw that state machine, and give the simulation relations.

Lee & Varaiya, Signals and Systems 135


http://LeeVaraiya.org

EXERCISES

136 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

Composing State Machines

Contents
41 Synchrony . . ... ... ittt 138
4.2 Side-by-side composition . ... ....... ... . . 00000, 139
43 Cascadecomposition . .. ... ... ...ttt 143
4.4 Product-form inputs andoutputs . . . . ... .. ... ... ... 148
4.5 General feedforward composition . ... .............. 151
4.6 Hierarchical composition . ... ... ................ 154
47 Feedback . ... ... ...t i e 155
4.7.1 Feedback composition with noinputs . . . . . . . ... ... 157
472 State-determined output . . . . . ... ... 163
4.7.3 Feedback composition withinputs . . . . . . ... ... ... 167
4.7.4  Constructive procedure for feedback composition . . . . . . . 171
47.5 BExhaustivesearch. . . .. .. ... ... ... ........ 175
4.7.6 Nondeterministic machines . . . . . . ... .. ... ..... 175
Probing Further: Constructive Semantics . . . . . . . ... .. ... 176
48 SUumMmAary . . . v v v v vttt e e e e e e e e e e e e e s 177
Exercises . .. .. ..o i it i i ittt e e e 179

We design interesting systems by composing simpler components. Since systems are
functions, their composition is function composition, as discussed in Section 2.1.5. State
machines, however, are not given directly as functions that map input sequences into
output sequences. Instead, they are given procedurally, where the update function defines

137



4.1. SYNCHRONY

how to progress from one state to the next. This chapter explains how to define a new
state machine that describes a composition of multiple state machines.

In Section 2.3.4 we used a block diagram syntax to define compositions of systems. We
will use the same syntax here, and we will similarly build up an understanding of compo-
sition by first considering easy cases. The hardest cases are those where there is feedback,
because the input of one state machine may depend on its own output. It is challenging
in this case to come up with a procedure for updating the state of the composite machine.
For some compositions, in fact, it isn’t even possible. Such compositions are said to be
ill-formed.

4.1 Synchrony

We consider a set of interconnected components, where each component is a state ma-
chine. By “interconnected” we mean that the outputs of one component may be inputs
of another. We wish to construct a state machine model for the composition of compo-
nents. Composition has two aspects. The first aspect is straightforward: it specifies which
outputs of one component are the inputs of another component. These input-output con-
nections are specified using block diagrams.

The second aspect of composition concerns the timing relationships between inputs and
outputs. We choose a particular style of composition called synchrony. This style dictates
that each state machine in the composition reacts simultaneously and instantaneously. So
a reaction of the composite machine consists of a set of simultaneous reactions of each of
the component machines.

A reaction of the composite machine is triggered by inputs from the environment. Thus,
when a reaction occurs is externally determined. This is the same as for a single machine.
As with a single state machine, a composite machine may stutter. This simply means that
each component machine stutters.

A system that reacts only in response to external stimulus is said to be reactive. Because
our compositions are synchronous, they are often called synchronous/reactive systems.

The reactions of the component machines and of the composite machine are viewed as
being instantaneous. That is, a reaction does not take time. In particular, the output sym-
bol from a state machine is viewed as being simultaneous with the input symbol, without
delay. This creates some interesting subtleties, especially for feedback composition when

138 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

4. COMPOSING STATE MACHINES

the input of a state machine is connected to its own output. We will discuss the ramifica-
tions of the synchronous/reactive interpretation below.

Synchrony is a very useful model of the behavior of physical systems. Digital circuits,
for example, are almost always designed using this model. Circuit elements are viewed
as taking no time to calculate their outputs given their inputs, and time overall is viewed
as progressing in a sequence of discrete time steps according to ticks of a clock. Of
course, the time that it takes for a circuit element to produce an output cannot ultimately
be ignored, but the model is useful because for most circuit elements in a complex design,
this time can be ignored. Only the time delay of the circuit elements along a critical path
affects the overall performance of the circuit.

More recently than for circuits, synchrony has come to be used in software as well. Con-
current software modules interact according to the synchronous model. Languages built
on this principle are called synchronous languages. They are used primarily in real-time
embedded system' design.

4.2 Side-by-side composition

A simple form of composition of two state machines is shown in figure 4.1. We call this
side-by-side composition. Side-by-side composition in itself is not useful, but it is useful
in combination with other types of composition. The two state machines in Figure 4.1
do not interact with one another. Nonetheless we wish to define a single state machine
representing the synchronous operation of the two component state machines.

The state space of the composite state machine is simply
States = Statesa X Statesp.

We could take the cross product in the opposite order, resulting in a different but bisimilar
composite state machine. The initial state is

initialState = (initialState, , initialStatep).

! An embedded system is a computing system (a computer and its software) that is embedded in a larger
system that is not first and foremost a computer. A digital cellular telephone, for example, contains computers
that realize the radio modem and the speech codec. Recent cars contain computers for ignition control, anti-
lock brakes, and traction control. Aircraft contain computers for navigation and flight control. In fact, most
modern electronic controllers of physical systems are realized as embedded systems.

Lee & Varaiya, Signals and Systems 139


http://LeeVaraiya.org

4.2. SIDE-BY-SIDE COMPOSITION

The input and output alphabets are

The update function of the composite machine, update, consists of the update functions

Inputs = Inputs, X Inputsg,

Outputs = Outputs, X Outputsg.

of the component machines, side-by-side:

((sa(n+1),s8(n+1)), (ya(n),ys(n))) = update((sa(n),s5(n)), (xa(n),xp(n))),

(States, Inputs, Outputs, update, initialState )

— > (Statesy, Inputs a, Outputs 4, update, initialState, )

— (Statesy, Inputsg, Outputsg, updatep, initialStatep )

-0.2in

-0.2in

-0.2in

Definition of the side-by-side composite machine:
States = Statess X Statesp

Inputs = Inputs, X Inputsp

Outputs = Outputs, x Outputsg

initialState = (initialStatey , initialStatep)
((sa(n+1),s8(n+1)), (ya(n),ys(n)))

— update((sa (n), s(n)), (xa (), xa(n))).

where

(sa(n+1),ya(n)) = update, (sa(n),xa(n)) and
(s8(n+1),y(n)) = updateg(sp(n), xp(n))

Figure 4.1: Summary of side-by-side composition of state machines.

140

Lee & Varaiya, Signals and Systems



http://LeeVaraiya.org

4. COMPOSING STATE MACHINES

where
(sa(n+1),ya(n)) = update,(sa(n),xa(n)),

and
(ss(n+1),yp(n)) = updateg(sg(n),xp(n)).

Recall that Inputs, and Inputsy include a stuttering element. This is convenient because it
allows a reaction of the composite when we really want only one of the machines to react.
Suppose the stuttering elements are absents and absentg. Then if the second component
of the input symbol is absentp, the reaction of the composite consists only of the reaction
of the first machine. The stuttering element of the composite is the pair of stuttering
elements of the component machines, (absenty,absentp).

Example 4.1: The side-by-side composition in the top of Figure 4.2 has the com-
posite machine with state space

States = Statess x Statesg = {(1,1),(2,1)},
and alphabets

Inputs = {(0,0),(1,0), (absents,0),(0,absentp), (1,absentg),
(absenty,absentg)},

Outputs = {(a,c),(b,c),(absents,c),(a,absentg),(b,absentp),
(absenty,absentg)}.

The initial state is
initialState = (1,1).

The update function can be given as a table, only a part of which is displayed below.
The state transition diagram in the lower part of Figure 4.2 gives the same part of
the update function.

current (next state, output) for input
state (0,0) ‘ (1,0) ‘ (absenta,0) ‘ S
(LY | ((1,1),(a,0)) | ((2,1),(b,c)) | (A, 1)((absenty,c))
2,1) | ((2,1),(b,c)) | ((1,1),(a,c)) | ((2,1), ((absenta,c))

Lee & Varaiya, Signals and Systems 141


http://LeeVaraiya.org

4.2. SIDE-BY-SIDE COMPOSITION

Notice that if the second component of the input sequence is always absentp, then
the side-by-side composition behaves essentially as machine A, and if the first com-

{0, 1, absentA} {a, b, absentA}
g AN
{1}/a A
{0}/ ¢
{0, absentB} {c, absentB}
il RN
B
{(absentA, 0)}/ {(absentA, 0)}/
’ (absentA, ¢)

(absentA, c)

{(1,absentB)}/
(b, absentB)

{a, b, absentA}

{0, 1, absentA}
i tabab
{0, absentB} {1.0)}(b, c)
| Y

——

{(1.0)}(a,c) {c, absentB}

{(1,absentB)}/
(a, absentB) A

Figure 4.2: Example of a side-by-side composition.

142 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

4. COMPOSING STATE MACHINES

ponent is always absenty, then it behaves as machine B. The stuttering element of
the composite is of course the pair (absents,absentp).

4.3 Cascade composition

We now interconnect two state machines as shown in Figure 4.3, where the output of one
is the input of the other. This is called a cascade composition or a series connection. We
define the composition so that the component machines react together, synchronously, as
one state machine.

Suppose the two state machines are given by
StateMachine, = (Statesy, Inputs 4, Outputs, , update  , initialState, )

and
StateMachineg = (Statesp, Inputsg, Outputsg, updateg, initialStateg).

Let the composition be given by
StateMachine = (States, Inputs, Outputs, update, initialState).
Clearly, for a composition like that in Figure 4.3 to be possible we must have
Outputs, C Inputsg.

Then any output sequence produced by machine A can be an input sequence for machine
B. As aresult,
OutputSignals, C InputSignalsp.

This is analogous to a type constraint in programming languages, where in order for two
pieces of code to interact, they must use compatible data types. We encountered a similar
constraint in discussing function composition, Section 2.1.5.

We are ready to construct a state machine model for this series connection. As noted in
the figure, the input alphabet of the composite is

Inputs = Inputs, .

Lee & Varaiya, Signals and Systems 143


http://LeeVaraiya.org

4.3. CASCADE COMPOSITION

The stuttering element of Inputs, of course, is just the stuttering element of Inputs,. The
output alphabet of the composite is

Outputs = Outputsg.

(States, Inputs, Outputs, update, initialState )

— (Statesy, Inputs 4, Outputs 4, update,, initialState, )

(Statesg, Inputsg, Outputsg, updatep, initialStatep ) >

-0.2in
Assumptions about the component machines:

Outputs, C Inputsg

Definition of the cascade composite machine:
States = Statess X Statesp
Inputs = Inputs,
_ Outputs = Outputsg
-0.2in;pitialState = (initialStatey, initialState)
((sa(n+1),55(n+1)),ya(n)) = update((sa(n),s5(n)), x(n)).

where

(sa(n+1),ya(n)) = update, (sa(n),x(n)) and

(ss(n+1),yp(n)) = updateg(sg(n),ya(n)).
-0.2in

Figure 4.3: Summary of cascade composition of state machines.

144 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

4. COMPOSING STATE MACHINES

The state space of the composite state machine is the product set
States = Statess X Statesp. 4.3)

This asserts that the composite state machine is in state (s4(n),sp(n)) when the StateMachine
is in state s4 (n) and StateMachineg is in state sg(n). The initial state is

initialState = (initialState, , initialStatep).

We could equally well have defined the states of the composite state machine in the op-
posite order,
States = Statesg X Statesy .

This would result in a different but bisimilar state machine description (either one simu-
lates the other). Intuitively, it does not matter which of these two choices we make, and
we choose (4.3).

To complete the description of the composite machine, we need to define its update func-
tion in terms of the component machines. Here, a slight subtlety arises. Since we are
using synchronous composition, the output symbol of machine A is simultaneous with
its input symbol. Thus, in a reaction, the output symbol of machine A in that reaction
must be available to machine B in the same reaction. This seems intuitive, but it has some
counterintuitive consequences. Although the reactions of machine A and B are simulta-
neous, we must determine the reaction of A before we can determine the reaction of B.
This apparent paradox is an intrinsic feature of synchronous composition. We will have to
deal with it carefully in feedback composition, where it is not immediately evident which
reactions need to be determined first.

In the cascade composition, it is intuitively clear what we need to do to define the update
function. We first determine the reaction of machine A. Suppose that at the n-th reaction
the input symbol is x(n) and the state is s(n) = (sa(n),sp(n)), where s4(n) is the state of
machine A and sg(n) is the state of machine B. Machine A reacts by updating its state to
sa(n+ 1) and producing output symbol y (),

(sa(n+1),y4(n)) = update,(sa(n),x(n)). 4.4)

Its output symbol y4(n) becomes the input symbol to machine B. Machine B reacts by
updating its state to sg(n+ 1) and producing output symbol yz(n),

(sg(n+1),yp(n)) = updateg(sp(n),ya(n)). 4.5)

Lee & Varaiya, Signals and Systems 145


http://LeeVaraiya.org

4.3. CASCADE COMPOSITION

The output of the composite machine, of course, is just the output of machine B, and
the next state of the composite machine is just (sa(n+1),sp(n+ 1)), so the composite
machine’s update is

((sa(n+1),5p(n+1)),y8(n)) = update((sa(n),sg(n)),x(n)),

where sa(n+ 1), sg(n+ 1), and yg(n) are given by (4.4) and (4.5). The definition of the
composite machine is summarized in Figure 4.3.

Example 4.2: The cascade composition in Figure 4.4 has the composite machine
with state space

States = Statesy x Statesg = {(0,0),(0,1),(1,0),(1,1))}

Inputs =
l {0,1,absent}
Inputs =
{0}/0 {131 {0}/1 l {0,1,absent}
A {1}/0

l {0,1,absent}

{0}/0 {1y1 {130

° ‘ {0}/0

{0M1

v}

l Outputs={0,1 absent}
LOutputs:{O,l absent}

Figure 4.4: Example of a cascade composition. The composed state machine is
on the right.

146 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

4. COMPOSING STATE MACHINES

and alphabets
Inputs = Outputs = {0, 1,absent}.

The initial state is
initialState = (0,0).

The update function is given by the table:

current (next state, output) for input
state 0 ‘ 1 ‘ absent
(0,0) | ((0,0),0) | ((1,1),1) | ((0,0), absent)
O,1) | ((0,0),1) | ((1,1),0) | ((0,1), absent)
(1,0) | ((1,1),1) | ((0,0),0) | ((1,0), absent)
(1,1 | ((1,1),0) | ((0,0),1) | ((1,1), absent)

The update function is also presented in the state transition diagram of Figure 4.4.
The self-loops corresponding to the stuttering input symbol absent are not shown
in the diagram.

Observe from the table or the diagram that states (0, 1) and (1,0) are not reachable
from the initial state. A state s is said to be reachable if some sequence of input
symbols can take the state machine from the initial state to s. This suggests that a
simpler machine with fewer states would exhibit the same input/output behaviors.
In fact, notice from the table that the input is always equal to the output! A trivial
one-state machine can exhibit the same input/output behaviors. (Exercise 8 gives a
procedure for calculating the reachable states of an arbitrary state machine.)

The simple behavior of the composite machine is not immediately apparent from
Figure 4.4. We have to systematically construct the composite machine to derive
this simple behavior. In fact, this composite machine can be viewed as an encoder
and decoder, because the input bit sequence is encoded by a distinctly different
bit sequence (the intermediate signal in Figure 4.4), and then the second machine,
given the intermediate signal, reconstructs the original.

This particular encoder is known as a differential precoder. It is “differential” in
that when the input symbol is 0, the intermediate signal sample is unchanged from
the previous sample (whether it was O or 1), and when the input symbol is 1, the
sample is changed. Thus, the input symbol indicates change in the input with a 1,
and no change with a 0. Differential precoders are used when it is important that

Lee & Varaiya, Signals and Systems 147


http://LeeVaraiya.org

4.4. PRODUCT-FORM INPUTS AND OUTPUTS

the average number of 1’s and O’s is the same, regardless of the input sequence that
is encoded.

4.4 Product-form inputs and outputs

In the state machine model of (3.1), at each step the environment selects one input symbol
to which the machine reacts and produces one output symbol. Sometimes we wish to
model the fact that some input values are selected by one part of the environment, while
other input values are simultaneously selected by another part. Also, some output values
are sent to one part of the environment, while other output values are simultaneously sent
to another part. The product-form composition permits these models.

The machine in Figure 4.5 is shown as a block with two distinct input and output arrows.
The figure suggests that the machine receives inputs from two sources and sends outputs
to two destinations. In the answering machine example of Chapter 3, for instance, the
end greeting input value might originate in a physically different piece of hardware in the
machine than the offhook value.

The distinct arrows into and out of a block are called ports. Each port has a set of values
called the port alphabet associated with it, as shown in figure 4.5. Each port alphabet
must include a stuttering element. The set Inputs of input values to the state machine
is the product of the input sets associated with the ports. Of course, the product can be
constructed in any order; each ordering results in a distinct (but bisimilar) state machine
model.

Inputs s Outputs s

— > (States, Inputs, Outputs, update, initialState ) -y

Inputsp Inputs = Inputss x Inputsg Outputsp
Outputs = Outputsy x Outputsg

Figure 4.5: State machine with product-form inputs and outputs.

148 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

4. COMPOSING STATE MACHINES

In Figure 4.5 there are two input ports and two output ports. The upper input port can
present to the state machine any value in the alphabet Inputs,, which includes absent, its
stuttering element. The lower port can present any value in the set Inputsg, which also
includes absent. The input value actually presented to the state machine in a reaction is
taken from the set

Inputs = Inputs, X Inputsg.

The stuttering element for this alphabet is the pair (absent,absent). The output value
produced by a reaction is taken from the set

Outputs = Outputs, X Outputsg.

If the output of the n-th reaction is (ya(n),ys(n)), then the upper port shows y4(n) and the
lower port shows yg(n). These can now be separately presented as inputs to downstream
state machines. Again, the stuttering element is (absent,absent).

Example 4.3: The answering machine of Figure 3.1 has input alphabet

Inputs = {ring,offhook,end greeting, end message}.

In a typical realization of an answering machine, ring and offhook come from a sub-
system (often an ASIC, or application-specific integrated circuit) that interfaces
to the telephone line. The value end greeting comes from another subsystem, such
as a magnetic tape machine or digital audio storage device, that plays the answer
message. The value end message comes from a similar, but distinct, subsystem that
records incoming messages. So a more convenient model will show three separate
factors for the inputs, as in figure 4.6. That figure also shows the outputs in prod-
uct form, anticipating that the distinct output values will need to be sent to distinct
subsystems.

Several features distinguish the diagram in Figure 4.6 from that of Figure 3.1. Each
state except the idle state has acquired a self-loop labeled stutter, which is a name
for the guard

stutter = {(absent,absent,absent)}.

This self loop prevents the state machine from returning to the idle state (via the
else transition) when nothing interesting is happening on the inputs. Usually, there
will not be a reaction if nothing interesting is happening on the inputs, but because

Lee & Varaiya, Signals and Systems 149


http://LeeVaraiya.org

4.4. PRODUCT-FORM INPUTS AND OUTPUTS

of synchrony, this machine may be composed with others, and all machines have
to react at the same time. So if anything interesting is happening elsewhere in the
system, then this machine has to react even though nothing interesting is happening
here. Recall that such a reaction is called a stutter. The state does not change, and
the output symbol produced is the stuttering element of the output alphabet.

Each guard now consists of a set of triples, since the product-form input has three
components. The shorthand “(*, offhook, *)” on the arc from the record message

stutter

B -
£ 3
o {(absent, ring, absent)} <

5 {(absent, ring, absent)} E.

V Y

N 3
5 stutter g

5 3

{(absent, ring, absent)}/
(answer, absent, absent)

B

3

<

]

=~

S

S

% T
= S S
= play greeting S 2
-~ -~ <

—> —
stutter

=

§ stutter

< =

< {(* ,offhook,*)} s

_§C record g

g message ) 3

E {(end greeting absent absent)}/ S

N y - N
- elsel/(absent, recorded , absent) (absent, absent, record) )

NOTE: stutter = {(absent, absent, absent)}

Figure 4.6: Answering machine with product-form inputs and outputs has three
input ports and three output ports.

150 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

4. COMPOSING STATE MACHINES

state to the idle state represents a set,

(*, offhook, ) = { absent, offhook, absent),

end greeting, offhook,absent),

absent, offhook,end message),

o~ o~ o~ o~

end greeting, offhook,end message) }.

The “*” is a don’t care or wildcard notation. Anything in its position will trigger
the guard.

Because there are three output ports, the output symbols are also triples, but most
of them are implicitly (absent,absent,absent).

4.5 General feedforward composition

Given that state machines can have product-form inputs and outputs, it is easy to construct
a composition of state machines that combines features of both the cascade composition
of Figure 4.3 and the side-by-side composition of Figure 4.1. An example is shown in

(States, Inputs, Outputs, update, initialState )
Outputsy;

Inputs 4 o -
—— (Statesy, Inputs s, Outputs s, update ,, initialState ) >

N
>

Outputs )
Outputs s, C Inputsg;

Outputsg

Inputsg, (Statesp, Inputsg, Outputsg, updatep, initialStateg ) >

\ 4

Figure 4.7: More complex composition.

Lee & Varaiya, Signals and Systems 151


http://LeeVaraiya.org

4.5. GENERAL FEEDFORWARD COMPOSITION

Figure 4.7. In that figure,

Outputs, = Outputsy X Outputs,,
Inputsg = Inputsg, X Inputsg,.

Notice that the bottom port of machine A goes both to the output of the composite machine
and to the top port of machine B. Sending a value to multiple destinations like this is called
forking. In Exercise 1 at the end of this chapter you are asked to define the composite
machine for this example.

Example 4.4: We compose the answering machine of figure 4.6 with a playback
system, shown in Figure 4.8, which plays messages that have been recorded by
the answering machine. The playback system receives the recorded input symbol
from the answering machine whenever the answering machine is done recording
a message. Its task is to light an indicator that a message is pending, and to wait
for a user to press a play button on the answering machine to request that pending
messages be played back. When that button is pressed, all pending messages are
played back. When they are done being played back, then the indicator light is

turned off.
|
{recorded ,absent} else {light on, light off, absent}
R
s e
{(*play*)}/

{(recorded *,*)}/
(light on, absent)

(absent, play messages)
message

pending

{play, absent}
™| else

no
messages

playing

else
4>

{done playing , absent} {(¢+, %, done playing)}/

(light off, absent) {play messages, absent}

Figure 4.8: Playback system for composing with the answering machine.

152 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

4. COMPOSING STATE MACHINES

The composition is shown in Figure 4.9. The figure shows a number of other com-
ponents, not modeled as state machines, to help understand how everything works
in practice. These other components are shown as three-dimensional objects, to
emphasize their physicality. We have simplified the figure by omitting the absent
elements of all the sets. They are implicit.

A telephone line interface provides ring and offhook when these are detected. De-
tection of one of these can trigger a reaction of the composite machine. In fact, any
output symbol from any of the physical components can trigger a reaction of the
composite machine. When AnsweringMachine generates the answer output sym-

greeting
playback device

{answer}

{end greeting}

.
N,

{recorded message}
- AnsweringMachine >
{ring, offhook

> — > Playback
{record} -
{end message}
{play}
= {done playing} {play messages
P —— | recording device 4— N e
| e
telephone 4 p message playback |
line play device -
. v button
interface |7

Figure 4.9: Composition of an answering machine with a message playback ma-
chine. The three-dimensional boxes are physical components that are not mod-
eled as state machines. They are the sources of some inputs and the destinations
of some outputs.

Lee & Varaiya, Signals and Systems 153


http://LeeVaraiya.org

4.6. HIERARCHICAL COMPOSITION

bol, then the “greeting playback device” plays back the greeting. From the perspec-
tive of the state machine model, all that happens is that time passes (during which
some reactions may occur), and then an end greeting input symbol is received. The
recording device works similarly. When AnsweringMachine generates a recorded
output symbol, then the Playback machine will respond by lighting the indicator
light. When a user presses the play button the input symbol play is generated, the
composite machine reacts, and the Playback machine issues a play messages out-
put symbol to the “message playback device.” This device also allows time to pass,
then generates a done playing input symbol to the composite state machine.

If we wish to model the playback or recording subsystem in more detail using finite
state machines, then we need to be able to handle feedback compositions. These
are considered below.

4.6 Hierarchical composition

By using the compositions discussed above, we can now handle any interconnection of
state machines that does not have feedback. Consider for example the cascade of three
state machines shown in Figure 4.10. The composition techniques we have discussed so
far involved only two state machines. It is easy to generalize the composition in Figure
4.3 to handle three state machines (see Exercise 2), but a more systematic method might
be to apply the composition of Figure 4.3 to compose two of the state machines, and then
apply it again to compose the third state machine with the result of the first composition.
This is called hierarchical composition.

In general, given a collection of interconnected state machines, there are several ways
to hierarchically compose them. For example, in Figure 4.10, we could first compose
machines A and B to get, say, machine D, and then compose D with C. Alternatively, we
could first compose B and C to get, say, machine E, and then compose E and A. These
two procedures result in different but bisimilar state machine models (each simulates the
other).

154 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

4. COMPOSING STATE MACHINES

4.7 Feedback

In simple feedback systems, an output from a state machine is fed back as an input to the
same state machine. In more complicated feedback systems, several state machines might
be connected in a loop; the output of one eventually affects its own input through some
intervening state machines.

Feedback is a subtle form of composition in the synchronous model. In synchronous
composition, in a reaction, the output symbol of a state machine is simultaneous with the
input symbol. So the output symbol of a machine in feedback composition depends on an
input symbol that depends on its own output symbol!

We frequently encounter such situations in mathematics. A common problem is to find x
such that

x = f(x) (4.6)

(States, Inputs, Outputs, update, initialState )

— (Statesy, Inputs 4, Outputs 5, update,, initialState, )

(Statesp, Inputsg, Outputsg, updatep, initialStateg )

(Statesc, Inputsc, Outputsc, updatec, initialStatec ) >

Figure 4.10: Cascade composition of three state machines. They can be com-
posed in different ways into different, but bisimilar, state machines.

Lee & Varaiya, Signals and Systems 155


http://LeeVaraiya.org

4.7. FEEDBACK

Figure 4.11: lllustration of a fixed point problem.

for a given function f. A solution to this equation, if it exists, is called a fixed point in
mathematics. It is analogous to feedback because the ‘output’ f(x) of f is equal to its
‘input’ x, and vice versa. The top diagram in Figure 4.12 illustrates a similar relationship:
the state machine’s output symbol is the same as its (simultaneous) input symbol.

A more complicated problem, involving two equations, is to find x and y so that

x=f(y), and y = g(x).

The analogous feedback composition has two state machines in feedback, with the struc-
ture of Figure 4.11.

A fixed-point equation like (4.6) may have no fixed point, a unique fixed point, or multiple
fixed points. Take for example the function f: R — R where ¥x € R, f(x) =1+x% In
this case, (4.6) becomes x = 1 +x2, which has no fixed point in the reals. If f(x) = 1 —x,
(4.6) becomes x = 1 — x, which has a unique fixed point, x = 0.5. Lastly, if f(x) = x,

(4.6) becomes x = x2, which has two fixed points, x =0 and x = 1.

In the context of state machines, a feedback composition with no fixed point in some
reachable state is a defective design; we call such a composition ill-formed. We can not
evaluate an ill-formed composition. Usually, we also wish to exclude feedback composi-
tions that have more than one non-stuttering fixed point in some reachable state. So these
too are ill-formed. A feedback composition with a unique non-stuttering fixed point in all
reachable states is well-formed. Fortunately, it is easy to construct well-formed feedback
compositions, and they prove surprisingly useful. We explore this further, beginning with
a somewhat artificial case of feedback composition with no inputs.

ZFigure 4.9 would be a feedback composition if any of the three recording or playback devices were
modeled as state machines. In the figure, however, these devices are part of the environment.

156 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

4. COMPOSING STATE MACHINES

4.7.1 Feedback composition with no inputs

The upper state machine in Figure 4.12 has an output port that feeds back to its input port.
We wish to construct a state machine model that hides the feedback, as suggested by the
figure. The result will be a state machine with no input. This does not fit our model, which
requires the environment to provide inputs to which the machine reacts. So we artificially
provide an input alphabet

Inputs = {react,absent},

as suggested in the lower machine in Figure 4.12. We interpret the input symbol react as
a command for the internal machine to react, and the input symbol absent as a command
for the internal machine to stutter. The output alphabet is

Outputs = Outputs,.

This is an odd example of a synchronous/reactive system because of the need for this
artificial input alphabet. Typically, however, such a system will be composed with others,
as suggested in Figure 4.13. That composition does have an external input. So the overall
composition, including the component with no external input, reacts whenever an external

(States, Inputs, Outputs, update, initialState )

(States, Inputs,, Outputs ., update, initialState, ) >

Outputss C Inputsy

(States, Inputs, Outputs, update, initialState )

{react, absent}
(States, Inputs, Outputs ., update, initialState, ) >

Outputs C Inputs s

Figure 4.12: Feedback composition with no inputs.

Lee & Varaiya, Signals and Systems 157


http://LeeVaraiya.org

4.7. FEEDBACK

input symbol is presented, and there is no need for the artificial inputs. Of course when a
stuttering element is provided to the composite, all components stutter.

Although it is not typical, we first consider the example in Figure 4.12 because the for-
mulation of the composition is simplest. We will augment the model to allow inputs after
this.

In Figure 4.12, for the feedback connection to be possible, of course, we must have
Outputs, C Inputs.

Suppose the current state at the n-th reaction is s(n) € Statess. The problem is to find the
output symbol y(n) € Outputs,. Since y(n) is also the input symbol, it must satisfy

(s(n+1),y(n)) = update,(s(n),y(n)),

where s(n+ 1) is the next state. The difficulty here is that the “unknown” y(n) appears
on both sides. Once we find y(n), s(n+ 1) is immediately determined by the update,
function. To simplify the discussion, we get rid of s(n+ 1) by working with the function

output, : Statess X Inputs, — Outputs,

This function gives the output symbol as a function of the current state and the current
input symbol, as we saw in Section 3.1.1. So our problem is: given the current state s(n)

(States, Inputs, Outputs, update, initialState )

(States 5, Inputs 4, Outputs 5, update 5, initialState ) >

Outputs C Inputsp

(Statesg, Inputsg, Outputsg, updateg, initialStatep ) >

Figure 4.13: Feedback composition composed with another state machine.

158 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

4. COMPOSING STATE MACHINES

and the known function output,, find y(n) such that

¥(n) = output,(s(n),y(n)). 4.7)

Here s(n) is a known constant, so the equation is of the form (4.6), and its solution, if it
exists, is a fixed point.

One solution that is always available is to stutter, i.e.,
y(n) = absent, (and then s(n+ 1) = s(n)),

since absent = output,(s(n),absent), assuming that absent is the stuttering input symbol
for machine A. But this is not an interesting solution, since the state does not change. We
want to find a non-stuttering solution for y(n).

We say that the composition of Figure 4.12 is well-formed if for every reachable s(n) €
States,, there is a unique non-stuttering output symbol y(n) that solves (4.7); otherwise,
the composition is ill-formed. If the composition is well-formed, the composite machine
definition is:

States = Statesy
Inputs = {react,absent}
Outputs = Outputs,
initialState = initialState,
( update,(s(n),y(n)),
where y(n) # absent uniquely satisfies (4.7)
update(s(n),x(n)) = if x(n) = react
(s(n),x(n))

if x(n) = absent

Notice that the composite machine is defined only if the composition is well-formed, i.e.,
there is a unique y(n) that satisfies (4.7). If there is no such y(n), the composition is
ill-formed and the composite machine is not defined.

The next example illustrates the difference between well-formed and ill-formed compo-
sitions. It will suggest a procedure to solve (4.7) in the important special case of systems
with state-determined output.

Lee & Varaiya, Signals and Systems 159


http://LeeVaraiya.org

4.7. FEEDBACK

{true}/false  {false}/false {false}/true

{true}/true

(2)

{true}/false  {false}/false {false}/true

{true}/false

(b)

{true}/true  {false}/false {false}/false

{true}/true

(c)

Figure 4.14: Three examples of feedback composition. Examples (b) and (c)
are ill-formed. Composition (b) has no non-stuttering fixed point in state 2, while
composition (c) has two non-stuttering fixed points in either state.

160 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

4. COMPOSING STATE MACHINES

Example 4.5: Consider the three feedback compositions in Figure 4.14. In all
cases, the input and output alphabets of the component machines are

Inputs, = Outputs, = {true, false,absent}.

The input alphabet to the composite machine is {react,absent}, as in Figure 4.12,
but we do not show this (to reduce clutter in the figure). We want to find a non-
stuttering solution y(n) of (4.7). Since the output symbol is also the input symbol,
we are looking for a non-stuttering input symbol.

Consider the top machine first. Suppose the current state is the initial state, s(n) = 1.
There are two outgoing arcs, and for a non-stuttering input symbol, both produce
y(n) = false, so we can conclude that the output symbol of the machine is false.
Since the output symbol is false, then the input symbol is also false, and the non-
stuttering fixed point of (4.7) is unique,

output, (1,false) = false.

The state transition taken by the reaction goes from state 1 to state 2.

Suppose next that the current state is s(n) = 2. Again, there are two outgoing arcs.
Both arcs produce output symbol frue for a non-stuttering input symbol, so we can

{react}/false
{react, {true,
stutter} false}
—> —
{react}/true

Figure 4.15: Composite machine for Figure 4.14(a).

Lee & Varaiya, Signals and Systems 161


http://LeeVaraiya.org

4.7. FEEDBACK

162

conclude that the output symbol is frue. Since the output symbol is frue, then the
input symbol is also true, there is a unique non-stuttering fixed point,

output (2, true) = true,

and the state transition taken goes from 2 to 1. Since there is a unique non-stuttering
fixed point in every reachable state, the feedback composition is well-formed.

The composite machine alternates states on each reaction, and produces the output
sequence
(false, true, false, true, false, true,- - -)

for the input sequence
(react,react,react,---).

The composite machine is shown in Figure 4.15.

Now consider the second machine in Figure 4.14. If the initial state is 1 the analysis
is the same as above. There is a unique non-stuttering fixed point, the output and
input symbols are both false, and the state transition goes from 1 to 2. But if the
initial state is 2 and the unknown input symbol is true, the output symbol is false;
and if the unknown input symbol is false, the output symbol is true. Thus there is
no non-stuttering fixed point y(n) that solves,

outputy(2,y(n)) = y(n).

The feedback composition is not well-formed.

Consider the third machine in Figure 4.14. This feedback composition is also ill-
formed but for a different reason. If the initial state is 1 and the unknown input
symbol is true, the output symbol is also true, so true is a fixed point, and the
output symbol can be true. However, the output symbol can also be false, since
if it is, then a transition will be taken that produces the input symbol false. So
false is also a fixed point. Thus, the problem here is that there is more than one
non-stuttering solution, not that there are none!

Our conclusion is that with machines like the second and third, you cannot connect
them in a feedback composition as shown. The second is rejected because it has
no solution and the third because it has more than one. We only accept feedback
compositions where there is exactly one non-stuttering solution in each reachable
state.

Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

4. COMPOSING STATE MACHINES

4.7.2 State-determined output

In the first machine of Figure 4.14, in each state, all outgoing arcs produce the same output
symbol, independent of the input symbol. In other words, the output symbol y(n) depends
only on the state; in the example, y(n) = false if s(n) = 1, and y(n) = true if s(n) = 2.
The unique fixed point of (4.7) is this output symbol, and we can immediately conclude
that the feedback composition is well-formed.

We say that a machine A has state-determined output if in every reachable state s(n) €
States,, there is a unique output symbol y(n) = b (which depends on s(n)) independent
of the non-stuttering input symbol; i.e. for every x(n) # absent,

output (s(n),x(n)) = b.

In this special case of state-determined output, the composite machine is:

States = Statesy
Inputs = {react,absent}
Outputs = Outputs,
initialState = initialState,
( update, (s(n),b),
where b is the unique output symbol in
tat if = t
update(s(n),x(n)) = state s(n) if x(n) = reac
(s(n),x(n))

if x(n) = absent

When a machine with state-determined output is combined with any other state machines
in a feedback composition, the resulting composition is also well-formed, as illustrated in
the next example.

Example 4.6:

In Figure 4.16 the machine A is combined with machine B in a feedback composi-
tion. A is the same as the first machine, and B is the same as the second machine
in Figure 4.14. (The output port of B is drawn on the left and the input port on the
right so that the block diagram looks neater.) A has state-determined output, but B
does not. The composition is well-formed.

Lee & Varaiya, Signals and Systems 163


http://LeeVaraiya.org

4.7. FEEDBACK

{true}/false  {false}/false {false}/true
> I
{react, {true}/true A
absent} {true,
— false}
{true}lfalse  {false}/false {false}/true
L | <«
{true}/false B
(a)
{react}/false
{react}/false
{react, {true,
absent} false}
— Em—

{react}/true

{react}/true

(b)

Figure 4.16: Machine A has state-determined output, but B does not. The feed-
back composition is well-formed, and the composite machine is shown on the
bottom. Note that state (1,2) is not reachable.

164

Lee &

Varaiya, Signals and Systems


http://LeeVaraiya.org

4. COMPOSING STATE MACHINES

To see this, suppose both machines are in their initial states 1. A produces output
symbol false, independent of its input symbol. This output is the input of B which
then produces output symbol false and makes the transition to state 2. The output
symbol false of B is the input to A which makes the transition to its state 2. (A
and B make their state transitions together in our synchronous/reactive model.) We
can determine the output symbol and transition in the same way for all other states.
The state diagram of the composite machine is shown in the figure on the right.
Note that state (1,2) is not reachable from the initial state (1,1), so we could have
ignored it in determining whether the composition is well-formed.

The input alphabet of the composite machine is {react,absent}, taking absent as
the stuttering input symbol. The output alphabet is the same as the output alphabet
of A, {true,false,absent}. The state space is Statess x Statesg. The update function
is given by the table:

current | (next state, output) for input
state react ‘ absent

(1,1) ((2,2)false) | ((1,1),absent)
(2,2) ((2,1),true) | ((2,2), absent)
(1,2) ((1,2)false) | ((1,2), absent)
2,1) (2,1),true) | ((2,1), absent)

It is possible for a machine without state-determined outputs to be placed in a well-formed
feedback composition as illustrated in the next example.

Example 4.7: Consider the example in Figure 4.17. For the component ma-
chine, the output alphabet is Outputs, = {true,false,maybe,absent}, and the input
alphabet is Inputs, = {true,false,absent}. The stuttering element is absent. The
machine does not have state-determined output because, for instance, the outgoing
arcs from state 1 can produce both maybe and false. Nevertheless, equation (4.7)
has a unique non-stuttering fixed point in each state:

output  (1,false) = false, and output (2, true) = true.

So the feedback composition is well-formed. The composite machine is shown on
the bottom.

Lee & Varaiya, Signals and Systems 165


http://LeeVaraiya.org

4.7. FEEDBACK

{ruey/ {false}/
maybe {false}/false aybe
{react, {-tme’
absent} false)
Rl )
{true}/true A
(a)
{react}/false
{react, (e,
absent} ﬂ}
—
{react}/true
(b)

Figure 4.17: Machine A does not have state-determined outputs, but the feed-
back composition is well-formed. The machine on the bottom is the composite
machine.

166 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

4. COMPOSING STATE MACHINES

It can be considerably harder to find the behavior of a feedback composition without state-
determined outputs, even if the composition is well-formed. Below, in Section 4.7.4,
we give a constructive procedure that often works to quickly find a fixed point, and to
determine whether it is unique. However, even that procedure does not always work
(and in fact, will fail on example 4.7). If the input alphabet is finite, the only strategy
that always works is to try all possible output values y(n) is (4.7) for each reachable
state s(n). Before discussing this procedure, we generalize to more interesting feedback
compositions.

4.7.3 Feedback composition with inputs

Now consider the state machine in Figure 4.18. It has two input and output ports. The
second output port feeds back to the second input port. We wish to construct a state
machine model that hides the feedback, as suggested by the figure, and becomes a simple
input/output state machine. This is similar to the example in Figure 4.12, but now there
is an additional input and an additional output. The procedure for finding the composite
machine is similar, but the notation is more cumbersome. Given the current state and the
current external input symbol, we must determine the “unknown” output symbol.

The inputs and outputs of machine A are in product form:

Inputs, = Inputs,, X Inputs,,,
Outputs, = QOutputs,; X Outputs,,.

For the feedback composition to be possible we must have

Outputs,, C Inputsy .

(States, Inputs, Outputs, update, initialState )
Inputsy; Outputsy

y
oS

(States,, Inputs 4, Outputs, update 4, initialState, ) >

Inputsa; Outputs s

Outputs sy C Inputs s,

Figure 4.18: Feedback composition of a state machine.

Lee & Varaiya, Signals and Systems 167


http://LeeVaraiya.org

4.7. FEEDBACK

The output function of A is
output : Statess X Inputs, — Outputs,.
It is convenient to write it in product form as,
output, = (output,,,outputy,),

where
output,, : Statesa X Inputs, — Outputs,,

gives the output symbol at the first output port and
output, : Statess X Inputs, — Outputs,,,

gives the output symbol at the second output port.

Suppose we are given that at the n-th reaction, the current state of A is s(n) and the current
external input symbol is x;(n) € Inputs,;. Then the problem is to find the “unknown”
output symbol (y; (n),y2(n)) € Outputs, such that

output, (s(n), (x1 (n),2(n))) = (1 (n), 2 (). (4.8)

The symbol y,(n) appears on both sides because the second input x;(n) to machine A is
equal to y,(n). In terms of the product form, (4.8) is equivalent to two equations:

output (s(n), (x1(n),y2(n))) = yi(n), (4.9)
outputy (s(n), (x1(n),y2(n))) = y2(n). (4.10)

In these equations, s(n) and x;(n) are known, while y;(n) and y,(n) are unknown. Ob-
serve that if (4.10) has a unique solution y,(n), then the input symbol to A is (x; (n),y2(n))
and the next state s(n+ 1) and output symbol y;(n) are determined. So the fixed point
equation (4.10) plays the same role as (4.7).

We say that the composition of Figure 4.18 is well-formed if for every reachable state
s(n) € States, and for every external input symbol x;(n) € Inputs,;, there is a unique
non-stuttering output symbol y,(n) € OQutputs,, that solves (4.10). If the composition is
well-formed, the composite machine definition is:

States = Statesa
Inputs = Inputs

168 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

4. COMPOSING STATE MACHINES

s(n+1) = 0.5s(n) + x;(n) + x,(n) >
2 y(n) = s(n)

X s(n+1) = 1.5s(n) + x(n) y
y(n) = s(n)

Figure 4.19: Machine A has two input ports and one output port. The output
port is connected to the second input port. The composition is well-formed. The
composite machine is shown at the bottom.

Outputs = Outputs,,

initialState = initialState,

update(s(n),x(n)) = (nextState(s(n),x(n)), output(s(n),x(n))):

nextState(s(n),x(n)) = nextStates(s(n), (x(n),y2(n))) and

output(s(n),x(n)) = output(s(n), (x(n),y2(n))), where y2(n) is the unique
solution of (4.10).

(The nextState function is defined in Section 3.1.1.)

In the following example, we illustrate the procedure for defining the composition ma-
chine given a sets and functions description (3.1) for the component machine A.

Example 4.8: Figure 4.19 shows a feedback composition, where component ma-
chine A has two input ports and one output port,

Inputs, = R xR, Outputs, =R,

Lee & Varaiya, Signals and Systems 169


http://LeeVaraiya.org

4.7. FEEDBACK

170

and states States4 = R. Thus A has infinite input and output alphabets and in-
finitely many states. At the n-th reaction, the pair of input values is denoted by
(x1(n),x2(n)), the current state by s(n), the next state by s(n+ 1), and the output
symbol by y(n). In terms of these, the update function is given by

(s(n+1),y(n)) = updatey(s(n), (xi(n),x2(n)))
= (0.5s(n) +x1(n) +x2(n),s(n)).

Equivalently,

s(n+1) = nextStates(s(n), (x1(n),x2(n)))
= 0.55(n) +x1(n) +x2(n)
y(n) = outputy(s(n),(x1(n),x2(n))) = s(n).

Thus, the component machine A has state-determined output. The feedback con-
nects the output port to the second input port, so x2(n) = y(n). Given the current
state s(n) and the external input symbol x(n) at the first input port, (4.10) becomes,

output (s(n), (x1(n),x2(n))) = x2(n),

which gives
s(n) =x2(n).

So the composite machine is defined by

Inputs = R, Outputs = Reals, States =R

update(s(n),x(n)) = (0.5s(n)+x(n)+s(n),s(n))
= (L.5s(n)+x(n),s(n)).

Note that the input to the composite machine is a scalar. The composite machine is
shown in the lower part of the figure.

Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

4. COMPOSING STATE MACHINES

4.7.4 Constructive procedure for feedback composition

Our examples so far involve one or two state machines and a feedback loop. If any
machine in the loop has state determined output, then finding the fixed point is easy. Most
interesting designs are more complicated, involving several state machines and several
feedback loops, and the loops do not necessarily include mahcines with state-determined
output.

In this section, we describe a constructive procedure for finding the fixed point that often
(but not always) works. It is “constructive” in the sense that it can it be applied me-
chanically, and will, in a finite number of steps, either identify a fixed point or give up.
The approach is simple. At each reaction, begin with all unspecified signals having value
unknown. Then with what is known about the input symbols, try each state machine to
determine as much as possible about the output symbols. You can try the state machines
in any order. Given what you learn about the output symbols, then update what you know
about the feedback input symbols, and repeat the process, trying each state machine again.
Repeat this process until all signal values are specified, or until you learn nothing more
about the output symbols. We illustrate the procedure in an example involving only one
machine, but keep in mind that the procedure works for any number of machines.

{0}/(0,1) {1}/(1,1) {0}/(0,0)

{react, absent} 7 ‘ ‘ {0, 1, absent}
BN I

{13/(1.0)

{0, 1, absent}

Figure 4.20: Feedback composition without state-determined output.

Lee & Varaiya, Signals and Systems 171


http://LeeVaraiya.org

4.7. FEEDBACK

Example 4.9: Figure 4.20 shows a feedback composition without state-determined
output. Nonetheless, our constructive procedure can be used to find a unique fixed
point for each reaction. Suppose that the current state is a, and that the input to the
composition is react. Begin by assuming that the symbol on the feedback connec-
tion is unknown. Try component machine A (this is the only component machine in
this example, but if there were more, we could try them in any order). Examining
machine A, we see that in its current state, a, the output symbol cannot be fully
determined. Thus, this machine does not have state-determined output. However,
more careful examination reveals that in state a, the second element of the output
tuple is determined. That second element has value 1. Fortunately, this changes the
value on the feedback connection from unknown to 1.

Now we repeat the procedure. We choose a state machine to try. Again, there is
only one state machine in this example, so we try A. This time, we know that the
input symbol is 1, so we know that the machine must take the transition from a to
b and produce the output tuple (1,1). This results in all symbols being known for
the reaction, so we are done evaluating the reaction.

Now assume the current state is b. Again, the feedback symbol is initially unknown,
but once again, trying A, we see that the second element of the output tuple must be
0. Thus, we change the feedback symbol from unknown to 0 and try the machine
again. This time, its input is 0, so it must take the self loop back to b and produce
the output tuple (0,0).

Recall that the set Behaviors is the set of all (x,y) such that x is an input sequence
and y is an output sequence. For this machine, ignoring stuttering, the only pos-
sible input sequence is (react,react,react,---). We have just determined that the
resulting output sequence is (1,0,0,0,---). Thus, ignoring stuttering,

Behaviors = {((react, react, react,---),(1,0,0,0,---))}.

Of course, we should take into account stuttering, so this set needs to be augmented
with all (x, y) pairs that look like the one above but have stuttering symbols inserted.

This procedure can be applied in general to any composition of state machines. If the
procedure can be applied successfully (nothing remains unknown) for all reachable states

172

Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

4. COMPOSING STATE MACHINES

of the composition, then the composition is well-formed. The following example applies
the procedure to a more complicated example.

Example 4.10:

We add more detail to the message recorder in Figure 4.9. In

particular, as shown in Figure 4.21, we wish to model the fact that the message
recorder stops recording when either it detects a dialtone or when a timeout period is

greeting playback

device

{end greeting} o

[

{record}

telephone

- AnsweringMachine
{ring, offhook}

{answer}

{dialtone}

line interface

{timeout}

MessageRecorder

{end message}

{start recording}

recording device

{light on, light off}

Playback

a7 N
> light |

S

{recorded message} _
iplay}y
,,,,,,,,,,,,,,, ,
play || ™
button

{done playing} {play messages}

message playback

device

-l
-

Figure 4.21: Answering machine composition with feedback. The absent ele-
ments are not shown (to reduce clutter).

Lee & Varaiya, Signals and Systems

173


http://LeeVaraiya.org

4.7. FEEDBACK

reached. This is modeled by a two-state finite state machine, shown in Figure 4.22.
Note that this machine does not have state-determined output. For example, in state
idle, the output could be (absent,start recording) or it could be (absent,absent)
when the input is not the stuttering input.

The MessageRecorder and AnsweringMachine state machines form a feedback
loop. Let us verify that composition is well-formed. First, note that in the idle
state of the MessageRecorder, the upper output symbol is known to be absent (see
Figure 4.22). Thus, only in the recording state is there any possibility of a prob-
lem that would lead to the composition being ill-formed. In that state, the output
symbol is not known unless the input symbols are known. However, notice that
the recording state is entered only when a record input symbol is received. In Fig-
ure 4.6, you can see that the record value is generated only when entering state
record message. But in all arcs emerging from that state, the lower output sym-
bol of AnsweringMachine will always be absent; the input symbol does not need
to be known to know that. Continuing this reasoning by considering all possible
state transitions from this point, we can convince ourselves that the feedback loop
is well-formed.

The sort of reasoning in this more complicated example is difficult and error-prone for
even moderate compositions of state machines. It is best automated. Compilers for syn-
chronous languages do exactly this. Successfully compiling a program involves proving
that feedback loops are well-formed.

{record, absent}

> {(record, absent, absent)}/ {end message,
(absent, start recording) absent}
{dialtone, absent}
—» recording
else
{timeout, absent} {(absent, dialtone, absent), (absent , absent , timeout), {start recording ,
— > (absent, dialtone , timeout)}/ absent}

(end message , absent)

Figure 4.22: Message recorder subsystem of the answering system.

174 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

4. COMPOSING STATE MACHINES

4.7.5 Exhaustive search

If a feedback composition has one or more machines with state-determined output, then
finding a unique fixed point is easy. Without such state-determined output, we can apply
the procedure in the previous section. Unfortunately, if the procedure fails, we cannot
conclude that the composition is ill-formed. The procedure fails for example 4.7, shown
in Figure 4.17, despite the fact that this example is well-formed. For that example, we can
determine the unique fixed point by exhaustive search. That is, for each reachable state
of the composition, and for each possible input to the composition, we try all possible
transitions out of the current states of the component machines. We reject those that lead
to a contradiction. For example, in Figure 4.17, assuming the current state is 1, the output
of the component machine cannot be maybe because then the input would have to be
maybe, which would result in the output being absent. If after rejecting all contradictions
there remains exactly one possibility in each reachable state, then the composition is well-
formed.

Exhaustive search works in Figure 4.17 only because the number of reachable states is
finite and the number of transitions out of each state is finite. If either of these conditions
is violated, then exhaustive search will not work. Thus, there are state machine that when
put in a feedback loop are well-formed, but where there is no constructive procedure for
evaluating a reaction (see box on page 176). Even when exhaustive search is theoretically
possible, in practice the number of possibilities that must be tried grows extremely fast.

4.7.6 Nondeterministic machines

Nondeterministic state machines can be composed just as deterministic state machines
are composed. In fact, since deterministic state machines are a special case, the two types
of state machines can be mixed in a composition. Compositions without feedback are
straightforward, and operate almost exactly as described above (see exercises 14 and 15).
Compositions with feedback require a small modification to our evaluation process.

Recall that to evaluate the reaction of a feedback composition, we begin by setting to
unknown any input symbols that are not initially known. We then proceed through a series
of rounds where in each round, we attempt to determine the output symbols of the state
machines in the composition given what we know about the input symbols. After some
number of rounds, no more information is gained. At this point, if all of the input and

Lee & Varaiya, Signals and Systems 175


http://LeeVaraiya.org

4.7. FEEDBACK

Probing Further: Constructive Semantics

The term “‘semantics” means meaning. We have defined the meaning of compositions
of state machines using the notion of synchrony, which makes feedback compositions
particularly interesting. When we define “well-formed,” we are, in effect, limiting the
compositions that are valid. Compositions that are not well-formed fall outside our
synchronous semantics. They have no meaning.

One way to define the semantics of a composition is to give a procedure for evaluating
the composition (the resulting procedure is called an operational semantics). We have
given three successively more difficult procedures for evaluating a reaction of a com-
position of state machines with feedback. If at least one machine in each directed loop
has state-determined output, then it is easy to evaluate a reaction. If not, we can apply
the constructive procedure of section 4.7.4. However, that procedure may result in some
feedback connections remaining unknown even though the composition is well-formed.
The ultimate procedure is exhaustive search, as described in section 4.7.5. However,
exhaustive search is not always possible, and even when it is theoretically possible, the
number of possibilities to explore may be so huge that it is not practical. There are state
machines that when put in a feedback loop are well-formed, but where there is no con-
structive procedure for evaluating a reaction, and no constructive way to demonstrate
that they are well-formed. Thus, there is no operational semantics for our feedback
compositions.

This situation is not uncommon in computing and in mathematics. Kurt Godel’s fa-
mous incompleteness theorem (1931), for example, states (loosely) that in any formal
logical system, there are statements that are true but not provable. This is analogous in
that we can have feedback compositions that are well-formed, but we have no procedure
that will always work to demonstrate that they are well-formed. Around the same time,
Alan Turing and Alonzo Church demonstrated that there are functions that cannot be
computed by any procedure.

To deal with this issue, Gerard Berry has proposed that synchronous composition have
a constructive semantics, which means precisely that well-formed compositions are
defined to be those for which the constructive procedure of Section 4.7.4 works. When
that procedure fails, we simply declare the composition to be unacceptable. This is prag-
matic solution, and in many situations, it is adequate. See G. Berry, The Constructive
Semantics of Pure Esterel, Book Draft, http://www-sop.inria.fr/meije/esterel/doc/main-
papers.html.

176 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

4. COMPOSING STATE MACHINES

output symbols are known, then the composition is well-formed. This procedure works
for most (but not all) well-formed compositions.

This process needs to be modified slightly for nondeterministic machines because in each
reaction, a machine may have several possible output symbols and several possible next
states. For each machine, at each reaction, we define the sets PossibleInputs C Inputs,
PossibleNextStates C States and PossibleNextOutputs C Outputs. If the inputs to a partic-
ular machine in the composition are known completely, then Possiblelnputs has exactly
one element. If they are completely unknown, then Possiblelnputs is empty.

The rounds proceed in a similar fashion to before. For each state machine in the com-
position, given what is known about the input symbols, i.e. given Possiblelnputs, deter-
mine what you can about the next state and output symbols. This may result in elements
being added to PossibleNextStates and PossibleNextOutputs. When a round results in
no such added elements, the process has converged. If none of the Possiblelnputs or
PossibleOutputs sets is empty, then the composition is well-formed.

4.8 Summary

Many systems are designed as state machines. Usually the design is structured by com-
posing component state machines. In this chapter, we considered synchronous composi-
tion. Feedback composition proves particularly subtle because the input symbol of a state
machine in a reaction may depend on its own output symbol in the same reaction. We call
a feedback composition well-formed if every signal has a unique non-stuttering symbol
in each reaction.

Describing systems as compositions of state machines helps in many ways. It promotes
understanding. The block diagram syntax that describes the structure often shows that
individual components are responsible for distinct functions of the overall system. Some
components may already be available and so we can reuse their designs. The design of the
answering machine in Figure 4.9 takes into account the availability of the telephone line
interface, recording device, etc. Composition also simplifies description; once we specify
the component state machines and the composition, the overall state machine is auto-
matically defined by the rules of composition. Compilers for synchronous programming
languages and tools for verification do this automatically.

We have three successively more difficult procedures for evaluating a reaction of a com-
position of state machines with feedback. If at least one machine in each directed loop

Lee & Varaiya, Signals and Systems 177


http://LeeVaraiya.org

4.8. SUMMARY

has state-determined output, then it is easy to evaluate a reaction. If not, we can apply the
constructive procedure of section 4.7.4. But that procedure may be inconclusive. The ul-
timate procedure is exhaustive search, as described in section 4.7.5. However, exhaustive
search is not always possible, and even when it is theoretically possible, the number of
possibilities to explore may be so huge that it is not practical.

178 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

4. COMPOSING STATE MACHINES

Exercises

In some of the following exercises you are asked to design state machines that carry out
a given task. The design is simplified and elegant if the state space is properly chosen.
Although the state space is not unique, there often is a natural choice. Each problem is
annotated with the letter E, T, C which stands for exercise, requires some thought, requires
some conceptualization. Problems labeled E are usually mechanical, those labeled T
require a plan of attack, those labeled C usually have more than one defensible answer.

1. E Define the composite state machine in Figure 4.7 in terms of the component
machines, as done for the simpler compositions in figures 4.3 and 4.1. Be sure to
state any required assumptions.

2. E Define the composite state machine in Figure 4.10 in terms of the component
machines, as done for the simpler compositions in figures 4.3 and 4.1. Be sure to
state any required assumptions. Give the definition in two different ways:

(a) Directly form a product of the three state spaces.

(b) First compose the A and B state machines to get a new D state machine, and
then compose D with C.

(c) Comment on the relationship between the models in part (a) and (b).

3. T Consider the state machine UnitDelay studied in part (a) of exercise 5 at the end
of the previous chapter.

(a) Construct a state machine model for a cascade composition of two such ma-
chines. Give the sets and functions model (it is easier than the state transition
diagram or table).

(b) Are all of the states in the state space of your model in part (a) reachable? If
not, give an example of an unreachable state.

(c) Give the state space (only) for cascade compositions of three and four unit
delays. How many elements are there in each of these state spaces?

(d) Give an expression for the size of the state space as function of the number N
of cascaded delays in the cascade composition.

4. C Consider the parking meter example of the previous chapter, example 3.1, and
the modulo N counter of Exercise 4 at the end of the previous chapter. Use these

Lee & Varaiya, Signals and Systems 179


http://LeeVaraiya.org

EXERCISES

two machines to model a citizen that parks at the meter when the machines start,
and inserts 25 cents every 30 minutes, and a police officer who checks the meter
every 45 minutes, and issues a ticket if the meter is expired. For simplicity, assume
that the police office issues a new ticket each time he finds the meter expired, and
that the citizen remains parked forever.

You may construct the model at the block diagram level, as in Figure 4.9, but de-
scribe in words any changes you need to make to the designs of the previous chap-
ter. Give state transition diagrams for any additional state machines you need. How
long does it take for the citizen to get the first parking ticket?

Assume you have an eternal clock that emits an event tick every minute.

Note that the output alphabet of the modulo N counter does not match the input
alphabet of the parking meter. Neither does its input alphabet match the output al-
phabet of the parking meter. Thus, one or more intermediate state machines will be
needed to translate these alphabets. You should fully specify these state machines
(i.e., don’t just give them at the block diagram level). Hint: These state machines,
which perform an operation called renaming, only need one state.

5. C Consider a machine with

States = {0,1,2,3},

Inputs = {increment,decrement, reset,absent},
Outputs = {zero,absent},

initialState = 0,

such that increment increases the state by 1 (modulo 4), decrement decreases the
state by 1 (modulo 4), reset resets the state to 0, and the output symbol is absent
unless the next state is 0, in which case the output symbol is zero. So, for example,
if the current state is 3 and the input is increment, then the new state will be 0 and
the output will be zero. If the current state is 0 and the input is decrement, then the
new state will be 3 and the output will be absent.

(a) Give the update function for this machine, and sketch the state transition dia-
gram.

(b) Design a cascade composition of two state machines, each with two states,
such that the composition has the same behaviors as the one above. Give a
diagram of the state machines and their composition, and carefully define all
the input and output alphabets.

180 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

4. COMPOSING STATE MACHINES

(c) Give a simulation relation from the single machine and the cascade compo-
sition, and a simulation relation from the cascade composition to the single
machine.

6. C A road has a pedestrian crossing with a traffic light. The light is normally green
for vehicles, and the pedestrian is told to wait. However, if a pedestrian presses a
button, the light turns yellow for 30 seconds and then red for 30 seconds. When it
is red, the pedestrian is told “cross now.” After the 30 seconds of red, the light turns
back to green. If a pedestrian presses the button again while the light is red, then
the red is extended to a full minute.

Construct a composite model for this system that has at least two state machines,
TrafficLight for the traffic light seen by the cars, and WalkLight for the walk light
seen by the pedestrians. The state of machine should represent the state of the
lights. For example, TrafficLight should have at least three states, one for green,
one for yellow, and one for red. Each color may, however, have more than one state
associated with it. For example, there may be more than one state in which the
light is red. It is typical in modeling systems for the states of the model to represent
states of the physical system.

Assume you have a timer available such that if you emit an output start timer, then
30 seconds later an input symbol timeout will appear. It is sufficient to give the state
transition graphs for the machines. State any assumptions you need to make.

7. E Suppose you are given two state machines A and B, Suppose the sizes of the
input alphabets are i4,ip, respectively, the sizes of the output alphabets are 04,05
respectively, and the numbers of states are s4,sp, repectively. Give the sizes of the
input and output alphabets and the number of states for the following compositions:

(a) side-by-side,

(b) cascade,

(c) and feedback, where the structure of the feedback follows the pattern in Figure
4.16(a).

8. T Example 4.2 shows a state machine in which a state is not reachable from the
initial state. Here is a recursive algorithm to calculate the reachable states for any
nondeterministic machine,

StateMachine = (States, Inputs, Outputs, possibleUpdates, initialState).

Lee & Varaiya, Signals and Systems 181


http://LeeVaraiya.org

EXERCISES

Recursively define subsets ReachableStates(n), n =0, 1,--- of States by:

ReachableStates(0) = {initialState}, and for n > 0
ReachableStates(n+1) = {s(n+1) | 3s(n) € ReachableStates(n),
dx(n) € Inputs,
3 y(n) € Outputs,
(s(n+1),5(n))
€ possibleUpdates(s(n),x(n))}
U ReachableStates(n).

In words: ReachableStates(n + 1) is the set of states that can be reached from
ReachableStates(n) in one step using any input symbol, together with ReachableStates(n).
(a) Show that for all n, ReachableStates(n) C ReachableStates(n+1).

(b) Show that ReachableStates(n) is the set of states that can be reached in n or
fewer steps, starting in initialState. Now show that if for some n,

ReachableStates(n) = ReachableStates(n+ 1), (4.11)

then ReachableStates(n) = ReachableStates(n + k) for all k > 0.

(c) Suppose (4.11) holds for n = N. Show that ReachableStates(N) is the set of
all reachable states, i.e. this set comprises all the states that can be reached
using any input sequence starting in initialState.

(d) Suppose there are N states. Show that (4.11) holds for n = N.
(e) Compute ReachableStates(n) for all n for the machine in Figure 4.4.

(f) Suppose States is infinite. Show that the set of reachable states is given by

U,_oReachableStates(n).

9. T The algorithm in Exercise 8 has a fixed point interpretation. For a nondetermin-
istic state machine,

StateMachine = (States, Inputs, Outputs, possibleUpdates, initialState),

define the function nextStep : g(States) — g(States) that maps subsets of States
into subsets of States (recall that g2(A) is the powerset of A) as follows: for any

182 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

4. COMPOSING STATE MACHINES

S(n) C States

nextStep(S(n)) = {s(n+1)| 3s(n) € S(n),
3x(n) € Inputs,
Jy(n) € Outputs,
(s(n+1),(n))
€ possibleUpdates(s(n),x(n))} US(n).

By definition, a fixed point of nextStep is any subset S C States such that nextStep(S) =
S.
(a) Show that @ and States are both fixed points of nextState.

(b) Let ReachableStates be the set of all states that can be reached starting in
initialState. Show that ReachableStates is also a fixed point.

(c) Show that ReachableStates is the least fixed point of nextStep containing

initialState.

10. C Recall the playback machine of Figure 4.8 and the CodeRecognizer machine of
Figure 3.4. Enclose CodeRecognizer in a block and compose it with the playback
machine so that someone can play back the recorded messages only if she correctly
enters the code 1100. You will need to modify the playback machine appropriately.

11. E Consider the following state machine in a feedback composition, where the input
and output alphabets for the state machine is

{1,2,3,absent} :

Lee & Varaiya, Signals and Systems 183


http://LeeVaraiya.org

EXERCISES

{1,332 {2}2 {123

{1}/1 {3}/3

231

Is it well-formed? If so, then find the output symbols for the first 10 reactions.

12. E In this problem, we will explore the fact that a carefully defined delay in a feed-
back composition always makes the composition well-formed.

(a) For an input and output alphabet
Inputs = Outputs = {true, false,absent}

design a state machine that outputs false on the first reaction, and then in
subsequent reactions, outputs the value observed at the input in the previous
reaction. This is similar to UnitDelay of problem 5 at the end of Chapter 3,
with the only difference being that it outputs an initial false instead of absent.

(b) Compose the machine in Figure 4.14 (b) with the delay from part (a) of this
problem in a feedback loop (as in Figure 4.16). Give an argument that the
composition is well-formed. Then do the same for Figure 4.14 (c) instead of

(b).

13. C Construct a feedback state machine with the structure of figure 4.12 that outputs
the periodic sequence a,b,c,a,b,c--- (with, as usual, any number of intervening
stuttering outputs between the non-stuttering outputs).

184 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

4. COMPOSING STATE MACHINES

14. E Modify Figure 4.1 as necessary so that the machines in the side-by-side compo-
sition are both nondeterministic.

15. E Modify Figure 4.3 as necessary so that the machines in the cascade composition
are both nondeterministic.

16. C,T Data packets are to be reliably exchanged between two computers over com-
munication links that may lose packets. The following protocol has been suggested.
Suppose computer A is sending and B is receiving. Then A sends a packet and starts
a timer. If B receives the packet it sends back an acknowledgment. (The packet or
the acknowledgment or both may be lost.) If A does not receive the acknowledg-
ment before the timer expires, it retransmits the packet. If the acknowledgment
arrives before the timer expires, A sends the next packet.

(a) Construct two state machines, one for A and one for B, that implement the
protocol.

(b) Construct a two-state nondeterministic machine to model the link from A to
B, and another copy to model the link from B to A. Remember that the link
may correctly deliver a packet, or it may lose it.

(¢c) Compose the four machines to model the entire system.
(d) Suppose the link correctly delivers a packet, but after a delay that exceeds the
timer setting. What will happen?

17. T Consider the following three state machines:

-0.51n-
{0}/0 {1}/0 {1}/0 {1,031
\_/ {031
machine A
0.5in machine B

Lee & Varaiya, Signals and Systems 185


http://LeeVaraiya.org

EXERCISES

——>»| —>» machine A ——>| machineB

\

machine C

Machines A and B have input and output alphabets
Inputs = Outputs = {0, 1,absent}.

Machine C has the same output alphabet, but input alphabet
Inputs. = {react,absent}.

(a) Which of these machines is deterministic?

(b) Draw the state transition diagram for the composition (machine C), showing
only states that are reachable from the initial state.

(c) Give the Behaviorsc relation for the composition of machine C, ignoring stut-
tering.

18. T The feedback composition in Figure 4.14(c) is ill-formed because it has two
non-stuttering fixed points in each of the two states of the component machine.
Instead of declaring it to be ill-formed, we could have interpreted the composition
as representing a nondeterministic state machine. That is, in each state, we accept
either of the two possible fixed points as possible reactions of the machine. Using
this interpretation, give the nondeterministic machine for the feedback composition
by giving its sets and functions model and a state transition diagram.

186 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

Linear Systems

Contents
5.1 Operation of an infinite state machine . . . . ... ......... 189
501 Time . ..o oo 191
5.2 Linearfunctions ... ... .........iiiiiieen.. 192
5.3 The [A,B,C,D] representation of asystem . . ............ 195
5.3.1 Impulseresponse . . . . . . .. ... ... 198
5.3.2  One-dimensional SISO systems . . . .. ... ... ..... 199
5.3.3 Zero-state and zero-inputresponse . . . . . . . .. ... ... 205
5.3.4 Multidimensional SISO systems . . . . . ... ... ..... 208
5.3.5 Multidimensional MIMO systems . . . . . ... ....... 216
5.3.6 Linear input-output function . . . . . . ... ... .. .... 217
5.4 Continuous-time state-spacemodels . . ... ............ 218
55 Summary . . . .. it e e e e e e e e e e e e e e e e 219
Basics: Functions yielding tuples . . . . . . . ... ... ... .... 220
Basics: Matrices and vectors . . . . . . .. .. ... . .00 221
Basics: Vectors . . . . . . . .. e e 222
Basics: Matrix arithmetic . . . . . . . . . .. ... ... ... . 223
Basics: Matrix arithmetic (continued from page 223) . . . . . .. .. 224
Probing Further: Impulse Responses of MIMO Systems . . . . . . .. 225
Probing Further: Approximating continuous-time . . . . . . . . ... 226
Exercises . ... ..ottt ittt e e e e e 227

187



= Reals Reals “4%
% R—eals> MIMO difference R—eals> §
Q . &
X equation system I
I
N States = Reals N Y
= Reals Reals 3
S —fedls g, —feals S

Figure 5.1: Block representing a multiple-input, multiple output (MIMO) system.

Recall that the state of a system is a summary of its past. It is what the system needs
to remember about the past in order to react at the present and move into the future. In
previous chapters, systems typically had a finite number of possible states. Many useful
and interesting systems are not like that, however. They have an infinite number of states.
The analytical approaches used to analyze finite-state systems, such as simulation, get
more difficult when the number of states is not finite.

In this chapter, we begin considering infinite-state systems. We impose two key con-
straints. First, we require that the state space and input and output alphabets be numeric
sets. That is, we must be able to do arithmetic on members of these sets. (Contrast this
with the answering machine example, where the states are symbolic names, and no arith-
metic makes sense.) Second, we require that the update function be linear. We will define
what this means precisely. In exchange for these two constraints, we gain a very rich
set of analytical methods for designing and understanding systems. In fact, most of the
remaining chapters are devoted to developing these methods.

In particular, we study state machines with

States = RN
Inputs = RM (5.1)
Outputs = RX.

Such state machines are shown schematically in Figure 5.1. The inputs and outputs are
in product form, as discussed for general state machines in Section 4.4. The system,
therefore, can be viewed as having M distinct inputs and K distinct outputs. So the input

188 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

5. LINEAR SYSTEMS

is a tuple with M real numbers, and the ouptut is a tuple with K real numbers. Such a
system is called a multiple-input, multiple-output (MIMO) system. When M = K =1,
it is called a single-input, single-output (SISO) system. The state is a tuple with N real
numbers. N (rather than M or K) is called the dimension of the system.

Example 5.1: A stereo audio system processes two channels of audio, and there-
fore has M = K = 2. ”Surround sound,” used in movie theaters and some home
audio systems, has five channels, so M = K = 5.

Example 5.2: Some modern cars have traction control systems, where the torque
applied to each wheel is controled individually to avoid skidding. The key input
comes from the accelerator pedal, which specifies a desired acceleration. The out-
put is the torque applied to each of four wheels. Hence, M = 1 and K = 4. A more
sophisticated traction control system might also use as input the steering angle, in
which case M = 2.

5.1 Operation of an infinite state machine

Recall that a deterministic state machine is a 5-tuple
M = (States, Inputs, Outputs,update, initialState) (5.2)

where States is the state space, Inputs is the input space, Outputs is the output space,
update: States X Inputs — States x Outputs is the update function, and initialState is the
initial state.

In this chapter, the update function has the form
update: RN x RM — RN x RK,

The result of evaluating this function is an N-tuple (the next state) and a K-tuple (the
current output). It will be useful in this chapter to break this function into two parts, as

Lee & Varaiya, Signals and Systems 189


http://LeeVaraiya.org

5.1. OPERATION OF AN INFINITE STATE MACHINE

done in Section 3.1.1, one giving the new state and one giving the output,
update = (nextState, output),

where
nextState: RN x RM — RV

output: RN x RM — RX,
such that
VseRN Vx e RM,  update(s,x) = (nextState(s,x), output(s,x)).

These two functions separately give the next state and the current output as a function of
the current state and input. Given an input sequence x(0),x(1),--- of M-tuples in R, the
system recursively generates a state response

5(0),s(1),---
of N-tuples in RV and an output response y(0),y(1),--- of K-tuples in RX as follows:

s(0) = initialState,
(s(n+1),y(n)) = update(s(n),x(n)), n>0. (5.3)

The second equation can be rewritten as a separate state update equation,

VneZ,n>0, s(n+1)=nextState(s(n),x(n)) (5.4)

and an output equation,

VneZ,n>0, y(n)=output(s(n),x(n)). (5.5)

Equations (5.4) and (5.5) together are called a state-space model of the system, because
instead of giving the output directly as a function of the input, the state is explicitly de-
scribed. The equations suggest a detailed procedure for calculating the response of a
system. We start with a given initial state s(0) = initialState, and an input sequence
x(0),x(1),---. At step n = 0, we evaluate the right-hand side of (5.4) at the known values
of s(0),x(0) and we assign the result to s(1). At step n = 1, we evaluate the right-hand
side at the known values of s(1),x(1) and we assign the result to s(2). To proceed from
step n to step n+ 1, we only need to remember s(n) and know the new input x(n). At each

190 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

5. LINEAR SYSTEMS

step n, we evaluate the output y(n) using (5.5). This procedure is no different from that
used for state machines in previous chapters. However, starting with Section 5.2, we will
specialize the nextState and output functions so that they are linear, which will then lead
to a powerful set of analytical tools.

5.1.1 Time

The index n in the equations above denotes the step number, the count of reactions, as
with any state machine. For general state machines, it is rare to associate a fixed time
interval with a step. So there is normally no simple relation between the step number and
the real time at which the corresponding reaction occurs. For example, in the answering
machine, if the initial state is idle, there may be an arbitrary amount of time before ring
occurs and the state moves to countl.

The systems we study in this and the next several chapters, however, usually evolve with
a fixed time interval between updates. Suppose this interval is & seconds. Then step n
occurs at time nd seconds, relative to time 0. Such systems are discrete-time systems, and
the index # is called the time index.

We will require that for each time index 7, the input x(n) be in RM and the output y(n)
be in RX. We disallow stuttering input or output values such as absent. This is consistent
with the interpretation of n as a real (physical) time index: the system’s input and output
must take some physical value at each n, and absent is not such a value.

Example 5.3: Compact discs store digital audio signals as discrete-time signals.
For each channel of audio, there are 44,100 numbers (samples) representing each
second of sound. The n-th number, therefore, represents the sound value at time
nd from the beginning of the CD, where & = 1/44,100, about 23 microseconds.
By contrast, the telephone network transmits speech signals by sending only 8,000
samples per second, so the sampling interval is 6 = 1/8,000, or 125 microseconds.
We will see in Chapter 11 that this difference (partly) accounts for the lower audio
quality over the telephone network, compared to CDs.

The systems in this chapter will be time-invariant systems, meaning that the nextState
and output functions do not change with the time index n. It is, therefore, a matter of
convention to have time start at O rather than, say, at -10 or 50. We will stick to convention

Lee & Varaiya, Signals and Systems 191


http://LeeVaraiya.org

5.2. LINEAR FUNCTIONS

and so the set of input signals in this chapter will be

InputSignals = [Z, — RM],

where Z; =Ny ={0,1,2,---}. Correspondingly,

OutputSignals = [Z, — RK].

The state response, then, is a function

S Z+_>RN

where 5(0) = initialState.

5.2 Linear functions

A function f: R — R is a linear function if Vu € R and a € R,

flau) =af(u),
and Vu,v € R,
flu+v)=flu)+f(v).

The first property is called homogeneity and the second property is called additivity.
When its domain and range both are R, a linear function can be represented as

VxeR, f(x)=anx, (5.8)

for some constant a. The term “linear” comes from the fact that the graph of this function
is a straight line through the origin, with slope a. (If the line did not pass through the ori-
gin, the function is said to be affine. It would satisfy neither homogeniety nor additivity.)
We need a more general notion of linear function, one that operates on tuples.

A function f: RN — RM is a linear function if Yu,v € RY and Va € R,

flau) = af(u), (5.10)
flu+v) = flu)+f(). (5.11)

192 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

5. LINEAR SYSTEMS

As before, (5.10) is the homogeneity property and (5.11) is the additivity property. The
two properties can be combined into the superposition property:

f is linear if Vu,v € R and Va,b € R,

flau+bv) =af(u) +bf(v) (5.12)

Above, superposition is defined by considering a linear combination au + bv of two el-
ements u# and v in the domain of f. In fact, for linear functions, superposition holds
for a linear combination of any number of elements. That is, Vuy,---,u, € RV and
VYai, - ,a, € R,

flayuy + -+ apuy) = a1 f(uy) + -+ anf (uy). (5.13)

In (5.13) uy,--- ,u, are vectors in RN, f(uy),---, f(u,) are vectors in RY, and ay,--- ,a,
are scalars (numbers).

Every matrix defines a linear function in the following way. Let A be an M X N matrix.
Then the function f: RV — RM defined by

vx e RV, f(x) =Ax. (5.14)

is a linear function, as can be checked using the basics of matrix arithmetic.

More interestingly, every linear function can be represented by such a matrix multiplica-
tion, similarly to the scalar case (5.8). To show this, we show how to find the appropriate
matrix given any linear function. Define the vectors

1 0 0
1 0

€1 = ,€2 = y T TeN =
0 0 1

Then note that we can express any vector x € RV as a sum
X =Xx1€1+--"XN€eN,

where x; is the i-th element of the vector x (a scalar). Now consider a linear function
f: RN = RM. Then, by (5.13),

y=f(x)=xif(e1)+-+xnf(en). (5.15)

Lee & Varaiya, Signals and Systems 193


http://LeeVaraiya.org

5.2. LINEAR FUNCTIONS

Write the column vector f(e;) € RM as

al"j
az,j
fle)=1| =
aM7j
Then we can rewrite (5.15) as
Y1 ain ap ai N
»2 azi azn azn
y = =X +x2 ’ +tan
L Ym am,i am am.N
ajl aip o a1N X1
_ a1 azp -+ 42N X2
L am1 am2 -+ AMN XN
More compactly,
y =Ax,

where A is the M x N matrix
A= [al;j,l <i<M,1<j<N|.

Thus, there is a straightforward association between linear functions with domain R" and
range RM and M x N matrices. This association will be very important for us.

Example 5.4: The function g: R> — R given by
Vx €R3, g(xy,x2,x3) = 0.5x; — 0.4x3

is linear, as can be checked by verifying (5.12). Here, x; refers the the i-th element
of the vector x. The matrix representation is

X1

g(x)=1[0.5,0,—-04] | x»

X3

194 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

5. LINEAR SYSTEMS

The function f: RN — RY given by

N | xp1, fn<N
VXGR, f(X)n_{xl, lfn:N )

is linear. Here f(x), refers to the n-th element of the vector f(x). The matrix
representation is

0 1 0 0
0 0 1 0

flx) = x
1 0 0 0

5.3 The [A,B,C,D] representation of a system

We consider an arbitrary system with
States = RY | Inputs = RM | Outputs = RX.
Its state-space model is given by the state update and output equations: Vn € Z,

s(n+1) = nextState(s(n),x(n)),
y(n) output(s(n),x(n)).

This system is said to be a linear system if the initial state is an N-tuple of zeros, and
the nextState and output functions are linear. If it is also time invariant (the nextState and
output functions do not change with time), then we have a linear time-invariant system,
or LTI system. We can then represent the nextState function by a N x (N + M) matrix
and the output function by a K x (N + M) matrix.

Consider the N x (N + M) matrix representing the nextState function. This matrix has
N + M columns. We denote the N x N matrix comprising the first N columns by A, and
the N X M matrix comprising the last M columns as B, so that

nextState(s(n),x(n)) = As(n) + Bx(n).

We similarly partition the K x (N + M) matrix representing the output function into the
K x N matrix C comprising the first N columns and the K x M matrix D comprising the

Lee & Varaiya, Signals and Systems 195


http://LeeVaraiya.org

5.3. THE |A,B,C,D] REPRESENTATION OF A SYSTEM

last M columns. Then

output(s(n),x(n)) = Cs(n) + Dx(n).

With this notation, the state-space model is represented as

s(n+1) = As(n)+ Bx(n),
y(n) = Cs(n)+Dx(n).

(5.16)

This is the [A,B,C,D] representation of the LTI system. This compact representation
is very powerful. All the results in this chapter and the next are in terms of these four
matrices. The A matrix is the most important, since it characterizes the system dynamics
as we will see in the sections below.

Example 5.5: Take [A,B,C,D] as

S
Il
oo~

1
1
0

—_ = O
o}
Il

c =[100], D=[1].

SoN =3,M =1,K = 1. (This is a 3-dimensional, SISO system.) Using these in
(5.16) gives the state-space model in tuple form,

si(n+1) = s1(n)+s2(n),
s2(n+1) = s52(n)+s3(n),
s3s(n+1) = s3(n)+x(n),

y(n) = si(n)+x(n).

The first three equations together give the nextState function, the fourth equation
gives the output function.

196 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

5. LINEAR SYSTEMS

Observe in (5.16) that if initialState is zero, s(0) = 0, and the input x(n) = 0, for all n > 0,
then the state is unchanged, s(n) = 0. That is why we say that O is an equilibrium or rest
state of the [A, B,C, D] system.

Example 5.6: An echo effect can be obtained for audio signals by realizing the
following difference equation,

y(n) = x(n) +ay(n—N),

where the (discrete-time) audio input is x, the outputis y, 0 < a < 1 is a real con-
stant, and N € N is an integer constant. Together, & and N determine how long
the echo lasts and what it sounds like. Once again, this is a SISO system, with
M = 1,K = 1. This works simply because the output sample at » is a combination
of the current input x(n) and a scaled old output aty(n — N), called the echo term.
Typically, N needs to be a large number to hear this as an echo. For example, if the
sample rate is 8,000 samples per second, then if N = 8000, the echo term oy(n—N)
is the previous output one second earlier. This will be heard as a distinct echo.

To construct a state-space model, we need to figure out what will work as the state.
Since the output depends on y(n — N), which is past history, the state will have to
yield y(n — N). The following state definition will work,

00 - 00 «
10 - 000 1
1 - 000 0
A = o , B= )
0 0 100 0
[0 0 01 0
cC =100 0 al, D=[1],

Lee & Varaiya, Signals and Systems 197


http://LeeVaraiya.org

5.3. THE |A,B,C,D] REPRESENTATION OF A SYSTEM

5.3.1 Impulse response

The [A, B,C, D] representation provides a complete description of an LTI system. It is a
complete in the sense that given any input sequence, we can calculate the output sequence
using the state and output equations of (5.16) (or (5.19) and (5.20) for the scalar case).
We will discover that there are several other descriptions of LTI systems that are also
complete. The first of these that we will consider is the impulse response. For systems
that are initially at rest, the impulse response gives enough information to calculate the
output sequence given any input sequence. The calculation is performed using what is
known as a convolution sum.

Suppose that M = 1, and the input sequence x is given by x = 9, where

1, ifn=0

0, ifn#0 ° 17

Vnez, S(n):{

This function 8: Z — R is called an impulse, or a Kronecker delta function (this func-
tion figures prominently in chapters 8 and 9). Remarkably, the response of an LTI system
to this particular input is a complete description of the LTT system.

Assuming the system is initially at rest, we can use (5.16) to write the state response to
input 8 as

s(0) = 0

s(I) = B

s(2) = AB
s(3) = A°’B
s(n) = A"'B

This is because if x = 9, then x(0) = 1 and x(n) = 0 for all n # 0.

To avoid confusion, we will use the name / instead of y for the output of a system when
the input is the impulse 8. In other words, while y is the output for any input x, 4 is the
output for the specific input 8. This output is called the impulse response. Using (5.16),

198 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

5. LINEAR SYSTEMS

it can be written as

h(0) = D
h(1) = CB
h(2) = CAB
h(3) CA’B

h(n) = CA"™'B

Of course, since the system is initially at rest, 2(n) = 0 for all n < 0. We can recognize
the pattern and write the impulse response as

0, ifn<0
VneZ, h(n)={ D, ifn=0 . (5.18)
CA"™ B, ifn>1

This formula is rarely the right way to compute an impulse response (usually it is easier
to directly determine the output when the input is an impulse), but it does relate the im-
pulse response to the [A, B,C, D] representation. The remarkable fact, developed below,
is that knowing the impulse response is sufficient to calculate the output given any input
(assuming the system is initially at rest).

The impulse response only makes sense if the dimension M of the input is one (otherwise
the input could not be an impulse as defined above). We can gain insight by considering
even more special systems where N = K = 1, as done in the next section.

5.3.2 One-dimensional SISO systems

The simplest LTI system is the one-dimensional, SISO system. Since N =M =K =1,
the [A, B,C, D] representation is simply [a,b,c,d] where a,b,c,d are scalar constants. The
state-space model (5.16) is Vn € Z,

s(n+1) = as(n)+bx(n), (5.19)
y(n) = cs(n)+dx(n). (5.20)

The initial state s(0) = initialState. For this system, the state at a given time index is a
real number, as are the input and the output.

Lee & Varaiya, Signals and Systems 199


http://LeeVaraiya.org

5.3. THE |A,B,C,D] REPRESENTATION OF A SYSTEM

Let us consider an example where we construct a state-space model from an input-output
description of a system.

200

Example 5.7: In Section 2.3.3 we considered a simple moving average example,
where the output y is given in terms of the input x by

VneZy, yn)=xn)+x(n—1))/2. (5.21)

This is not a state-space model because it gives the output directly in terms of the
current and past input. To construct a state-space model for it, we first need to
decide what the state is. Usually, there are multiple answers, so we face a choice.
The state is a summary of the past. Examining (5.21), it is evident that we need
to remember the previous input, x(n — 1), in order to produce an output y(n) (of
course, we also need the current input, x(n), but that is not part of the past; that is
the present). So we can define the state to be

VneZy, s(n)=x(n—1).

We assume that the system is initially at rest, i.e., s(0) = 0. (If we knew x(—1), we
would take that to be the initial state.) With this choice of state, we need to choose
a, b, ¢, and d so that (5.19) and (5.20) are equivalent to (5.21). Let us look first at
(5.20), which reads

y(n) = cs(n) +dx(n).

Observing that s(n) = x(n — 1), can you determine ¢ and d? From (5.21), it is
obvious thatc =d = 1/2.

Next, we determine a and b in
s(n+1) = as(n) + bx(n).

Since s(n) = x(n — 1), it follows that s(n+ 1) = x(n), and this becomes
x(n) = ax(n—1)+bx(n),

from which we can see thata =0 and b = 1.

Note that we could have chosen the state differently. For example,
VneZy, sn)=x(n—1)/2

would work fine. How would that change a, b, ¢, and d?

Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

5. LINEAR SYSTEMS

In the preceding example, we started with an input-output description and obtained a
state-space model. The next example shows we can also go the other way.

Example 5.8: Consider a one-dimensional SISO system
s(n+1) = as(n)+bx(n),
y(n) = cs(n)+dx(n).
From these equations we get

y(n) = clas(n—1)+bx(n—1)]+dx(n),
yin—=1) = es(n—1)+dx(n—1).

Multiplying the second equation by a and subtracting from the first eliminates the
state to yield a difference equation description of the system,

y(n) —ay(n—1) =dx(n)+ (cb —ad)x(n—1).

There is a generalization of this example that works for state-space models of any
dimension.

In the following example, we use a state-space model to calculate the output of a system
given an input sequence.

Example 5.9: Suppose the state s(n) is your bank balance at the beginning of day
n, and x(n) is the amount you deposit or withdraw during day n. If x(n) > 0, it
means that you are making a deposit of x(n) dollars, and if x(n) < 0, it means that
you are withdrawing x(n) dollars. The output of the system at time index » is the
bank balance on day n. Thus,

States = Inputs = Outputs = R.

Note that these sets are probably not, strictly speaking, equal to R , since deposits
and withdrawals can only be a whole number of cents. Using R is a considerable
simplification.

Lee & Varaiya, Signals and Systems 201


http://LeeVaraiya.org

5.3. THE |A,B,C,D] REPRESENTATION OF A SYSTEM

202

Suppose that the daily interest rate is r. Then your balance at the beginning of day
n+1is given by

VneZ, sn+1)=(1+r)s(n)+x(n). (5.22)
The output of the system is your current balance,
VneZ, yn)=sn).

Comparing to (5.19)-(5.20), we havea=1+r,b=1, c =1, and d = 0. The initial
condition is initialState, your bank balance at the beginning of day 0. Suppose
the daily interest rate is 0.01, or one percent (this would only be reasonable in an
economy with hyperinflation). Suppose that initialState = 100, and you deposit
1,000 dollars on day 0 and withdraw 30 every subsequent day for the next 30 days.
What is your balance s(31) on day 31? You can compute s(31) recursively from

s(0) = 100,
s(1) = 1.01s(0) + 1000,
s(n+1) = 1.01ls(n)—30,n=1,---,30,

but this would be tedious. We can develop a formula that is easier to use. We will
do this for a general one-dimensional [a,b, c,d] system.

Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

5. LINEAR SYSTEMS

Suppose we are given an input sequence x(0),x(1),--- for an [a,b,c,d| system. As in
example 5.9, if we repeatedly use (5.19) we obtain the first few terms of a sequence,

s(0) = initialState, (5.23)
s(1) = as(0)+bx(0),
52) = as(1)+bx(1)

afas(0) +5x(0)) +br(1)
a’s(0) + abx(0) + bx(1),

as(2) + bx(2)

a{a*s(0) + abx(0) + bx(10)} + bx(2)

= a*s(0) +a*bx(0) +abx(1) + bx(2),

5

—
w

S—
I

From this it is not difficult to guess the general pattern for the state response and the output
response. The state response of (5.19) is given by

n—1
s(n) = d"initialState + 'Y, a" ' ""bx(m) (5.24)

m=0

for all n > 0, and the output response of (5.20) is given by

n—1
y(n) = cd"initialState + { Y Ca”_l_mbx(m)} +dx(n) (5.25)
m=0

for alln > 0.

We use induction to show that these are correct. Induction is where we show that these are
correct for some fixed n, and then show that if it is correct for any #n, then it is correct for
n+ 1. For n =0, (5.24) gives s(0) = alinitialState = initialState, which matches (5.23),
and hence is correct.! Now suppose that the right-hand side of (5.24) gives the correct
value of the response for some n > 0. We must show that it gives the correct value of
the response for n 4 1. From (5.19) and using the hypothesis that (5.24) is the correct

IFor any real number a, a® = 1 by definition of exponentiation.

Lee & Varaiya, Signals and Systems 203


http://LeeVaraiya.org

5.3. THE |A,B,C,D] REPRESENTATION OF A SYSTEM

expression for s(n), we get
s(n+1) = as(n)+bx(n)

n—1

= a{d"initialState+ )" a"""bx(m)} + bx(n)
m=0
n—1

= "initialState + Z a" "bx(m) + bx(n)

m=0

n
= a"initialState + Z a""bx(m),

m=0

which is the expression on the right-hand side of (5.24) for n+ 1. It follows by induction
that the response is indeed given by (5.24) for all n > 0. The fact that the output response
is given by (5.25) follows immediately from (5.20) and (5.24).

Example 5.10: We use formula (5.24) in example 5.9 to figure out the monthly
payment of $w on a $10,000, 32-month loan with a monthly interest of 0.01. So
in (5.24) we substitute n = 32,a = 1.01,b = 1, s(0) = —10,000,s(32) = 0, and
x(0)=---=x(31) = w, to get

31
0=—1.01"*x 10000+ ¥ 1.01°'"w.

m=0
Using the identity (valid for p # 1)
f pm _ p1+M -1
m=0 p— 1 ’
we get
31 32
1.01°- -1
Y Lot w = -1,
=0 0.01

So the monthly payment is

10000 x 1.0132

204 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

5. LINEAR SYSTEMS

In the next example we identify the unknown parameter a of an [a, b, c,d| representation
given input-output data.

Example 5.11: Financial analysts compare alternative investment opportunities
using a measure called the internal rate of return. Suppose an investment of
$10,000 at the beginning of year 0 yields an income stream of $2,000 for each of
10 successive years, and nothing thereafter. By definition, the investment’s internal
rate of return is the annual interest rate r that a bank should give so that you can get
the same income stream. So we need to find » such that

s(n+1)=(14r)s(n)+x(n),

with s(0) = 10,000, s(10) =0, and x(0) = - - - = x(9) = —2000. We recognize this
as a state update with a = 1 4-r and b = 1. Substituting in (5.24) gives
9
0 = (14+r)'°10000— Y (1+r)°" x 2000
m=0
(A r) =1

= (1+r)'°10000 — x 2000,

SO
1-(1+7r)7"%=5n

which we can solve by trial-and-error to obtain r ~ 0.15 or 15 percent. Suppose
there is another investment opportunity for the same $10,000 investment that yields
an internal rate of return smaller than 15 percent. Then, all else being equal, one
would choose the first opportunity.

5.3.3 Zero-state and zero-input response

The expressions (5.24) for the state response and (5.25) for the output are each the sum
of two terms. The role of these two terms will be better understood if we consider them
in isolation.

If the system is initially at rest, initialState = 0, the first term vanishes, and only the second
term is left. This second term is called the zero-state response. It gives the response of

Lee & Varaiya, Signals and Systems 205


http://LeeVaraiya.org

5.3. THE |A,B,C,D] REPRESENTATION OF A SYSTEM

the system to an input sequence when the initial state is zero. For many applications,
particularly when modeling a physical system, the zero-state response is what we are
interested in.

If the input sequence is zero, i.e. 0 = x(0) = x(1) = ---, the second term vanishes, and
only the first term is left. The first term is called the zero-input response. It gives the
response of the system to some initial condition, with zero input stimulus applied. Of
course, if the system is initially at rest and the input is zero, then the state remains at zero.
So the zero-input response is only interesting if the system is not initially at rest.

So the right-hand side of both equations (5.24) and (5.25) are a sum of a zero-state re-
sponse and a zero-input response. To make it clear which equation we are talking about,
we use the following terminology:

The state sequence s(n) when the
initial state is zero.

The state sequence s(n) when the
input is zero.

The output sequence y(n) when
the initial state is zero.

The output sequence y(n) when
the input is zero.

zero-state state response

zero-input state response

zero-state output response

zero-input output response

Note that “zero-state” really means that the initial state is zero, while “zero input” means
that the input is always zero.

Let us focus on the zero-state output response. First, note from (5.18) that in this scalar
case, the impulse response can be written

0, ifn<0
VYneZ, hn) =< d, ifn=0 . (5.26)
cd" b, ifn>1

We can use this sequence in (5.25) to simplify its form. This simplified form will show us
how to calculate the response to an arbitrary input given only the response to an impulse.

Combining (5.25) and (5.26), the zero-state output response can be written as

Vn>0, yn)= Z h(n—m)x(m). (5.27)

206 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

5. LINEAR SYSTEMS

Thus, we see that 4 is a complete description of the system, in the sense that it is all we
need to know to find the output given any input x (assuming zero initial state).

Let x(n) = 0 for all n < 0, and, noting that 4(n) = 0 for all n < 0, we can write this as

VneZ, yhn)= _Z h(n—m)x(m). (5.28)

The additional terms in the summation are harmless because they all have value zero. A
summation of this form is called a convolution sum. We say that y is the convolution of
h and x, and write it using the shorthand

y=hx*x.

The “** symbol represents convolution. By changing variables, defining k = n — m, one
can see that the convolution sum can also be written in the equivalent form

Vnez, ym)= ¥ h(k)x(n—k). (5.29)
k=—cc

That is, h*x = x*x h. Convolution sums will be studied in much more detail in Chapter 9.

the impulse response.

The impulse response of a system is simply the output when the input is an impulse. I
-0.5inthe system is initially at rest, then its output is given by the convolution of the input and

Example 5.12: For our bank example,a=1+r,b=1,c=1, and d =0 in (5.20).
The impulse response of the bank system is given by (5.18),

0, ifn<0
h(n) _{ (1471, ifn>1

This represents the balance of a bank account with daily interest rate 7 if an initial

deposit of one dollar is put in on day 0, and no further deposits or withdrawals are
made. Notice that since 1+ r > 1, the balance continues to increase forever; see

Lee & Varaiya, Signals and Systems 207


http://LeeVaraiya.org

5.3. THE |A,B,C,D] REPRESENTATION OF A SYSTEM

Figure 5.2. This system is said to be unstable because even though the input is
always bounded, the output grows without bound. The system is also an infinite
impulse response (IIR) system.

Writing the output as a convolution, using (5.27), we see that

n—1
V>0, y(n)= Y (1+r)"" "x(m).

m=0

This gives a simple formula that we can use to calculate the bank balance on any
given day (although it will be tedious for large n, and you will want to use a com-
puter).

The zero-input state response of the [a,b,c,d] system is
s(n) =a"s(0),n > 0.

This is a geometric or exponential sequence. If s(0) # 0, the response will eventually
die out, i.e. s(n) — 0 as n — oo, if and only if |a| < 1, in which case we say the system is
stable.

5.3.4 Multidimensional SISO systems

In the previous section we considered the simplest systems of the form of Figure 5.1
with M = K = N = 1. Systems with larger dimension, N > 1, occur more frequently in
practice. In this section, we allow the dimension N to be arbitrarily large, but keep the
simplification that M = K = 1, so the system is still SISO (single-input, single-output). In
the [A, B,C, D] representation, A is N X N, Bis N x 1,Cis 1 x N and D is 1 x 1. So for an
SISO system we may write B=b, C = ¢, D =d, where b, c are N-dimensional column
vectors and d is a scalar. Thus, SISO systems have an [A, b, c,d] representation, and their
state-space model is

s(n+1) = As(n)+bx(n), (5.30)
y(n) = cls(n)+dx(n). (5.31)

The result of evaluating the nextState function (5.30) is an N-dimensional vector, s(n+1).
The N x N matrix A defines the linear combination of the N elements of s(r) that are used

208 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

5. LINEAR SYSTEMS

to calculate the N elements s(n+ 1). The N-dimensional column vector b defines the
weights used to include x(n) in the linear combination for each element of s(n+1).

The result of evaluating the output function (5.31) is a scalar, y(n). The row vector ¢!

(which is N-dimensional) defines the linear combination of elements of s(n) and d defines
the weight used to include x(n) in the output y(n).

Example 5.13: Above we constructed a state-space model for a length-two mov-
ing average. The general form of this is the M-point moving average, given by

1 M—1
7, = — —k). 32
VneZ, yn) ngz)x(n k) (5.32)
To be specific, let’s take M = 3. Equation (5.32) becomes
1
VneZ, yn)= g(x(n)—l—x(n—l)—l—x(n—Z)). (5.33)

We can construct a state-space model for this in a manner similar to what we did for
the length-two moving average. First, we need to decide what is the state. Recall
that the state is the summary of the past. Equation (5.33) tells us that we need to
remember x(n — 1) and x(n — 2), the two past inputs. We could define these to be
the state, collected as a column vector,

(Of course, we could have equally well put the elements in the other order; see
Exercise 9.)
Consider the output equation (5.31). We need to determine ¢’ and d. The vector
¢! is a row vector with dimension N = 2, so we must fill in the blanks in the output
equation below:
_ x(n—1)
s =L 07 |+ o

It is easy to see that each of the three blanks must be filled with 1/M = 1/3 in order
to get (5.33). Thus,

Lee & Varaiya, Signals and Systems 209


http://LeeVaraiya.org

5.3. THE |A,B,C,D] REPRESENTATION OF A SYSTEM

Consider next the state equation (5.30). We need to determine A and b. The matrix
A is 2 x 2. The vector b is dimension 2 column vector. So we can fill in the blanks
in the output equation below:

_ x(n) I x(n—1) _
s+ 1) = [ x(n—1) ] N [ - ] [ x(n—2) T *(n).
From this, we can fill in the blanks, getting
0 0 1
A—[l O} andb—{o].
Note that once the state is specified, there is only one way to fill in the blanks and

obtain the [A, b, ¢, d] representation.

The state response of the SISO system (5.30)-(5.31) is given by an expression similar to
(5.24), but involving matrices and vectors rather than just scalars,

n—1
s(n) = A"initialState + Y. A" 1""bx(m) (5.34)
m=0

for all n > 0. The state response is also sometimes called the state trajectory. The output
response of (5.39) is given by

n—1
y(n) = ! AtinitialState -+ { Y cTA"Imbx(m)} +dx(n) (5.35)

m=0

for all n > 0. (Exercise 13 asks you to derive these equations.)

Notice again that the state response (5.34) and the output response (5.35) are each the
sum of two terms. The first term is the zero-input response and the second term is the
zero-state response.

The impulse response, in terms of the state-space model, is the sequence of real numbers

0, ifn<0
h(n)={ d, ifn=0 (5.36)
cTA b, ifn>1

210 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

5. LINEAR SYSTEMS

This is just like (5.18) except that b and c are vectors, and d is a scalar. This formula
can be quite tedious to apply. It is usually easier to simply let x = 8, the Kronecker delta
function, and observe or calculate the output. The zero-state output response is given by
convolution of this impulse response with the input, (5.29).

Example 5.14: We can find the impulse response 4 of the moving average system
of (5.32) by letting x = 8, where J is given by (5.17). That is,

1 M—1
VYneZ, h(n)= T Z d(n—k).
k=0

Now, 8(n — k) = 0 except when n = k, at which point it equals one. Thus,

0 ifn<0
hin)=¢ 1/M if0<n<M .
0 iftn>M

This function, therefore, is the impulse response of an M-point moving average
system. This result could also have been obtained by comparing (5.32) to (5.29),
the output as a convolution. Or it could have been obtained by constructing a state-
space model for the general length-M moving average, and applying (5.36). How-
ever, this latter method would have proved the most tedious in this case.

Notice that in the previous example, the impulse response is finite in extent (it starts at O
and stops at M — 1). For this reason, such a system is called a finite impulse response
system or FIR system.

Example 5.15: The M-point moving average can be viewed as a special case of
the more general FIR system given by

M-1
VneZ, yn)= Z h(k)x(n—k).
k=0
Letting h(k) = 1/M for 0 < k < M, we get the M-point moving average. Choosing

other values for /(k), however, we can get other responses (this will be explored in
chapter 8).

Lee & Varaiya, Signals and Systems 211


http://LeeVaraiya.org

5.3. THE |A,B,C,D] REPRESENTATION OF A SYSTEM

A state-space model for the FIR system is constructed by again deciding on the
state. A reasonable choice is the M — 1 past samples of the input,

s(n) = [x(n—1),x(n—2),--- ,x(n—M+1)]",

a column vector. The state-space model is then given by (5.30) and (5.31) with

0O 0 0 0 - 0 0 1
1 0 0 -0 0 0
A=|0 1 0 0 - 0 0 |, b=|-]|,
0 0 0 0 1 0 0
h(1)
h(2)
c=| - ., d=h(0).
h(M —2)
h(M—1)

Notice that the model that we found in example 5.13 has this form. The (M — 1) x
(M — 1) matrix A has coefficients a;;;; = 1, while all other coefficients are zero.
This is a rather special form of the A matrix, limited to FIR systems. The vector b
has the first coefficient equal to 1, while all others are zero. The vector ¢ contains
the coefficients of the impulse response.

Many interesting systems, unlike this example, have an infinite impulse response, and
are referred to as IIR systems.

Example 5.16: Recall from example 5.6 that an echo effect can be obtained for
audio signals by realizing the following difference equation,

VneZ, y)=x(n)+oy(n—N).

The impulse response £ can be obtained by simply letting the input be an impulse,
x = 0, and finding the output y = h. That is

VneZ, h(n)=38n)+ah(n—N). (5.37)

212 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

5. LINEAR SYSTEMS

But of course, this means that
h(n—N)=308(n—N)+oh(n—2N).
Substituting this back into (5.37), we get
h(n) = 8(n) +ad(n — N) +o*h(n—2N).

But of course,
h(n—2N) =8(n—2N)+oh(n—3N),

h(n) = 8(n) + 0d(n — N) +028(n — 2N) + o3h(n — 3N).

Continuing in this fashion, we see that the impulse response of the echo system
is the original impulse and an infinite set of echos (delayed and scaled impulses).
This can be written compactly as follows,

VneZ, hn)= Z od(n— kN).
k=0
This impulse response is plotted in Figure 5.3 for N =4 and o. = 0.7. In that figure,
you can see that the original impulse gets through the system at n = 0, while the
first echo is scaled by 0.7 and delayed to n = 4, and the second echo is scaled by
0.7% and delayed to n = 8.

We can check this impulse response using the state-space representation of example
5.6 1n (5.36). From example 5.6, we have that d = 1, so (5.36) is obviously correct
for n < 0 and n = 0. Checking it for n > 0 is somewhat more involved. Assuming
N = 4, we have from example 5.6

0 00 a 1 0
1 0 0O 0 0
A= 01 00 ) (9= ol o ’d_[l]'
0010 0 o
To use (5.36) we need to know A"~ L. Tt is easy to check that
0 0 a O 0O o 0 O
0 00 « 0 0 a O
2 __ 3 _
AT = 1 00 0|’ A" = 00 0 o]’
01 0 O 1 0 0 O

Lee & Varaiya, Signals and Systems 213


http://LeeVaraiya.org

5.3. THE |A,B,C,D] REPRESENTATION OF A SYSTEM

At =

cooagq
cog o
o oo
Q oo o

where [ is the 4 x 4 identity matrix. Thus,
Ad=0A, A° =a4?, A7 = 043, A = aA* = o’

The pattern continues. Note that because of the particular structure of b, A"~ b is
simply the first column of A"~!. Thus,

1
T 40 0
h(1)=c"A%=[0000] | - | =0.
0
Similarly,
0
h(2)=c"Ab=[0000] (1) =0,
0
and
0
70 0
h3)=c"a’=10000] | | | =0.
0
Only when we get to h(4) do we get a non-zero result,
0
T 43 0
h(4) =T =10000] | | =c
1

Continuing in this fashion, we can determine that 3 of every four samples of the
impulse response are zero, and the non-zero ones have the form o//4 where 7 is a
multiple of four, in perfect agreement with figure 5.3.

214 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

5. LINEAR SYSTEMS

The echo system of the previous example is an example of an infinite impulse response
(ITIR) system because the response to an impulse never completely dies out. Here is an-
other example of an IIR system.

Example 5.17: An audio oscillator is a system that produces a sinusoidal signal
of a given frequency. We can construct one with the two-dimensional system given

by
_ | cos(w) —sin(m) 10 |1 _
A_[sin(w) cos(m)}’b_[l =19 |4=9
where @ is a constant that will turn out to be the oscillation frequency. It can be
shown (see Exercise 14) that for alln =0,1,2,---

N s |

Suppose the initial state is
initialState = [0,1]".
Then the zero-input state response is
Szero—input(N) = A" initialState

_ [ cos(n®) —sin(nw) ] [ 0 ]

sin(n®)  cos(nw) 1

_ [ —sin(no) ] ’

cos(nm)
and the zero-input response is

yzero—inpuz(n) = ! A" initialState

- [ 0][—sin(n0))]

cos(nm)
= —sin(no).

Notice that without any input, as long as the initial state is non-zero, the system
will produce a sinusoidal output in perpetuity.

Lee & Varaiya, Signals and Systems 215


http://LeeVaraiya.org

5.3. THE |A,B,C,D] REPRESENTATION OF A SYSTEM

If we instead consider the situation where the system is initially at rest, then we find
that the impulse response is

d, ifn=0
h(”)_{ TA N, ifn>1

For the values of A, b, c in this example we obtain

0, G =0
hm*:{—gmm—nm% Bl

Thus, if the oscillator is initially at rest, it can be started with an impulse, and its
output will henceforth be sinusoidal, similar to the zero-input response. Thus, if
the oscillator is initially at rest, it can be started with an impulse at the input.

5.3.5 Multidimensional MIMO systems

In the preceding sections, the input and output were both scalars. A MIMO system is only
slightly more complicated. A state-space model for such a system is

VneZy, s(n+l) = As(n)+Bx(n) (5.38)
y(n) = Cs(n)+Dx(n) (5.39)

where, s(n) € RY, x(n) € R™ and y(n) € RX, for any integer n. In the [A, B,C, D] repre-
sentation, A is an N X N (square) matrix, B is an N X M matrix, C is a K X N matrix, and
D is a K x M matrix. Now that these are all matrices, it is conventional to write them with
capital letters.

Let initialState € RN be a given initial state. Let x(0),x(1),x(2),---, be a sequence of
inputs in RM (each input is a vector of dimension M). The state response of (5.38) is
given by
n—1
s(n) = A"initialState + Y A"~ 7" Bx(m) (5.40)

m=0

for all n > 0, and the output sequence of (5.39) is given by

n—1
y(n) = CA"initialState + { Z CA"l’"Bx(m)} + Dx(n) (5.41)

m=0

216 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

5. LINEAR SYSTEMS

for all n > 0 (each output is a vector of dimension K).

The right-hand sides of these equations are the sum of a zero-input response and a zero-
state response. Consider the zero-state output response,

n—1
y(n) = Z CA"™ """ Bx(m) + Dx(n) (5.42)

m=0
for all n > 0. Define the sequence /(0),/(1),h(2),--- of K x M matrices by

D, ifn=0
hin) = { CA™'B, ifn>1 ©4)

This can no longer be called an impulse response, because the input cannot be an impulse;
it has the wrong dimension (see box).
From (5.42) it follows that the zero-state output response is given by
n
y(n) =}, h(n—m)x(m), n>0 (5.44)
m=0

This is once again a convolution sum.

The i, jth element of the matrix sequence /(0),A(1), -, namely
hi j(0);hij (1),

is indeed the impulse response of the SISO system whose input is x; and whose output is
v;. In terms of Figure 5.1, this is the SISO system obtained by setting all inputs except
the jth input to zero, and considering only the ith output. If B/ denotes the jth column of
B and CT denotes the ith row of C, then h;, ; is the impulse response of the SISO system
[A,B/,C;,D; j]. All these SISO systems have the same A matrix.

5.3.6 Linear input-output function
In the systems that this chapter considers, the nextState and output functions are linear.

Recall that a function f: X — Y is linear if (and only if) it satisfies the superposition
property: for all x1,x; € X, and w,u € R,

Jwxi +uxy) = wi (1) +uf (x2).

Lee & Varaiya, Signals and Systems 217


http://LeeVaraiya.org

5.4. CONTINUOUS-TIME STATE-SPACE MODELS

What does it mean for a system to be linear? Recall that a system S is a function S: X — Y,
where X and Y are signal spaces. For a MIMO system, X = [Z — RM], and Y = [Z — RK].
The function S is defined by (5.41), which gives y = S(x), given x. So the answer is
obvious. S is a linear system if S is a linear function. (It is an LTI system if it is also time
invariant).

Examining (5.41), or its simpler SISO versions, (5.25) or (5.35), it is easy to see that
superposition is satisfied if initialState is zero. This is because with zero initial state, the
output y(n) is a linear combination of the input samples x(n). Hence, a system given by
a state-space model that is initially at rest is a linear system. The superposition property
turns out to be an extremely useful property, as we will discover in the next chapters.

5.4 Continuous-time state-space models

A continuous-time state-space model for an LTI SISO system has the form
VeeRy, z(r)=Az(t)+bv(r) (5.45)
w(t) = c"z(t) +dv(t) (5.46)

where

z: Ry — RY gives the state response;
Z(t) is the derivative with respect to time of z evaluated att € R ;
v: Ry — Ris the input signal; and

w: R, — R is the output signal.

As with the discrete-time SISO model, A is an N x N matrix, b and ¢ are N X 1 column
vectors, and d is a scalar. As before, this is the [A, b, c,d] representation of the system, but
the equations are different.

Continuous-time systems are no longer state machines, since inputs, outputs, and state
transitions do not occur at discrete instances. Nevertheless, they share many properties of
discrete systems. The major difference between this model and that of (5.30) and (5.31)
is that instead of giving new state as a function of the input and the old state, (5.45) gives
the derivative of the state. The derivative of a vector z is simply the vector consisting of
the derivative of each element of the vector. A derivative, of course, gives the trend of the
state at any particular time. Giving a trend makes more sense than giving a new state for
a continuous-time system, because the state evolves continuously.

218 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

5. LINEAR SYSTEMS

All of the methods that we have developed for discrete-time systems can also be developed
for continuous-time systems. However, they get somewhat more challenging mathemat-
ically because the summations become integrals. We leave it to a more advanced text to
explore this.

A continuous-time state-space model may be approximated by a discrete-time state-space
model (see box). In fact, this approximation forms the basis for most computer simula-
tions of continuous-time systems.

5.5 Summary

This chapter has begun the exploration of state machines whose state update and output
functions are linear. The number of possible states for such systems is typically infinite,
so brute-force methods that enumerate the states will be ineffective. Instead, powerful
mathematical tools leverage the linearity of the key functions. This chapter barely begins
an exploration of the very rich set of tools that engineers have developed for such systems.
Subsequent chapters will continue that exploration.

Lee & Varaiya, Signals and Systems 219


http://LeeVaraiya.org

5.5. SUMMARY

Basics: Functions yielding tuples

The ranges of the nextState and output functions are tuples. It helps if we break them
down further into an N-tuple and K-tuple of functions, one for each element of the result
tuple. That is, we define the functions

nextState;: RN xRY - R, i=1,--- N,
such that V s € RY Vx € R¥,
nextState(s,x) = (nextState; (s,x),- - - ,nextStaten(s,x)).

We write simply
nextState = (nextStatey,- - ,nextStatey).

The output function can be given similarly as
output = (output,--- ,outputy),

where
output;: RN xR™ R, i=1,--- K.

Using these, the state update equation and output equation can be written as follows. For
allneZ,n>0,

si(n+1) = nextState;((s1(n), - ,sn(n)), (x1(n), - ,xpu(n))),
so(n+1) = nextStater((s1(n), - ,sn(n)), (x1(n), -, xp(n))),
(5.6)
sn(n+1) = nextStatey((si1(n),--- ,sn(n)), (x1(n), - ,xp(n))),
and
yi(n) = output;((s1(n),---,sn(n)), (x1(n), -, xm(n))),
yo(n) = outputy((si(n), - sw(m), (0 (), - xm(m),
6.7
ye(n) = outputg((s1(n),---,sn(n)), (xi(n), -, xm(n))).

This system of equations shows the structure of the operation of such a machine.

220 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

5. LINEAR SYSTEMS

Basics: Matrices and vectors

An M x N matrix A is written as

a, dai2 -+ 4inN

ap dp -0 ap
A — 0] ) 7N

am,1 amp2 ' AM N

The dimension of the matrix is said to be M x N, where the number of rows is always
given first, and the number of columns is given second. In general, the coefficients
of the matrix are real or complex numbers, so they support all the standard arithmetic
operations. We write the matrix more compactly as

A:[ai,j,lgigM,lgjgN],

or, even more simply as A = [a; ;] when the dimension of A is understood. The matrix
entries a; ; are called the coefficients of the matrix.

Lee & Varaiya, Signals and Systems 221



http://LeeVaraiya.org

5.5. SUMMARY

Basics: Vectors

A vector is a matrix with only one row or only one column. An N-dimensional column
vector s is written as an N X 1 matrix

An N-dimensional row vector z/ is written as a 1 x N matrix

T

% Z17Z27'”7ZN]'

The transpose of a M x N matrix A = [a; ;] is the N x M matrix AT = [a;;]. Therefore,
the transpose of an N-dimensional column vector s is the N-dimensional row vector s7,
and the transpose of an N-dimensional row vector z is the N-dimensional column vector
.

From now on, unless explicitly stated otherwise, all vectors denoted s,x,y,b,c etc.
without the transpose notation are column vectors, and vectors denoted s” ,x”,y", b7, cT
with the transpose notation are row vectors. We follow convention and use lower case
letters to denote vectors and upper case letters to denote matrices.

A tuple of numeric values is often represented as a vector. A tuple, however, is neither
a “row” nor a “column.” Thus, the representation as a vector carries the additional

information that it is either a row or a column vector.

222 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

5. LINEAR SYSTEMS

Basics: Matrix arithmetic

Two matrices (or vectors, since they are also matrices) can be added or subtracted pro-
vided that they have the same dimension. Just as with adding or subtracting tuples,
the elements are added or subtracted. Thus if A = [a; ;] and B = [b; ;| and both have
dimension M x N, then

A+B= [al-,j—i-bhj].

Under certain circumstances, matrices can also be multiplied. If A has dimension M x N
and B has dimension N X P, then the product AB is defined. The number of columns of
A must equal the number of rows of B. Suppose the matrices are given by

ajg  aip - AN bix bip - bip

a a . g b b b
Ao | @1 @ 2| o | b2 b2 2,P

amy, amp -+ aunN bnvi bnp - byp

Then the i, j element of the product C = AB is*

N
Cij =Y, @imbm,j- (5.9
m=1

The product C has dimension M x P. (Continued on page 224.)

“If this notation is unfamiliar, see box on page 77.

Lee & Varaiya, Signals and Systems 223



http://LeeVaraiya.org

5.5. SUMMARY

Basics: Matrix arithmetic (continued from page 223)

Matrix multiplication also works if one of the matrices is a vector. If b is a column vector
of dimension N, then ¢ = Ab as defined by (5.9) is a column vector of dimension M. If
on the other hand b is a row vector of dimension M, then ¢! = b A as defined by (5.9)
is a row vector of dimension N.

Multiplying a matrix by a vector can be interpreted as applying a function to a tuple.
The vector is the tuple and the matrix (together with the definition of matrix multiplica-
tion) defines the function. Thus, in introducing matrix multiplication into our systems,
we are doing nothing new except introducing a more compact notation for defining a
particular class of functions.

A matrix A is a square matrix if it has the same number of rows and columns. A
square matrix may be multiplied by itself. Thus, A" for some integer n > 0 is defined to
be A multiplied by itself n times. A° is defined to be the identity matrix, also written /,
which has ones along the diagonal and zeros everywhere else. If A has an inverse, then
that inverse is denoted A~', and AA~! = A TA =I.

1 2.5
0]
0.8 2 0]
®
®
0.6 1.5 o
®
x (2]

0.4 1
0.2 0.5

0 0

5 0 5 10 5 0 5 10

n n

Figure 5.2: Plots of the impulse (left) and the impulse response of example 5.12 (right)
for r=0.1.

224 Lee & Varaiya, Signals and Systems



http://LeeVaraiya.org

5. LINEAR SYSTEMS

Figure 5.3: Impulse response of the echo example 5.16 for o« = 0.7 and N = 4.

Probing Further: Impulse Responses of MIMO Systems

The & function in (5.43) is not the impulse response of a MIMO system with represen-
tation [A, B,C, D]. However, with some care, it is possible to relate it to a set of impulse
responses that characterize the system.

The system has M inputs and K outputs, and for each integer n, h(n) in (5.43) is a
K x M matrix. Each input symbol x(n) is an M-tuple of reals. Let x,,(n) represent the
m-th element in this tuple, and let x,, represent the sequence of such elements. Similarly,
let yx(n) represent the k-th element of the output tuple, and y; the sequence of such
outputs. Finally, let /i ,,(n) represent the k, m-th element of the matrix /(n), and let /i,
represent the sequence of such elements.

The SISO system comprising the k-th output and m-th input has impulse response
hic m. Specifically, if x,, = 8 and x,,(n) = 0 for all p % m and for all n € 7Z, then yj = hy .
Thus, /& can be viewed as a matrix of impulse responses, one for each possible pairing
of input and output signals.

Lee & Varaiya, Signals and Systems 225


http://LeeVaraiya.org

5.5. SUMMARY

Probing Further: Approximating continuous-time

Discrete LTI systems often arise as approximations of systems where differential equa-
tions describe the physics. A differential equation has the form

VieR, z(t)=g(z(t),v({)). (5.47)

Here ¢ € R stands for continuous time, z: R — RY is the state response, and v: R — R is
the input signal. That is, at any time ¢, z(¢) is the state and v(¢) is the input. The notation
z stands for derivative of the state response z with respect to 7, so g: RV x RY — RV is
a given function specifying the derivative of the state. Specifying the derivative of the
state is similar to specifying a state update. In a continuous-time system, state updates
occur continuously rather than discretely.

In general, z is an N-tuple, z = (z1,--- ,2v), Where z;: Ry — R. The derivative of an
N-tuple is the N-tuple of derivatives, z = (21,--- ,zy). From calculus,
d t+98)—z(t
) = 2B = O =EE)
dt 8—0 )

and so, if > 0 is a small number, we can approximate this derivative by

4(6) Z(H—S%—z(t) '

Using this for the derivative in the left-hand side of (5.47) we get
2(1+8) —z(t) = 8g(2(t), v(1)). (5.48)

Suppose we look at this equation at sample times 7 = 0,9,29, - --. Denote the value of
the state response at the n-th sample time by s(n) = z(nd), and the value of the input by
x(n) = v(nd). In terms of these variables, (5.48) becomes

s(n+1) —s(n) = 8g(s(n), x(n))

which we can write as a state update equation,

s(n+1) =s(n)+8g(s(n),x(n)).

226 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

5. LINEAR SYSTEMS

Exercises

Each problem is annotated with the letter E, T, C which stands for exercise, requires some
thought, requires conceptualization. Some of the problems require using Matlab.

1. E Use induction to obtain (5.13) as a consequence of (5.12).

2. E Use induction to show that if

a 1
=[5 4]
then for all n > 0,
a_ | a na"!
w5 W

3. E Let f: RY — R" be a linear function given by ¥ x € RY, f(x) = Ax for some
N x N matrix A. Give a similar definition for the composition fo f. Is it also
linear?

4. E What would be the monthly payment in example 5.10 if the monthly interest is
0.015? Also, what would be the total payment over the 32 months?

5. E Construct a SISO state-space model for a system whose input and output are
related by
VneZ, yn)=x(n—1)+x(n-2).

You may assume the system is initially at rest. It is sufficient to give the A matrix,
vectors b and ¢, and scalar d of (5.30) and (5.31).

6. E The A matrix in (5.30) for a SISO system is

A:[é}]

Calculate the zero-input state response if

(a) the initial state is [1,0]7,
(b) the initial state is [0, 1],
(c) the initial state is [1,1]7.

Lee & Varaiya, Signals and Systems 227


http://LeeVaraiya.org

EXERCISES

7.

10.

11.

228

E Consider the one-dimensional state-space model, V n € Z,,
s(n+1) =s(n)+x(n)
y(n) =s(n)

Suppose the initial state is s(0) = a for some given constant a. Find another constant
b such that if the first three inputs are x(0) = x(1) = x(2) = b, then y(3) = 0. Note:
In general, problems of this type are concerned with controllability. The question
is whether you can find an input (in this case constrained to be constant) such that
some particular condition on the output is met. The input becomes a control signal.

. E A SISO LTI system has the A matrix given by

0 1
=[5 0]
and the b vector by [0,1]7. Suppose that s(0) = [0,0]7. Find the input sequence
T

x(0),x(1) so that the state at step 2 is s(2) = [1,2]".

E In example 5.13, the state was chosen to be s(n) = [x(n —1),x(n —2)]7. How
would the [A, b, ¢,d] representation change if the state were chosen to be

@ [x(n—2),x(n— D]
) x(n—1)+x(n—2),x(n—1) —x(n—2)]"?
E Suppose the A matrix of a two-dimensional SISO system is

cos(m/6)  sin(m/6)

A=0| _Gn(m/6) cos(n/6) |°

Suppose the initial state is s(0) = [1,0]7, and the input is zero. Sketch the zero-input

state response forn =0, 1,---, 12 for the cases
(@) 6=0
(b) 6=0.9
(c) o=1.1

E In this problem we further consider example 5.9. As in the example, suppose
initialState = 100, and you deposit 1,000 dollars on day 0 and withdraw 30 dollars
every subsequent day for the next 30 days.

Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

5. LINEAR SYSTEMS

(a) Write a Matlab program to compute your bank balance s(n),0 < n < 31, and
plot the result.

(b) Use formula (5.24) to calculate your bank balance at the beginning of day 31.
The following identity may prove useful:

N N+1
Z w 1—a

a = 71 — N
m=0 a

where a # 1.
12. E Use Matlab to calculate and plot the impulse response of the system
s(n+1) = as(n)+bx(n)
y(n) = es(n)

for the following cases:

(@) a=1.1
(b) a=1.0
(c) a=0.9
(d) a=-0.5

where in all cases, b=c=1and d = 0.
13. E Use induction to derive the SISO response expressions (5.34) and (5.35).

14. E Consider the two-dimensional system given in example 5.17, which has

Ao [ cos(®) —sin(m) ] ‘

| sin(m)  cos(w)
Show that foralln =0,1,2,---

o= [ o) —sintre) ]

Hint: use induction and the identities
cos(a+ ) = cos(a) cos(P) — sin(a) sin(B)

sin(a+ B) = sin(a) cos(B) + cos(at) sin(P)

Lee & Varaiya, Signals and Systems 229


http://LeeVaraiya.org

EXERCISES

15.

16.

230

E A damped oscillator is a variant of the oscillator in example 5.17, where the
sinusoidal signal decays with time. The damped oscillator is identical, except that
the A matrix is given by

cos(®) —sin(®)

A=a sin(w)  cos(w)

)

where 0 < o < 1 is a constant damping factor.

(a) Find the zero-input state response and the zero-input response for the initial
state
initialState = [0,1]".

(b) Find the zero-state impulse response.

T Consider the audio echo system in example 5.6. A more interesting effect (some-
times called reverberation) can be obtained by simultaneously combining multiple
echos. In this problem, consider the following difference equation, which combines
two echos,

y(n) = x(n)+oy(n—M)+By(n—N),

where the (discrete-time) audio input is x, the outputis y, and 0 < o < 1 and 0 <
B < 1 are constants that specify two distinct echo terms. Suppose for simplicity that
M =4 and N = 5. These numbers are not large enough to yield an audible echo,
but the mathematical model is similar for larger numbers, so these are adequate
for study. Note that the zero-state impulse response of this system is much more
complicated than the simple echo system (try to find it!), which accounts for a
considerably more realistic echo effect.

(a) Give a state-space representation [A, B,C, D] of this system.

(b) Modify the system so that the audio input has two channels (stereo), but the
output is still one channel. Combine the two input channels by adding them
with equal weight. Give [A,B,C,D].

Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

Hybrid Systems

Contents

6.1 Mixedmodels . .......... .00t 233
6.2 Modalmodels . .............0000iiiiiiiienn. 235
63 Timedautomata . ... .... ...t eeneeeneens 240
6.4 More interestingdynamics . . ... ... ... 0000 250

Probing Further: Internet protocols . . . . . . . ... ... ..... 251
6.5 Supervisorycontrol . ... .. ... .. it 260
6.6 Formalmodel ..............0..00iiiieeennn. 266
6.7 SUMMATY « ¢ ¢ v v v v v e o e o oo ot oo o oo oo oo s oo oo 268
Exercises . . ... ..ttt e e e e e 269

This text models signals and systems as functions. To develop understanding, we study
the structure of the domain and range of these functions, as well as the structure of the
mapping from the domain to the range. Despite the uniformity of this approach, we have
begun to evolve two distinct families of models. Chapters 3 and 4 structure this mapping
using state machines. Chapter 5 generalizes these state machines so that the number of
possible states is infinite, and specializes them so that the systems are linear and time-
invariant (LTT). LTI systems prove to yield to powerful analytical techniques, which are
only hinted at in Chapter 5. Chapters 7 through 14 will further develop these analytical
techniques by structuring the system mapping using frequency-domain concepts.

231



The analytical methods available for LTI systems prove so compelling that we wish to
apply them even to systems that are not LTI. In fact, no real-world system is truly LTI. At
a minimum, its properties were certainly different during the initial stages of the big bang,
so it cannot be time invariant. More practically, systems change over time; they are turned
on and off, they deteriorate, etc. Moreover, systems that behave as linear systems typically
do so only over some regime of operation. For example, if the magnitude the inputs
exceed some threshold, a real-world system will overload, and will no longer behave
linearly. A similar effect might result when the state wanders beyond some modest range.
This chapter shows how models that are only applicable some of the time can be used
effectively.

In chapters 3 and 4, signals are sequences of events. Their domain is (typically) Np,
and their range is (typically) a finite and arbitrary set of symbols. The domain is not
interpreted as time, but rather as indexes of a sequence. In chapters 5 and 7 through 14,
the domain of signals is interpreted as time. For continuous-time signals, the domain is
either R or R, whereas for discrete-time signals it is either Z or Ny. This interpretation
of the domain as time is essential to the notion of frequency that is used throughout the
forthcoming chapters.

Chapter 5 and this one provide a bridge between state-machine models and such time-
based models by developing state machine models for time-based systems. In this chap-
ter, we build another bridge between these two families of models by showing that they
can often be usefully combined and used simultaneously in the same model, rather than
as alternative views of a system. The resulting models are called hybrid systems. They
are a powerful tool for understanding real-world systems.

To understand the value of hybrid systems, it is useful to reflect on the relative strengths
and weaknesses of time-based models and state-machine models. Chapter 5 demonstrates
that state-machine models are more general by showing how they can be used to describe
time-based models. Since they are more general, why not just always use state-machine
models? The methods of state-machine models, such as composition by forming a product
of the state spaces and simulation do not yield the depth of understanding that we will get
in the subsequent chapters from looking at frequency response. Why not always use
frequency response? Frequency response is a rather specialized analytical tool. It applies
only to LTT systems. Most real-world systems are not LTI, so such powerful analytical
tools must be applied with careful caveats about the regime of operation over which they

do apply.

232 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

6. HYBRID SYSTEMS

Consider for example a home audio system. It takes data from a compact disc and converts
it into auditory stimulus. Is it LTI? Well, obviously not, since its system function changes
rather drastically when you turn it on and off. The acts of turning it on and off, however,
seem to match well the state transitions of a state machine. Can we come up with a model
where there is a state machine with two states, “on” and “off,” and associated with each
state there is an LTI system that describes the behavior of the system in the corresponding
mode of operation? Indeed we can. Such a model is called a hybrid system.

In order to get state machine models to coexist with time-based models, we need to inter-
pret state transitions on the time line used for the time-based portion of the system, be it
continuous time or discrete time. In the audio system, for example, we need to associate a
time with the acts of turning it on or off. The models used in chapters 3 and 4 do not nat-
urally do this, since the signals there are sequences of events. That is, they are functions
whose domain is Ny, where there is no temporal association with an n € Nj.

Recall from Chapter 3 that the input and output alphabets of a state machine are required
to include a stuttering element, typically denoted absent. Whenever the state machine
reacts, if its input is the stuttering element, then it does not change state and its output
will be the stuttering element. This is key to hybrid system models because it allows
us to embed the state machine into a time-based model. At any time where there is no
interesting input event, the machine stutters.

A hybrid system combines time-based signals with sequences of events. The time-based
signals are of the form x: T — R, where R is some range (such as R or C), and T is
either R, R, Z, or Ny, depending on whether the time domain is discrete or continuous
and whether the model includes a time origin. In chapters 3 and 4, the event signals had
the form u: Ng — Symbols, where the set Symbols has a stuttering element. For a hybrid
system, however, these have to share a common time base with the time-based signals,
so they have the form u: T — Symbols. Thus, events occur in time. Typically, for most
t € T, u(t) = absent, the stuttering element. The non-stuttering element is used only at
those discrete values of time where an event occurs.

6.1 Mixed models

A state machine model becomes a time-based model if it reacts at all times in the time
base 7. This means that state machines and time-based models can interact as peers,
sending time-based signals to one another.

Lee & Varaiya, Signals and Systems 233


http://LeeVaraiya.org

6.1. MIXED MODELS

X Trader
>»| shortTerm >» {(x(n), y(n)) | x(n) > y(n) } / buy

{buy, sell, absent}
>

price

»| longTerm

Y

{(x(n), y(n)) | x(n) < y(n) } /sell

35[
30T
25

20

closing price

00 01 02 03 04 05 06 07 08 09 1.0 x10°

T T T T T T T T T T T
bMy - .o . 3 -

absent [ 1

sell | . . . E

* 2
00 01 02 03 04 05 06 07 08 09 10 X0

day

Figure 6.1: An implementation of the classical moving average cross-over method
for trading stocks.

234 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

6. HYBRID SYSTEMS

Example 6.1: Moving averages are popular on Wall Street for detecting trends in
stock prices. But in using them, a key question arises: how long should the moving
average be? A short-term moving average might detect short-term trends, while a
long-term moving average might detect long term trends. A classical method com-
bines the two and compares them to generate buy and sell signals. If the short-term
trend is more sharply upward than the long term trend, a buy signal is generated.
If the short term trend is more sharply downward than the long term trend, a sell
signal is generated.

A system implementing this moving average cross-over method is shown in
Figure 6.1. The input is the discrete-time signal price: Z — R representing the
closing price of a stock each day. The LTI systems shortTerm and longTerm are
both moving average systems, but shortTerm averages fewer successive inputs than
longTerm. The outputs of these systems are the discrete-time signals x and y. The
finite state machine reacts on each sample from these signals. It begins in the state
short over long. The transition out of this state has the guard

{(x(n),y(n)) [ x(n) > y(n)}.

When this transition is taken, a buy signal is generated. The sell signal is generated
similarly. The plots below show the buy and sell signals generated by a (synthetic)
sequence of stock prices.

This example illustrates a simple form of technical stock trading. In this extreme
form, it has the controversial feature that it ignores the fundamentals of the com-
pany whose stock is being traded. It is using the stock price alone as the indicator
of worth. In fact, much more sophisticated signal processing methods are used by
technical stock traders, and they often do take as inputs other quantifiers of com-
pany worth, such as reported revenues and profits.

6.2 Modal models

In the previous section, time-based systems are combined with state machines as peers. A
richer interaction is possible with a hierarchical combination. The general structure of a

Lee & Varaiya, Signals and Systems 235


http://LeeVaraiya.org

6.2. MODAL MODELS

HybridSystem  guard/output
{ E— action I
events . } events

>

. _> N S .
time-based 1 3 time-based
signals N action | guard/output. T > signals
. action
time-based system | ! v| time-based system

Figure 6.2: Notation for hybrid systems.

hierarchical hybrid system model is shown in figure 6.2. In that figure, there is a two-state
finite state machine. There are some changes to the notation, however, from what was
used in chapters 3 and 4.

First, notice that the inputs and outputs include both event signals and time-based signals.
Second, notice that each state of the state machine is associated with a time-based system,
called the refinement of the state. The refinement of a state gives the time-based behavior
of HybridSystem while the machine is in that state. Thus, the states of the state machine
define modes of operation of the system, where the behavior in a given mode is given
by the refinement. A hybrid system is sometimes called a modal model for this reason.
The refinement has access to all the inputs of HybridSystem, and produces the time-based
output signals of HybridSystem while the machine is in its mode.

Note that the term “state” for such a hybrid system can become confusing. The state
machine has states, but so do the refinement systems (unless they are memoryless). When
there is any possibility of confusion we explicitly refer to the states of the machine as
modes, and we refer to the states of the refinement as refinement states. The (complete)
state of the hybrid system is a pair (m,s) where m is the mode and s is the state of the
time-based refinement system associated with mode .

236 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

6. HYBRID SYSTEMS

Another difference from the notation used in chapters 3 and 4 is that state transitions in the
machine have, in addition to the usual guard and output notations, an action. The action
will typically set the initial refinement state of the time-based system in the destination
mode.

The guards are, as usual, sets. However, we need for the guards to be rich enough that
a transition can be triggered by a particular value of a refinement state or by a value of a
time-based input. Thus, the elements of the guards are tuples containing values of input
events, time-based signals, and the refinement states. In the state machines in chapters
3 and 4, the elements of the guards only contained values of input events. For hybrid
systems, we add time-based signals and refinement states.

Example 6.2: Overload of an electronic system might be modeled by a state tran-
sition that is triggered by the magnitude of the current refinement state exceeding
some threshold.

On the other hand, when the system is in some mode, the refinement state is only affected
by the time-based inputs. It is not affected by the event inputs. This keeps the time-based
models simple, so that they don’t have to deal with stuttering inputs.

Correspondingly, the time-based outputs are generated by the refinement, and hence need
not be mentioned after the slash on the transitions.

The state machine may react at any time in the time base 7. The mode in which it is
before this reaction is called the current mode. It will take a discrete state transition
and switch to the destination mode if the input values and the refinement state at that
time match a guard. If it does not take a discrete state transition, then the state machine
stutters. In either case, the refinement of the current mode also reacts to the time-based
inputs, changes its state and produces outputs.

Example 6.3: Many high-end audio systems offer “digital signal processing.”
Such a system typically has an embedded computer (a digital signal processor or
DSP, see box on page 402). This computer is used to process the audio signal
in various ways, for example to add reverberation or to perform frequency selec-
tive filtering. A particularly simple function that might be performed is loudness
compensation, something offered by all but the cheapest audio systems.

Lee & Varaiya, Signals and Systems 237


http://LeeVaraiya.org

6.2. MODAL MODELS

LoudnessCompensation

{(u(n), x(n), s(n), y(n)) | u(n) = on}

{on, off, absent}

{u(n), x09), s(n), y(m) | un) = off)

s(n+1) = As(n) + bx(n) ,'I, “, s(n+1) = As(n) + bx(n)
y(n) = x(n) | ym) = Tsn) + dxn)

Figure 6.3: This system implements loundness compensation, described in ex-
ample 6.3

238 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

6. HYBRID SYSTEMS

At low volumes, the human ear is less sensitive to low frequencies (base notes)
than to high frequencies. Loudness compensation boosts the low frequencies. This
is done simply by implementing a filter, which is a linear time-invariant system that
can be described by a state-space model, as in the previous chapter. Thus, there are
two modes, one where the low frequencies are boosted (using the filter), and one
where they are not.

A simple realization of loudness compensation offers a switch on a control panel to
turn on and off the compensation. Figure 6.3 shows a hybrid system that reacts to
input events from this switch to select from among two modes. The upper input is
simply an event indicating the position of the control switch when it is thrown. The
lower input x is a discrete-time signal, probably sampled at 44,100 samples/second,
the CD rate. The LoudnessCompensation hybrid system has two modes. In the flat
mode, the output y is simply set equal to the input x. That is, if Ty, C Z is the time
indexes during which the machine is in the flar mode, then

VneTpuu, y(n)=x(n).
This (obviously) does not boost low frequencies, since the output is equal to the
input.

When the on event occurs, the machine transitions to the boost mode, where the
filter is applied to the input x. This is done using the state update and output equa-
tions

V1€ Thoost;, s(n+1) = As(n)+bx(n)
y(n) = cl's(n)+dx(n),

where A, b, c,d are chosen to boost the low frequencies (how to do that is explained
in Chapter 9).

Note that in the flat mode, even though the output equation does not depend on the
state, the state update equation is still applied. This ensures that when switching
between states, no glitches are heard in the audio signal. The state of the boost
refinement is maintained even when the mode is flat.

This loudness compensator is not very sophisticated. A more sophisticated version
would have a set of compensation filters and would select among them depending
on the volume level. This is explored in Exercise 1.

Lee & Varaiya, Signals and Systems 239


http://LeeVaraiya.org

6.3. TIMED AUTOMATA

We consider a sequence of special cases of hybrid systems. Although the next few exam-
ples are all continuous-time models, it is easy to construct similar discrete-time models.

6.3 Timed automata

Timed automata are the simplest continuous-time hybrid systems. They are modal models
where the time-based refinements have very simple dynamics; all they do is measure the
passage of time. Such refinements are called clocks. The resulting models are finite state
machines (automata) with time. Note that although all the examples in this section use
continuous time, discrete-time versions are very similar.

A clock is modeled by a first-order differential equation,
VteT,, Ss(t)=a,

where s: R — R is a function, s(¢) is the value of the clock at time ¢, and 7,, C T is the
subset of time during which the hybrid system is in mode m. The rate of the clock, a, is a
constant while the system is in this mode.

Example 6.4: Suppose we want to produce a sequence of output events called fick
with the time between two consecutive ticks alternating between 1 and 2 seconds.
That is, we want to produce a tick at times 1,3,4,6,7.9,---.

A hybrid system tickGenerator that does this is illustrated in Figure 6.4. There
are two modes labeled mode I and mode 2. The refinement state in each mode
is the value of a clock at time ¢, denoted by s € R. So at any time ¢ the state of
tickGenerator is the pair (mode(t),s(t)). The output is the event signal v and the
time-based signal s. There is no input.

In both modes, s evolves according to the differential equation s(¢) = 1, where 5(7)
is the derivative of s with respect to time evaluated at some time ¢#. Thus, s simply
measures the passage of time, with its value rising 1 second for every second of
elapsed time.

The behavior of the system is shown in Figure 6.5. At time 0, as indicated by the
bold arrow in Figure 6.4, the system initially enters mode 1. The bold arrow has an
action, “s(0) := 0,” which sets s(0) to 0. The notation “:=” is used instead of “="
to emphasize that this is an assignment, not an assertion (see Section A.1.1).

240 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

6. HYBRID SYSTEMS

tickGenerator  {s(t) | s(t) =1} / tick
s(t):=0

V(1) € {tick, absent}
—>

s(t) € Reals

7 50) =0 {s¢})|

s(t) =2} / tick

s(t):=0

s(=1 s(=1

Figure 6.4: This hybrid system generates tick at time intervals alternating be-
tween 1 and 2 seconds. It is a timed automaton.

Lee & Varaiya, Signals and Systems 241


http://LeeVaraiya.org

6.3. TIMED AUTOMATA

mode(t)
@ — L1 ..
0 1 3 4 >
s(?)
w ALy
)
ti kAv
i ) rr .
©) absent ;

Figure 6.5: (a) The modes of the hybrid system of Figure 6.4, (b) the refinement
state s, and (c) the discrete event output v.

242

In this example, there is no input, so a guard is a subset of the possible values (R)
of the refinement states. The guard on the transition from mode I to mode 2 is

{s(@) | s(e) = 1},

which is satisfied one time unit after beginning. For all # € [0,1], s(¢) =¢. At time
t = 1, this guard is satisfied, the transition is taken, and the output event v(1) = tick
is produced. For all ¢ € [0, 1), v() has value absent.

This transition also has an action, “s(¢) := 0,” which resets s to zero. This gives the
initial condition for the refinement system of the destination mode. In our defini-
tion, at time ¢ = 1, s(f) = 1, even though the action seems to contradict this. This
is emphasized in Figure 6.5 by showing with a bold dot the value of s at each dis-
continuity. The action s(7) := 0 is merely providing the initial conditions for the
refinement of the destination mode. But the destination mode is not active until
t > 1, so the action is setting s(1+) to 0, where 1+ denotes a time infinitesimally
larger than 1.

Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

6. HYBRID SYSTEMS

For ¢ € (1,3], the system remains in mode 2, evolving according to the differential
equation

So for 1 <t <3, .
s(t):s(1)+/ ldt =1—1.
1

At time ¢t = 3, the guard on the arc from mode 2 to mode I is satisfied, so the
transition is taken. The output event tick is again produced, and s is reset to 0 again.

Notice in Figure 6.5 that the output v is absent for all but a few discrete values of t € R.
This signal is called a discrete event signal for this reason. Of course, this signal can also
be reinterpreted as a sequence of fick events with an arbitrary number of stuttering events
in between. That signal could therefore be supplied as input to an ordinary state machine,
enabling compositions of ordinary state machines with hybrid systems.

Also notice in Figure 6.5 that the hybrid system evolves in alternating phases: there is a
time-passage phase in which the system stays in the same mode and its refinement state
changes with the passage of time; this is followed by an instantaneous discrete-event
phase in which a mode transition occurs, an output event is produced, and the refinement
state in the destination mode is initialized. In the figure, the time-passage phases are
(0,1],(1,3],(3,4],- - - and the discrete-event phases occur at 1,3,4,---.

Transitions between modes have actions associated with them. Sometimes, it is useful to
have transitions from one mode back to itself, just so that the action can be realized. This
is illustrated in the next example.

Example 6.5: Figure 6.6 shows a hybrid system representation of the 60-minute
parking meter considered in Chapter 3. In the version in Figure 3.6, the states of a
state machine are used to measure the passage of time by counting ticks provided
by the environment. In the hybrid version of figure 6.6, the passage of time is
explicitly modeled by first-order differential equations.

There are two modes, expired and safe, and the refinement state at time 7 is s(¢) € R.
At time ¢ = 0, the initial mode is expired, and s(0) = 0. In the expired mode, s

Lee & Varaiya, Signals and Systems 243


http://LeeVaraiya.org

6.3. TIMED AUTOMATA

quarter = {(u(t), s(t)) | u(t) = coin25}
nickel = {(u(?), s(t)) | u(t) = coin5}
timeout = {(u(?), s(t)) | u(t) = absent and s(t) = 0}

parkingMeter

quarter | absent
s(1) :=25

quarter | absent
s(¢) := min(s(z) + 25, 60) v(t) € {expired,

u(t) € {coins,

coin25, absent} absent)
o L >
‘ ;ziqkel / absent
— 1 1 s(1) := min(s(7) + 5, 60
5(0) =0 timeout | expired ® ( @ )
s(t)=0 ’/’ “.‘ s() =—1

Figure 6.6: A hybrid system representation of a 60-minute parking meter.

244 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

6. HYBRID SYSTEMS

remains at 0. The input events coin5 and coin25 cause one of two transitions from
expired to safe to be taken. These transitions have guards that are named nickel and
quarter and are defined by

nickel = {(u(t),s(t)) | u(t) = coin5}

quarter = {(u(t),s(t)) | u(t) = coin25}.

Using names for these guards in the figure makes it more readable. It would be
cluttered if the guards were directly noted on the transitions.

The transitions from expired to safe produce absent. The actions on the transitions
change the value of s to 5 and 25, depending on whether coin5 or coin25 is received.

In the safe mode, the refinement state decreases according to the differential equa-
tion of the clock,
Vi€ Tupe, s$(t)=-1.

There are three possible outgoing transitions from this mode. If the input event
coin3 or coin25 occurs, then one of two self-loop transitions is taken, no output is
produced, and the associated action increments s by setting as s(z) := min(s(¢) +
5,60) or s(¢) := min(s(z) +25,60). But if the guard timeout is satisfied, where

timeout = {(u(t),s(t)) | u(t) = absent and s(t) = 0}

then there is a transition to expired and the output event expired is produced. Note
that this guard requires that u(r) = absent, so that if the parking meter expires at
the very moment that a coin arrives, then the coin is properly registered.

In this system, the refinement state evolves differently in the two modes; in expired,
s remains at 0 (since s(¢) = 0), but in safe, s obeys the differential equation $(¢) =
—1.

In the previous example, the transitions from safe back to safe were used for their actions,
which react to input events by setting the values of refinement states. This gives a clean
way to model discontinuities in continuous-time signals, because the state trajectory is a
continuous-time signal. A more extreme example is given next, where there is only one
mode.

Lee & Varaiya, Signals and Systems 245


http://LeeVaraiya.org

6.3. TIMED AUTOMATA

u(t) € {coin5, coin25, absent}
TickGenerator
—>
1) | s(t)y=1}/tick .
b |j8 = 0} 1 w(t) € {tick, parking V(.f) € {safe,
absent} meter expired, absent}
state >
machine

s =1

The 60-minute parking meter as a cascade composition of

Figure 6.7:
tickGenerator and an ordinary finite state machine.

Lee & Varaiya, Signals and Systems

246


http://LeeVaraiya.org

6. HYBRID SYSTEMS

Example 6.6: We could also implement the parking meter as a cascade compo-
sition using a timed automaton, ZickGenerator, with only one mode, timer, and
which produces a fick event every minute. This event serves as an input to the park-
ing meter finite state machine of Figure 3.6. The cascade composition is shown in
Figure 6.7. The parking meter machine also accepts an additional (product-form)
input event from {coin5, coin25}, and produces the output event safe or expired.
The difference between Figure 3.6 and 6.7 is that in the former fick was an input
event from the environment, whereas in the latter we explicitly construct a compo-
nent, namely TickGenerator, which produces a fick every minute.

Timed automata are commonly used in modeling communication protocols, the logic
used to achieve communication over a network. The following example models the trans-
port layer of a sender of data on the internet.

Example 6.7: Consider how an application such as an e-mail program sends a
file over a communication network like the internet. There are two host computers
called the Sender and Receiver. The file that Sender wants to send to Receiver is
first divided into a sequence of finite bit strings called packets. For the purposes
of this example, we do not care what is contained by the packets, so we consider
packet to be an event. We are interested in the fact that it needs to be transmitted,
not in its contents.

The problem we address in this example is that the network is unreliable. Packets
that are launched into it may never emerge. If the network is congested, packets get
dropped. We will design a protocol whereby the sender of a packet waits a certain
amount of time for an acknowledgement. If it does not receive the acknowledge-
ment in that time, then it retransmits the packet. This is an ideal application for
timed automata.

The upper diagram in Figure 6.8 shows the structure of the communication system.
Everything begins when the sender produces a packet event. The SenderProtocol
system reacts by producing a transmit event, which instructs its network interface
card or NIC to launch the packet into the internet. The NIC is the physical de-
vice (such as the ethernet card in your desktop computer) that converts the packet

Lee & Varaiya, Signals and Systems 247


http://LeeVaraiya.org

6.3. TIMED AUTOMATA

Sender Receiver

Application Application

{packet, absent} lack, absent} {packet, absent}

{transmit, retransmit, absent} {packet, absent}

——— ——> ——
SenderProtocol NIC NIC ReceiverProtocol
D f———] D E—
{ack, absent} {ack, absent}

packetArrives = {(u,(t), uy(1), s(t)) | u(t) = packet}
timeout = {(u(1), uy(t), s(t)) | s(£) =0 and uy(t) # ack}
ackArrives = {(u(1), uy(1), s(t)) | uy(t) = ack}

SenderProtocol

packetArrives | (transmit, absent) v(t) € {transmit,

u(t) € {packet, absent} s(t) := timeoutTime . . ]
1 p ® timeout | (retransmit, absent) retransmit, absent)

s(t) := timeoutTime >

uy(t) € {ack, absem;
y vo(t) € {ack, absent}
$(0) =0 aclo‘l,:"rrives / (ahsen‘(, ack)
o s():=0
50 =0 / ; sty =—1

Figure 6.8: The top diagram describes the structure of a communication system.
The lower diagram is the timed automaton that implements the sender protocol.

248 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

6. HYBRID SYSTEMS

into the appropriate electrical signal that is transmitted through the network. The
internet transfers this signal to the NIC of the receiver. That NIC converts the
signal back into the packet and forwards it to the ReceiverProtocol component.
The ReceiverProtocol in turn forwards the packet to the e-mail application in the
Receiver and simultaneously sends an acknowledgement packet, called ack, to its
NIC.

The receiver’s NIC sends the ack packet back through the network to the Sender.
The sender’s NIC receives this packet and forwards an ack to the SenderProtocol.
The SenderProtocol notifies the application that the packet was indeed delivered.
The application can now send the next packet, and the cycle is repeated until the
entire file is delivered.

In reality, the network may drop the packet so that it is not delivered to the receiver,
who therefore will not send the corresponding ack. The SenderProtocol system is
designed to take care of this contingency. It is a timed automaton with two modes,
idle and timing, and one refinement state s corresponding to a clock. Initially it is
in the idle mode and s(0) = 0. In the idle mode, s(z) = 0, so the refinement state
remains at zero. When SenderProtocol receives a packet it makes a transition to the
timing mode, sends the output event transmit to its NIC, and resets s to a timeout
value timeoutTime.

In the timing mode, there are two possibile transitions. In the normal case, the input
event ack is received before the guard {s(r) == 0} is satisfied. The transition to
mode idle is taken, the output event ack is sent to the application, and the clock
value s5(7) is reset to 0. The system waits for another packet from the application.
In the second case, the guard {s(r) == 0} is satisfied (before event ack), and the
self-loop transition is taken. In this case, the output event retransmit is sent to the
NIC, and s(¢) is reset to timeoutTime.

Notice a feature of this design that may not be expected. If a packet arrives while
the machine is in mode timing, the packet is ignored. What happens if a packet
happens to arrive simultaneously with an ack while the machine is mode timing?

Exercise 10 asks you to construct the corresponding receiver protocol, which is
simpler.

In summary, the SenderProtocol machine repeatedly retransmits a packet every
timeoutTime seconds until it receives an ack. This reveals a flaw in the protocol.
If the network is for some reason unable ever to successfully transmit a packet to
the receiver, the machine will continue retransmission for ever. A better protocol

Lee & Varaiya, Signals and Systems 249


http://LeeVaraiya.org

6.4. MORE INTERESTING DYNAMICS

packetArrives = {(u(1), uy(1), s(t), r(t)) | u,(t) = packet}
timeout = {(u,(t), uy(t), s(t), (1)) | s(t) = 0 and r(¢) # 0 and u(t) # ack}
ackArrives = {(u) (1), uy(1), s(t), (1)) | u5(t) = ack}
Sailure = {(u (1), uy(1), s(1), r(t)) | r(£) = 0 and u(t) # ack}

BetterSenderProtocol
u(t) € {packet, absent}

uy(t) € {ack, absent} | . 50):=0

ackArrives | (absent, ack)
s(f):=0 '
s(H=0 r(0):=0

packetArrives | (transmit, absent)
s(t) := timeoutTime
r(t) :=5 X timeoutTime

timeout /| (retransmit, absent)
s(t) := timeoutTime

s(n=-1

v (1) € {transmit,
retransmit, absent }

R

>
V(1) € {ack,
fail, absent}

) =1

Figure 6.9: An improved sender protocol with two clocks, one of which detects a

failed connection.

would retransmit a packet a certain number of times, say five times, and if it is
unsuccessful, it would return to idle and send a message connectionFailed to the
application. The hybrid system of Figure 6.9 incorporates this feature by adding

another clock whose value is r(z).

6.4 More interesting dynamics

In timed automata, all that happens in the time-based refinement systems is that time
passes. Hybrid systems, however, are much more interesting when the behavior of the

refinements is more complex.

Example 6.8: Consider the physical system depicted in Figure 6.11. Two sticky
round masses are attached to springs. The springs are compressed or extended and

250

Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

6. HYBRID SYSTEMS

Probing Further: Internet protocols

Communication between two computers, Sender and Receiver, each connected to the
internet, is coordinated by a set of protocols. Each protocol can be modeled by a pair
of hybrid systems, one in the Sender and the other in the Receiver. These protocols are
arranged in a protocol stack, as shown in figure 6.10. Each layer in the stack performs
a certain function, and interacts with the corresponding layer in the other computer. The
physical layer converts a bit stream into an electrical signal and vice versa and transfers
the signal over one link of the network.

The network itself consists of many physical links connected by routers. The routers
act as computers, but are missing the higher levels of the protocol stack. The physi-
cal layer transports bits over wires, optical fibers, or radio links. The medium access
layer manages contention for the physical communication resource, preventing colli-
sions among multiple users of the link. The network layer routes packets appropriately
through the network. The transport layer ensures that the end-to-end transfer of pack-
ets is reliable, even if the network layer is unreliable. The application layer converts
whatever information is to be sent (such as an image or e-mail) into packets and then
reassembles the packets into the appropriate information.

This layered approach provides an abstraction mechanism. Each layer conceptually
interacts with the corresponding layer at a remote machine, as suggested by the dotted
lines in figure 6.10. Each layer provides a “service” to the layer above it. For example,
the medium access layer offers as a service the transfer of a packet over a single link.
The network layer uses this service to transfer a packet over a sequence of links between
the end hosts. This abstraction mechanism permits the design of a single layer, say the
transport layer, assuming the service of the network layer, without regard to the layers
below the network layer. The hybrid system in example 6.7, for instance, models only
the transport layer.

The transport layer in an end-to-end protocol, so it is implemented only at the end
points in the connection, as shown in Figure 6.10. The routers in the network only need
to implement the lower layers.

Each protocol layer is modeled as a pair of hybrid systems. Typically, these are timed
automata, since coordination between end hosts is achieved via several clocks as in
example 6.7. When a guard associated with a clock is satisfied, this signals some con-
tingency in the communication, just as the timeout of the clock in Figure 6.8 signals that
a packet may be lost.

Lee & Varaiya, Signals and Systems 251


http://LeeVaraiya.org

6.4. MORE INTERESTING DYNAMICS

Sender Receiver
Application | === m s e »| Application
Transport R P T PP T TP > Transport

l T 2 Internet T T T ----77 l T

/
Network - -rl> Network SQELELELEEEE > Network [~y - - - Network
I ‘\
! \
| 1
| /
'I 1
MediumAccess |<a---pp-| MediumAccess |<======-=-- | MediumAccess <:> MediumAccess
4 1
5 1
{ 1
! 1
X 1
A 1
Physical <+ Physical - —> Physical " > Physical
link v , link
\

-
- = -

Figure 6.10: Network protocols are organized in a stack. Each protocol interacts
with the corresponding layer in a remote computer. The dotted lines indicate
conceptual interactions, whereas the solid lines indicate physical interactions.

252 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

6. HYBRID SYSTEMS

O OW

y,®

¥,()

Displacement of Masses

0 5 10 15 20 25 30 35 40 45 50
time

Figure 6.11: Sticky masses system considered in example 6.8.

Lee & Varaiya, Signals and Systems

T q{y0-
[y

253


http://LeeVaraiya.org

6.4. MORE INTERESTING DYNAMICS

stick = {(y (1), (1), y(0), Y,(0) | y1 (1) == y,(D)}
unstick = {(y(t), (1)) | (k; — ky)y(t) + ky py— k\p; > stickiness}

stickyMasses
stick /

(@) = y(D)

3(@) := (1 (Omy + y,(Omy)/(m+ m,)
v1(0) = initial Position,

¥,(0) := initialPositionz,/
y 1(0) =0

v1(D) € Reals

—

Y,(t) € Reals
—)

m1+ my

$o(1) = ko(py = yo(O)m, |/
) 2Py = yo(D)/my YO =y(); yy(0) =y(t)

$,(0) =0,
’ unstick
[ 0=y
yo(0) = y(1)
o =y0
§,(6) = ky(py — v, O, WO =30 ) = ki py+ky py— (ki + kp)y(t)

Figure 6.12: Hybrid system model for the sticky masses system considered in

example 6.8.

254 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

6. HYBRID SYSTEMS

then released. The masses oscillate on a frictionless table. If they collide, they stick
together and oscillate together. After some time, the stickiness decays, and masses
pull apart again.

A plot of the displacement of the two masses as a function of time is shown in the
figure. Both springs begin compressed, so the masses begin moving towards one
another. They almost immediately collide, and then oscillate together for a brief
period until they pull apart. In this plot, they collide two more times, and almost
collide a third time.

The physics of this problem is quite simple if we assume idealized springs. Let
y1(t) denote the right edge of the left mass at time #, and y, () denote the left edge
of the right mass at time ¢, as shown in Figure 6.11. Let p; and p, denote the
neutral positions of the two masses, i.e. when the springs are neither extended nor
compressed, so the force is zero. For an ideal spring, the force at time # on the mass
is proportional to p; — y(¢) (for the left mass) and p, — y,(¢) (for the right mass).
The force is positive to the right and negative to the left.

Let the spring constants be k; and ky, respectively. Then the force on the left spring
is k1 (p1 —y1(2)), and the force on the right spring is k»(p2 — y2(2)). Let the masses
be m; and my respectively. Now we can use Newton’s law, which relates force,
mass, and acceleration,

f=ma.

The acceleration is the second derivative of the position with respect to time, which
we write y (¢) and y(¢) respectively. Thus, as long as the masses are separate, their
dynamics are given by

Yi(t) = ki(p1—y(t))/m (6.1
va(t) = ka(p2—y2(t))/ma. (6.2)

When the masses collide, however, the situation changes. With the masses stuck
together, they behave as a single object with mass m; +my. This single object is
pulled in opposite directions by two springs. While the masses are stuck together,

Y1 (t) = yz(l‘). Let
¥(1) =y1(2) = y2(2).
The dynamics are then given by

_ kipi+kapy — (ki +ka)y(t)
my +my ’

¥(t) (6.3)

Lee & Varaiya, Signals and Systems 255


http://LeeVaraiya.org

6.4. MORE INTERESTING DYNAMICS

256

It is easy to see now how to construct a hybrid systems model for this physical
system. The model is shown in Figure 6.12. It has two modes, apart and together.
The refinement of the apart mode is given by (6.1) and (6.2), while the refinement
of the together mode is given by (6.3).

We still have work to do, however, to label the transitions. The initial transition is
shown in Figure 6.12 entering the apart mode. Thus, we are assuming the masses
begin apart. Moreover, this transition is labeled with an action that sets the initial
refinement state. Intuitively, the initial state of the masses is their positions and
their initial velocities. In fact, we can define the refinement state to be

yi(t)

(
| n@)
s(t) = y2(t)
(

ya(t)

It is then a simple matter to rewrite (6.1) and (6.2) in the form
$(t) = g(s(r)) (6.4)

for a suitably chosen function g (see Exercise 12).

In Figure 6.12, the initial state has the masses at some specified displacement, and
the velocities at zero.

The transition from apart to together has the guard

stick = {(y1(2),51(2),y2(£),y2(2)) | y1(£) == y2(1) }-

Thus, when the refinement state of apart satisfies this guard, the transition will be
taken. No event output is produced, as indicated by the blank after the slash. How-
ever, an action is taken to set the initial refinement state of together. The refinement
state of fogether could be the same s(¢) as above, with the additional constraint that
v1(t) = y2(¢) and y; (t) = y»(¢), because the masses are stuck together. Or more sim-
ply, we could define the state z(¢) of together to be the position y(¢) and velocity

¥(t), where y(t) = y1(t) = y2(?),

() ]
zZ(t) = | . .
=[5
The transition from apart to together sets y(t) equal to y;(¢) (it could equally well

have chosen y,(#), since these are equal). It sets the velocity to conserve momen-
tum. The momentum of the left mass is ¥ (¢)m;, the momentum of the right mass

Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

6. HYBRID SYSTEMS

is y»(¢)my, and the momentum of the combined masses is y(¢)(m; +m;). To make
these equal, it sets

. Yi(t)my +ya2(t)ma
) YiOm £ (0ms
my +my

The transition from fogether to apart has the more complicated guard
unstick = {(y(¢),y(t)) | (ki1 —k2)y(t) + kapa — k1 p1 > stickiness}.

This guard is satisfied when the right-pulling force on the right mass exceeds the
right-pulling force on the left mass by more than the stickiness. The right-pulling
force on the right mass is simply

f(t) = ka(p2 —y(2))

and the right-pulling force on the left mass is

fi(t) =ki(p1 —y(1)).
Thus,
fat) = fi(t) = (ki —k2)y(t) + kapa — ki p1.-
When this exceeds the stickiness, then the masses pull apart.

An interesting elaboration on this example, considered in problem 13, modifies the
together mode so that the stickiness is initialized to a starting value, but then decays
according to the differential equation

s(t) = —as(r)

where s(r) is the stickiness at time ¢, and a is some positive constant. In fact, it is
the dynamics of such an elaboration that is plotted in Figure 6.11.

As in example 6.7, it is sometimes useful to have hybrid system models with only one
state. The actions on one or more state transitions define the discrete event behavior that
combines with the time-based behavior.

Lee & Varaiya, Signals and Systems 257


http://LeeVaraiya.org

6.4. MORE INTERESTING DYNAMICS

258

Example 6.9: Consider a bouncing ball. At time ¢ = 0, the ball is dropped from
a height y(0) = initialHeight meters. It falls freely. At some later time #; it hits
the ground with a velocity y(7;) < 0 m/sec. A bump event is produced when the
ball hits the ground. The collision is inelastic, and the ball bounces back up with
velocity —ay(t1), where a is constant in (0, 1). The ball will then rise to a certain
height and fall back to the ground repeatedly.

The behavior of the bouncing ball can be described by the hybrid system of Figure
6.13. There is only one mode, called free. When it is not in contact with the ground,
we know that the ball follows the second-order differential equation,

¥(1) = —¢, (6.5)

where g = 10 m/sec? is the acceleration imposed by gravity. We can define the
refinement state of the free mode to be

with the initial conditions y(0) = initialHeight and y(0) = 0. It is then a simple
matter to rewrite (6.5) as a first-order differential equation,

$(t) = f(s(r)) (6.6)
for a suitably chosen function f (see Exercise 12).

At the time #; when the ball first hits the ground, the guard

hit = {(y(1),5(t)) | y(z) = 0}

is satisfied, and the self-loop transition is taken. The output bump is produced, and
the action y(¢) := —ay(t) assigns y(¢1;+) = —ay(#;). Here, y(t;+) is the velocity
after the bump, and y(#;) is the velocity before the bump. Then (6.5) is followed
again until the guard becomes true again.

By integrating (6.5) we get, for all # € (0,#1),

) = g,
t 1
W) = y(0)+ / y(x)d = initialHeight — >gr”.
0

Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

6. HYBRID SYSTEMS

¥(®)
hit = {(y(®), y(1)) | y(1)= 0} initialHeight
BouncingBall
v(0) = initialHeight . {bump, absent}
50) =0 hit | bump 3 ‘ ‘ , >

(@) =—ay()

y(t) € Reals
—>

yy=-¢g

Figure 6.13: The motion of a bouncing ball may be described as a hybrid system
with only one mode. The system outputs a bump each time the ball hits the
ground, and also outputs the position of the ball. The position and velocity are
plotted versus time at the right.

So #; > 0 is determined by y(#;) = 0. It is the solution to the equation
L : 1,
initialHeight — Egt =0.

Thus,

t1 = /2 initialHeight/g.

Figure 6.13 plots the refinement state versus time.

Lee & Varaiya, Signals and Systems 259


http://LeeVaraiya.org

6.5. SUPERVISORY CONTROL

A
e(t)
U]
AGV
(1)
track
— global
coordinate
frame
| >
x(?)

Figure 6.14: lllustration of the automated guided vehicle of example 6.10. The
vehicle is shown as a large arrow on the left and as a small arrow on the right. On
the right, the vehicle is following a curved painted track, and has deviated from
the track by a distance ¢(r). The coordinates of the vehicle at time ¢ with respect
to the global coordinate frame are (x(z),y(r),d(z)).

6.5 Supervisory control

We introduce supervisory control through a detailed example. A control system involves
four components. There is a system called the plant—the physical process that is to be
controlled; the environment in which the plant operates; the sensors that measure some
variables of the plant and the environment; and the controller that determines the mode
transition structure and selects the time-based inputs to the plant. The controller has
two levels: the supervisory control that determines the mode transition structure, and
the ‘low-level’ control that selects the time-based inputs which control the behavior of
the refinements. A complete design includes both levels of control as in the following
example.

260 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

6. HYBRID SYSTEMS

u(t) e {stop, start, absent}

goStraight= {(u(?), x(1), (1), ¢ (1) | u(?) = stop, |e(?)| <&}
goRight ={(u(?), x(1), ¥(2), § (1) | u(?) != stop, &, < e(?)}
goLeft = {(u(®), x(2), ¥(1), ¢ (1)) | u(?) = stop, - &, > - e(1)}
goStop = {(u(®), x(t), (1), ¢ (1)) | u(?) = stop}

goStart = {(u(), x(2), y(t), ¢ (¢)) | u(t) = start}

x () =10 cos ¢(7)
y.(£) = 10 sin ¢(?)
d@®=-n

e (1) = flx(®), ¥(?)

x (£) =10 cos ¢ (7
y(0)=10sin ¢ (2)
¢@®=0

e (1) = flx(1), (1))

Vehicle

goRight/

goStraight/

goStop/

x =X
Y =Yo
¢ =¢()

f goLefi/

x®=0
(=0
$(@®H=0
e (t) = fix(), ¥(0)

x () =10 cos ¢ (¢)
¥ (®=10sin¢ ()
b =mn

e () = flx(1), (1))

Figure 6.15: The automatic guided vehicle of example 6.10 has four modes: stop,
straighlyleiftarigbhals and Systems

261


http://LeeVaraiya.org

6.5. SUPERVISORY CONTROL

262

Example 6.10: The plant is an automated guided vehicle or AGV that moves
along a closed track painted on a warechouse or factory floor. We will design a
controller so that the vehicle closely follows the track.

The vehicle has two degrees of freedom. At any time ¢, it can move forward along
its body axis at speed u(¢) with the restriction that 0 < u(¢) < 10 mph. It can also
rotate about its center of gravity with an angular speed ®(¢) restricted to —1t <
o(r) < m radians/second. We ignore the inertia of the vehicle.

Let (x(t),y(t)) € R? be the position and ¢(t) € [T, the angle (in radians) of the
vehicle at time ¢ relative to some fixed coordinate frame, as shown on the left in

Figure 6.14. In terms of this coordinate frame, the motion of the vehicle is given
by a system of three differential equations,

*(1) = u(t)coso(s),
§(0) = u()sing(r), 6.7)
o) = o).

The track and the vehicle are shown on the right of Figure 6.14. Equations (6.7) de-
scribe the plant. The environment is the closed painted track. It could be described
by an equation, but instead we will use a sensor to detect it.

The two-level controller design is based on a simple idea. The vehicle always
moves at its maximum speed of 10 mph. If the vehicle strays too far to the left
of the track, the controller steers it towards the right; if it strays too far to the
right of the track, the controller steers it towards the left. If the vehicle is close
to the track, the controller maintains the vehicle in a straight direction. Thus the
controller guides the vehicle in four modes, left, right, straight, and stop. In stop
mode an operator may bring the vehicle to a halt.

The following differential equations govern the AGV’s motion in the refinement
of the four modes. They describe the low-level controller, i.e. the selection of the
time-based inputs in each mode.

straight

x(t) = 10cosd(r)
10sin¢(7)
o) = 0

<.

—
~

~—

Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

6. HYBRID SYSTEMS

left
x(t) = 10coso(r)
y() = 10sin¢(r)
o) = =

right
x(t) = 10cosd(r)
y(t) = 10sin¢(z)
o) = —n

stop

x(t) =
) =
(1) =

In the stop mode, the vehicle is stopped, x(z),y(¢),d(¢) are constant. In the left
mode, 0(¢) increases at the rate of © radians/second, so from Figure 6.14 we see
that the vehicle moves to the left. In the right mode, it moves to the right. In the
straight mode, ¢(¢) is constant, and the vehicle moves straight ahead with a constant
heading. The refinements of the four modes are shown in the boxes of Figure 6.15.

2 @ 9@

We design the supervisory control governing transitions between modes in such
a way that the vehicle closely follows the track, using a sensor that determines
how far the vehicle is to the left or right of the track. We can build such a sensor
using photodiodes. Let’s suppose the track is painted with a light-reflecting color,
whereas the floor is relatively dark. Underneath the AGV we place an array of
photodiodes as shown in figure 6.16. The array is perpendicular to the AGV body
axis. As the AGV passes over the track, the diode directly above the track generates
more current than the other diodes. By comparing the magnitudes of the currents
through the different diodes, the sensor gives the displacement e(7) of the center of
the array (hence, the center of the AGV) from the track. We adopt the convention
that e(r) < 0 means that the AGV is to the right of the track and e(7) > 0 means it
is to the left.

We model the sensor output as a function f of the AGV’s position,

v, e(t):f(x(t)ay(t))'

Lee & Varaiya, Signals and Systems 263


http://LeeVaraiya.org

6.5. SUPERVISORY CONTROL

The function f of course depends on the environment—the track. We now specity
the supervisory controller precisely. We select two thresholds, 0 < &; < &, as
shown in Figure 6.16. If the magnitude of the displacement is small, |e(7)| < g,
we consider that the AGV is close enough to the track, and the AGV can move
straight ahead, in straight mode. If 0 < & < e(t) (e(¢) is large and positive), the
AGYV has strayed too far to the left and must be steered to the right, by switching
to right mode. If 0 > —&, > e(r) (e(?) is large and negative), the AGV has strayed
too far to the right and must be steered to the left, by switching to /eft mode. This
control logic is captured in the mode transitions of Figure 6.15. The input events
are {stop, start,absent}. By selecting events stop and start an operator can stop or
start the AGV. There is no time-based input. There is no external output. The initial
mode is stop, and the initial values of its refinement are (xq,yo,9o).

We analyze how the AGV will move. Figure 6.17 sketches one possible trajectory.
Initially the vehicle is within distance €; of the track, so it moves straight. At some
later time, the vehicle goes too far to the left, the guard

goRight = {(u(t),x(1),y(t),9(t)) | u(t) # stop, &2 < ()}

is satisfied, and there is a mode switch to right. After some time, the vehicle is
close enough to the track, the guard

goStraight = {(u(t),x(1),y(t),0(1)) | u(r) # stop, le(r)| < &1}

is satisfied, and there is a mode switch to straight. Some time later, the vehicle is
too far to the right, the guard

goLeft = {(u(t),x(1),0(1)) | u(r) # stop | —&2 > e(1)}

is satisfied, there is a mode switch to left, and so on.

The example illustrates the four components of a control system. The plant is described
by the differential equations (6.7) that govern the evolution of the refinement state at time
t, (x(t),y(t),0(r)), in terms of the time-based input, (u(r),®(r)). The second component
is the environment—the closed track. The third component is the sensor, whose output
at time 7, e(t) = f(x(¢),y(r)), gives the position of the AGV relative to the track. The
fourth component is the two-level controller. The supervisory controller comprises the
four modes and the guards that determine when to switch between modes. The low-level

264 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

6. HYBRID SYSTEMS

Zle//

OO(POOOOOO OOOO

A

| track
photodiode rac , ,

Figure 6.16: An array of photodiodes under the AGV is used to estimate the
displacement e of the AGV relative to the track. The photodiode directly above
the track generates more current.

straight

center of track

Initial position
of vehicle

Figure 6.17: A trajectory of the AGV, annotated with modes.

Lee & Varaiya, Signals and Systems 265


http://LeeVaraiya.org

6.6. FORMAL MODEL

controller specifies how the time-based inputs to the plant, # and ®, are selected in each
mode.

6.6 Formal model

We develop a formal model of a hybrid system similar to the ‘sets and functions’ model
of Section 3.1. A hybrid system HybridSystem is a 5-tuple,

HybridSystem = (States, Inputs, Outputs, TransitionStructure, initalState),

where, States, Inputs, Outputs are sets, and initalState € States is the initial state. TransitionStruc
consists of several items that determine how the hybrid system evolves intime t € T. T
may be R or Ny. Here we assume 7 = R..

States = Modes x RefinementStates is the state space. Modes is the finite set of modes.
RefinementStates is the state space of the refinements. If the current state at time 7 is
(m(t),s(t)) we say that the system is in mode m(r) and its refinement is in state s(z).

Inputs = InputEvents x TimeBasedInputs is the set of input symbols. The finite alphabet of
discrete input symbols is InputEvents, which includes a stuttering symbol. TimeBasedInputs
is the set of input values to which the refinement reacts. An input signal consists of a pair
of functions (u,x) where u: R, — InputEvents and x: R, — TimeBasedInputs. For all
except a discrete set of times ¢, u(t) is the stuttering symbol, absent.

Outputs = OutputEvents x TimeBasedOutputs is the set of output symbols, where OutputEvents
is the finite alphabet of discrete output symbols, including a stuttering output, absent, and
TimeBasedOutputs is the set of continuous output values. An output signal consists of a

pair of functions (v,y) where v: R — OutputEvents and y: R, — TimeBasedOutputs.

For all except a discrete set of times, v(t) = absent.

The transition structure determines how a mode transition occurs and how the refinement
state changes over time. Suppose the inputs signal is («,x). Suppose at time 7 the mode is
m and the refinement state is s. For each destination mode d there is a guard

Gm,d = Um.,d X Xm,d X Sm,d
C InputEvents x TimeBasedInputs X RefinementStates.

There is also an output event, say v, 4, and an action A, 4 : RefinmentStates — RefinmentStates
that assigns a (possibly new) value to each refinement state, (possibly) depending on the

266 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

6. HYBRID SYSTEMS

current value of the refinement state. If there is a match (u(r),x(t),s(t)) € Gy, 4, then there
is a discrete transition at 7; the mode after the transition is d, the output event v(f) = Vind 18
produced, and the refinement state in mode d at time 4 immediately after the transition
is set to s(t+) = Ay a(s(1).

If no guard is satisfied at time 7, then the refinement state s(¢) and the time-based output
y(t) are determined by the time-based input signal x according to the equations governing
the refinement dynamics. Here we will need to be concrete. In all of the examples above,
we have taken

RefinementStates = RY,
TimeBasedInputs = RM and
TimeBasedOutputs = RK.

In this concrete setting, the refinement dynamics are given as

Vi€T,, $t) = fuls(t),x(t)), (6.8)
y(1) = gm(s(t),x(1), (6.9)
where T;, C T is the set of times ¢ when the system is in mode m, and the functions
fu RVXRM: — RV,
gm RV xRM: 5 RK
characterize the behavior of the refinement system in mode m. The function
s : Ry — RefinementStates
is the trajectory of the refinment states.

We can now see how the hybrid system evolves over time. At time ¢t = 0, the system
starts in the initial state, say (m(0),s(0)). It evolves in alternating phases of time passage,
(to =0,11],(t1,12],- - -, and discrete transitions at 1,1, - - -. During the first interval (,1;],
no guard is satisfied and the system remains in mode m(0); the refinement state s(z)
and time-based output y(¢) are determined by (6.8), (6.9); and the discrete event output
v(t) = absent.

Attime t1, the guard G,y (g) (1) for some destination mode (1) is matched by (u(t1),x(t1),s(t1)).
There is a mode transition to m(1), the output event v(¢) is produced, and the continuous
state is set to s(t1+) = A (oym(1)(s(t1)). The discrete transition phase is now over, and
the system begins the time passage phase in the new mode m(1) and the continuous state

S(l‘l—i-).

Lee & Varaiya, Signals and Systems 267


http://LeeVaraiya.org

6.7. SUMMARY

6.7 Summary

Hybrid systems bridge time-based models and state-machine models. The combination of
the two families of models provides a rich framework for describing real-world systems.
There are two key ideas. First, discrete events are embedded in a time base. Second, a
hierarchical description is particularly useful, where the system undergoes discrete tran-
sitions between different modes of operation. Associated with each mode of operation
is a time-based system called the refinement of the mode. Mode transitions are taken
when guards that specify the combination of inputs and refinement states are satisfied.
The action associated with a transition, in turn, sets the refinement state in the destination
mode.

The behavior of a hybrid system is understood using the tools of state machine analysis
for mode transitions the tools of time-based analysis for the refinement systems. The
design of hybrid systems similarly proceeds on two levels: state machines are designed
to achieve the appropriate logic of mode transitions, and refinement systems are designed
to secure the desired time-based behavior in each mode.

268 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

6. HYBRID SYSTEMS

Exercises

In some of the following exercises you are asked to design state machines that carry
out a given task. The design is simple and elegant if the state space is properly chosen.
Although the state space is not unique, there often is a natural choice. As usual, each
problem is annotated with the letter E, T, C which stands for exercise, requires some
thought, requires some conceptualization. Problems labeled E are usually mechanical,
those labeled T require a plan of attack, those labeled C usually have more than one
defensible answer.

1. C Consider the loudness compensation of example 6.3. Suppose that instead of a
switch on the front panel, the system automatically selects from among four com-
pensation filters with state-space models [A, b, c;,d1], [A,b,c2,d2], [A,b,c3,d3], and
[A,D,c4,ds]. The A matrix and b vector are the same for all four. Which filter is
used depends on a discrete-time v input, where at index n, v(n) represents the cur-
rent volume level. When the volume is high, above some threshold, filter 4 should
be used. When it is low, filter 1 should be used. Design a hybrid system that does
this.

2. E Construct a timed automaton similar to that of Figure 6.4 which produces tick at
times 1,2,3,5,6,7,8,10,11,---. That is, ticks are produced with intervals between
them of 1 second (three times) and 2 seconds (once).

3. E The objective of this problem is to understand a timed automaton, and then to
modify it as specified.

(a) For the timed automaton shown in Figure 6.18, describe the output y. Avoid
imprecise or sloppy notation.

(b) Assume there is a new input u: R — Inputs with alphabet
Inputs = {reset,absent},

and that when the input has value reset, the hybrid system starts over, behaving
as if it were starting at time 0 again. Modify the hybrid system from part (a)
so that it behaves like the system in (a).

4. E You have an analog source that produces a pure tone. You can switch the source
on or off by the input event on or off. Construct a system that upon receiving

Lee & Varaiya, Signals and Systems 269


http://LeeVaraiya.org

EXERCISES

270

a={(r@),sn) | r(y=1}
b={(r(), s() | () =2}

b1s(t) 5(0) =0
r(t) =0 r(0):=0 y(t) € Integers
U {absent}
4>

al s(t)
r(t):=0

S0 =1 1 (0 =1
M) =1 1 ) =1

Figure 6.18: Timed automaton considered in Exercise 3.

an input event ring produces an 80 ms-long sound consisting of three 20 ms-long
bursts of the pure tone separated by two 10 ms intervals of silence. What does your
system do if it receives two ring events that are 50 ms apart?

. C Automobiles today have the features listed below. Implement each feature as a

timed automaton.

(a)

(b)

The dome light is turned on as soon as any door is opened. It stays on for 30
seconds after all doors are shut. What sensors are needed?

Once the engine is started, a beeper is sounded and a red light warning is
indicated if there are passengers that have not buckled their seat belt. The
beeper stops sounding after 30 seconds, or as soon the seat belts are buckled,
whichever is sooner. The warning light is on all the time the seat belt is un-
buckled. Hint: Assume the sensors provide a warn event when the ignition
is turned on and there is a seat with passenger not buckled in, or if the igni-
tion is already on and a passenger sits in a seat without buckling the seatbelt.
Assume further that the sensors provide a noWarn event when a passenger de-
parts from a seat, or when the buckle is buckled, or when the ignition is turned
off.

Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

6. HYBRID SYSTEMS

6. E A programmable thermostat allows you to select 4 times, 0 <77 < --- < Ty <24
(for a 24-hour cycle) and the corresponding temperatures ajp,--- ,a4. Construct a
timed automaton that sends the event a; to the heating systems controller. The
controller maintains the temperature close to the value g; until it receives the next
event. How many timers and modes do you need?

7. E Construct a parking meter similar to that in figure 6.6 that allows a maximum of
30 minutes (rather than 60 minutes) and accepts coin5 and coin25 as inputs. Then
draw the state trajectories (both the mode and the clock state) and the output signal
when coin5 occurs at time 0, coin25 occurs at time 3, and then there is no input
event for the next 35 minutes.

8. T Consider the timed automaton of Figure 6.6. Suppose we view the box as a
discrete-event system with {coin5, coin25,absent} as the input alphabet and {expired, abse
as the output alphabet. Does the box behave as a finite state machine?

9. C Figure 6.19 depicts the intersection of two one-way streets, called Main and
Secondary. A light on each street controls its traffic. Each light goes through a cycle
consisting of a red (R), green (G), and yellow (Y) phases. It is a safety requirement
that when one light is in its green or yellow phase, the other is in its red phase. The
yellow phase is always 20 seconds long.

The traffic lights operate as follows, in one of two modes. In the normal mode,
there is a 5 minute-long cycle with the main light having 4 minutes of green and 20
seconds of yellow—the secondary light is red for these 4 minutes and 20 seconds—
and 40 seconds of red—during which the secondary light is green for 20 seconds
followed by 20 seconds of yellow.

The second, or interrupt mode works as follows. Its purpose is to quickly give a
right of way to the secondary road. A sensor in the secondary road detects if a
vehicle has crossed it. When this happens, the main light aborts its green phase and
immediately switches to its 20 second yellow phase. If the vehicle is detected while
the main light is yellow or red, the system continues in its normal mode.

Design a hybrid system that controls the lights. Let this hybrid system have discrete
outputs that are pairs GG, GY, GR, etc. where the first letter denotes the color of the
main light second letter denotes the color of the secondary light.

10. T Design a ReceiverProtocol hybrid system that works together with the SenderProtocol
of example 6.7.

Lee & Varaiya, Signals and Systems 271


http://LeeVaraiya.org

EXERCISES

light
—> .
Main R Gly
)
[ ] detector

Figure 6.19: Traffic lights control the intersection of a main street and a secondary
street. A detector senses when a vehicle crosses it. The red phase of one light
must coincide with the green and yellow phases of the other light.

Secondary
aQ
e
=

272 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

6. HYBRID SYSTEMS

11

12.

13.

14.

15.

. E For the bouncing ball of example 6.9 let ¢, be the time when the ball hits the
ground for the n-th time, and let v(n) = y(z,) be the velocity at that time.

(a) Find a relation between v(n+ 1) and v(n) and then calculate v(n) in terms of
v(1).
(b) Obtain ¢, in terms of v(n).

(c) Calculate the maximum height reached by the ball after successive bumps.

E Translate refinement systems that are described as second-order differential
equations into first-order differential equations. Specifically:

(a) For the sticky masses system in example 6.8, find the function g such that
(6.1) and (6.2) are represented as (6.4). Is this function linear?

(b) For the bouncing ball system in example 6.9, find the function f such that
(6.5) is represented as (6.6). Is this function linear?

T Elaborate the hybrid system model of Figure 6.12 so that in the fogether mode,
the stickiness decays according to the differential equation

s(t) = —as(1)

where s(¢) is the stickiness at time #, and a is some positive constant. On the tran-
sition into this mode, the stickiness should be initialized to some starting stickiness
b.

T Show that the trajectory of the AGV of Figure 6.15 while it is in left or right
mode is a circle. What is the radius of this circle, and how long does it take to
complete a circle?

E Express the hybrid system of Figure 6.15 in terms of the formal model of Section
6.6. That is, identify the sets Inputs, Outputs, and the TransitionStructure.

Lee & Varaiya, Signals and Systems 273


http://LeeVaraiya.org

EXERCISES

274 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

Frequency Domain

Contents
7.1 Frequency decomposition . . . . .. ... ... 0o 277
Basics: Frequencies in Hertz and radians . . . . . . . ... ..... 278
Basics: Ranges of frequencies . . . . . . .. ... ... ... ... 279
Probing Further: Circle of fifths . . . . . . ... ... ... ..... 281
72 Phase . . . .. i i i e e e e 283
7.3 Spatialfrequency . .. ... .. ittt it 284
7.4 Periodic and finitesignals . . . . ... ... . ... .. 0 0., 285
7.5 Fourierseries. . . ... .. ...t ittt 289
Probing Further: Uniform convergence . . . . ... ... ...... 295
Probing Further: Mean square convergence . . . . . . . . ... ... 296
7.5.1 Uniqueness of the Fourier series . . . . ... ... ...... 297
Probing Further: Dirichlet conditions . . . . . . ... ... ..... 297
7.5.2  Periodic, finite, and aperiodic signals . . . . . ... ... .. 298
7.5.3 Fourier series approximations to images . . . . . . . ... .. 300
7.6 Discrete-timesignals . . . . ... ... ... 0 e 300
7.6.1 Periodicity . . . ... ... Lo 300
Basics: Discrete-time frequencies . . . . . . . ... . ... ..... 301
7.6.2 The discrete-time Fourier series . . . . . ... ... ..... 302
A A 11111 11 ) 303
Exercises . . .. ..ot ittt e e e e 304

275



We are interested in manipulating signals. We may wish to synthesize signals, as modems
need to do in order to transmit a voice-like signal through the telephone channel. We may
instead wish to analyze signals, as modems need to do in order to extract digital informa-
tion from a received voice-like signal. In general, the field of communications is all about
synthesizing signals with characteristics that match a channel, and then analyzing signals
that have often been corrupted by the channel in order to extract the original information.

We may also wish to synthesize natural signals such as images or speech. The field of
computer graphics puts much of its energy into synthesizing natural-looking images.
Image processing includes image understanding, which involves analyzing images to
determine their content. The field of signal processing includes analysis and synthesis of
speech and music signals.

We may wish to control a physical process. The physical process is sensed (using tem-
perature, pressure, position and speed sensors). The sensed signals are processed in order
to estimate the internal state of the physical process. The physical process is controlled
on the basis of the state estimate. Control system design includes the design of state
estimators and controllers.

In order to analyze or synthesize signals, we need models of those signals. Since a signal
is a function, a model of the signal is a description or a definition of the function. We
use two approaches. The first is a declarative (what is) approach. The second is an
imperative (how to) approach. These two approaches are complementary. Depending on
the situation, one approach is better than the other.

Signals are functions. This chapter in particular deals with signals where the domain is
time (discrete or continuous). It introduces the concept of frequency-domain represen-
tation of these signals. The idea is that arbitrary signals can be described as sums of
sinusoidal signals. This concept is first motivated by referring to psychoacoustics, how
humans hear sounds. Sinusoidal signals have particular psychoacoustic significance. But
the real justification for the frequency domain approach is much broader. It turns out to
be particularly easy to understand the effect that LTI systems (linear time invariant sys-
tems), discussed in Chapter 5, have on sinusoidal signals. A powerful set of analysis and
design techniques then follow for arbitrary signals and the LTI systems that operate on
them.

Although we know that few (if any) real-world systems are truly LTI, we can easily con-
strue models where the approximation is valid over some regime of operation. The previ-

276 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

7. FREQUENCY DOMAIN

ous chapter showed how modal models can be constructed to build realistic models over a
broader range of operating conditions. Frequency domain methods are amenable to such
hybrid system treatment.

7.1 Frequency decomposition

For some signals, particularly natural signals like voice, music, and images, finding a
concise and precise definition of the signal can be difficult. In such cases, we try to model
signals as compositions of simpler signals that we can more easily model.

Psychoacoustics is the study of how humans hear sounds. Pure tones and their frequency
turn out to be a very convenient way to describe sounds. Musical notes can be reasonably
accurately modeled as combinations of relatively few pure tones (although subtle proper-
ties of musical sounds, such as the timbre of a sound, are harder to model accurately).

When studying sounds, it is reasonable on psychoacoustic grounds to decompose the
sounds into sums of sinusoids. It turns out that the motivation for doing this extends well
beyond psychoacoustics. Pure tones have very convenient mathematical properties that
make it useful to model other types of signals as sums of sinusoids, even when there is
no psychoacoustic basis for doing so. For example, there is no psychoacoustic reason for
modeling radio signals as sums of sinusoids.

Time in seconds

Figure 7.1: Plot of four sinusoidal signals.

Lee & Varaiya, Signals and Systems 277


http://LeeVaraiya.org

7.1. FREQUENCY DECOMPOSITION

Consider the range of frequencies covering one octave, ranging from 440Hz to 880 Hz.
“Octave” is the musical term for a factor of two in frequency. The frequencies 440 Hz
and 880 Hz both correspond to the musical note A, but one octave apart. The next higher
A in the musical scale would have the frequency 1760 Hz, twice 880 Hz. In the western
musical scale, there are 12 notes in every octave. These notes are evenly distributed

Basics: Frequencies in Hertz and radians

A standard measure of frequency is Hertz, meaning cycles per second. Figure 7.1 shows
a plot of one second of four sine waves of different frequencies. For example, the fre-
quencies in Hertz of the musical note A on the piano keyboard are

fl = 557f2 = 1107f3 = 2207f4 :4407
fs = 880, fis = 1760, f; = 3520, fi — T040.

A sinusoidal waveform x with frequency fs = 440 can be defined by
VieR, x(t)=sin(440 x 2mr).

The factor 27 in this expressions is a nuisance. An argument to a sine function has units
of radians, so 27 has units of radians/cycle. Explicitly showing all the units (in square
brackets), we have

440[cycles/second] x 2m[radians/cycle]t[seconds] = (440 x 27t )[radians].

To avoid having to keep track of the factor 21 everywhere, it is common to use the
alternative units for frequency, radians per second. The symbol ® is commonly used to
denote frequencies in radians per second, while f is used for frequencies in Hertz. The
relationship between Hertz and radians per second is simple,

o =27nf,

as is easily confirmed by checking the units. Thus, in radians per second, the frequencies
of the musical note A on the piano keyboard are

®; =27T X 55,0 =27 X 110,03 = 27 x 220, 04 = 27 x 440,
™5 = 27 X 880, g = 27 x 1760, 07 = 27 x 3520, wg = 27 x 7040.

278 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

7. FREQUENCY DOMAIN

(geometrically), so the next note above A, which is B flat, has frequency 440 x V/2, where
V/2 ~ 1.0595. The next note above B flat, which is B, has frequency 440 x V/2 x V/2.

In table 7.1, the frequencies of the complete musical scale between middle A and A-880
are shown. Each frequency is B = V/2 times the frequency below it.

Frequencies that are harmonically related tend to sound good together. Figure 7.2 shows
the graph of a signal that is a major triad, a combination of the notes A, Ct (C sharp), and
E. By “combination” we mean “sum.” The A is a sinusoidal signal at 440 Hz. It is added
to a Cf, which is a sinusoidal signal at 554 Hz. This sum is then added to an E, which is
a sinusoidal signal at 659 Hz. Each of the components is also shown, so you can verify
graphically that at each point in time, the value of the solid signal is equal to the sum of
values of the dashed signals at that time.

The stimulus presented to the ear is the solid waveform. What you hear, however, as-
suming a small amount of musical training, is the three sinusoidal components, which the
human ear interprets as musical notes. The human ear decomposes the stimulus into its
sinusoidal components.

Basics: Ranges of frequencies

An extremely wide range of frequencies occur in natural and man-made signals. The
following abbreviations are common:
e Hz - hertz, cycles per second.

e kHz - kilohertz, thousands of cycles per second.
e MHz - megahertz, millions of cycles per second.
e GHz - gigahertz, billions of cycles per second.
e THz - terahertz, trillions of cycles per second.

Audible sounds signals are in the range of 20 Hz to 20 kHz. Sounds above this frequency
are called ultrasonic. Electromagnetic waves range from less than one hertz (used spec-
ulatively in seismology for earthquake prediction) through visible light near 10'3 Hz to
cosmic ray radiation up to 10> Hz.

Lee & Varaiya, Signals and Systems 279


http://LeeVaraiya.org

7.1. FREQUENCY DECOMPOSITION

Table 7.1:
Hertz.

A ] 880
Ab | 831
G | 784
Ft | 740
F | 698
E | 659
Dt | 622
D | 587
Ct | 554
C |523
B | 494
Bb | 466
A | 440

Frequencies of notes over one octave of the western musical scale, in

Sum —
| A
Csharp --
- E -

Time in seconds

x1 0-3

Figure 7.2: Graph of a major triad, showing its three sinusoidal components and

their sum.

280

Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

7. FREQUENCY DOMAIN

Probing Further: Circle of fifths

The western musical scale is based on our perception of frequency and the harmonic
relationships between frequencies. The following frequencies all correspond to the note
A:

110, 220, 440, 880, 1760, and 3520.

What about 440 x 3 = 1320? Notice that 1320/2 = 660, which is almost exactly the E
in table 7.1. Thus, 440 x 3 is (roughly) the note E, one octave above the E above A-440.
E and A are closely harmonically related, and to most people, they sound good together.
It is because

440 x 3 ~ 659 x 2

The notes A, Ct,, and E form a major triad. Where does the C§ come from? Its frequency
is 554 (see table 7.1). Notice that

440 x 5 ~ 554 x 4.

Among all the harmonic relationships in the scale, A, Cf, and E have one of the simplest.
This is the reason for their pleasing sound together.

For more arcane reasons, the interval between A and E, which is a frequency rise of
approximately 3/2, is called a fifth. The note 3/2 (a fifth) above E has frequency 988,
which is one octave above B-494. Another 3/2 above that is approximately F sharp
(740 Hz). Continuing in this fashion, multiplying frequencies by 3/2, and then possibly
dividing by two, you can approximately trace the twelve notes of the scale. On the 13-
th, you return to A, approximately. This progression is called the circle of fifths. The
notion of key and scale in music are based on this circle of fifths, as is the fact that there
are 12 notes in the scale.

Table 7.1 is calculated by multiplying each frequency by V/2 to get the next higher
frequency, not by using the circle of fifths. Indeed, the V/2 method applied twelve times
yields a note that is exactly one octave higher than the starting point, while the circle of
fifths only yields an approximation. The V/2 method yields the well-tempered scale.
This scale was popularized by the composer J. S. Bach. It sounds much better than a
scale based on the circle fifths when the range of notes spans more than one octave.

Lee & Varaiya, Signals and Systems 281


http://LeeVaraiya.org

7.1. FREQUENCY DECOMPOSITION

Time in seconds x10°

Figure 7.3: A sound waveform for an A-220 with more interesting timbre.

Example 7.1: The major triad signal can be written as a sum of sinusoids
s(t) = sin(440 x 27r) + sin(554 x 27t ) 4 sin(659 x 27t ),

for all # € R. The human ear hears as distinct tones the frequencies of these sinu-
soidal components. Musical sounds such as chords can be characterized as sums of
pure tones.

Purely sinusoidal signals, however, do not sound very good. Although they are recog-
nizable as notes, they do not sound like any familiar musical instrument. Truly musical
sounds are much more complex than a pure sinusoid. The characteristic sound of an
instrument is its timbre, and as we shall see, some aspects of timbre can also be charac-
terized as sums of sinusoids.

Timbre is due in part to the fact that musical instruments do not produce purely sinusoidal
sounds. Instead, to a first approximation, they produce sounds that consist of a fundamen-
tal sinusoidal component and harmonics. The fundamental is at the frequency of the note
being played, and the harmonics are at multiples of that frequency. Figure 7.3 shows a
waveform for a sound that is heard as an A-220 but has a much more interesting timbre
than a sinusoidal signal with frequency 220 Hz. In fact, this waveform is generated by
adding together sinusoidal signals with frequencies 220 Hz, 440 Hz, 660 Hz, 880 Hz,

282 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

7. FREQUENCY DOMAIN

101 | Phase 1 —

Phase 2 -

05F Phase 3 - -

Phase 4 --

0.0 Phase 5 ---
-0.5[
-1.0L

0 1 2 3 4 5 6 7 8
Time in seconds x10°

Figure 7.4: Five sinusoidal signals with different phases.

1100 Hz, 1320 Hz, and higher multiples, with varying weights. The 220 Hz component
is called the fundamental, while the others are called harmonics. The first harmonic is
the component at 440 Hz. The second harmonic is the component at 660 Hz. Etc. The
relative weights of the harmonics is a major part of what makes one musical instrument
sound different from another.

7.2 Phase

A sinusoidal sound has not just a frequency, but also a phase. The phase may be thought
of as the relative starting point of the waveform. Figure 7.4 shows five sinusoidal signals
with the same frequency but five different phases. These signals all represent the sound
A-440, and all sound identical. For a simple sinusoidal signal, obviously, phase has no
bearing on what the human ear hears.

Somewhat more surprising is that when two or more sinusoids are added together, the
relative phase has a significant impact on the shape of the waveform, but no impact on
the perceived sound. The human ear is relatively insensitive to the phase of sinusoidal
components of a signal, even though the phase of those components can strongly affect
the shape. If these waveforms represent something other than sound, like stock prices for
example, the effect of phase could be quite significant. For a sinusoidal signal, the phase

Lee & Varaiya, Signals and Systems 283


http://LeeVaraiya.org

7.3. SPATIAL FREQUENCY

Figure 7.5: Images that are sinusoidal horizontally, vertically, and both.

affects whether a particular point in time corresponds to a peak or a valley, for example.
For stock prices, it makes a difference whether you sell at a high or a low.

There are certain circumstances in which the human ear is sensitive to phase. In particular,
when two sinusoids of the same frequency combine, the relative phase has a big impact,
since it affects the amplitude of the sum. For example, if the two sinusoids differ in phase
by 180 degrees (7t radians), then when they add, they exactly cancel, yielding a zero signal.
The human brain can use the relative phase of a sound in the two ears to help spatially
locate the origin of a sound. Also, audio systems with two speakers, which simulate
spatially distributed sounds (“stereo”), can be significantly affected by the relative phase
of the signal produced by the two speakers.

Phase is measured in either radians or degrees. An A-440 can be given by
g(t) = sin(440 x 2mt + 0),

for all € R, where ¢ € R is the phase. Regardless of the value of ¢, this signal is still an
A-440. If ¢ = /2 then
g(t) = cos(440 x 2mt).

7.3 Spatial frequency

Psychoacoustics provides a compelling motivation for decomposing audio signals as sums
of sinusoids. In principal, images can also be similarly decomposed. However, the moti-
vations in this case are more mathematical than perceptual.

284 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

7. FREQUENCY DOMAIN

Figure 7.5 shows three images that are sinusoidal. Specifically, the intensity of the image
(the amount of white light that is reflected by the page) varies spatially according to a
sinusoidal function. In the leftmost image, it varies horizontally only. There is no vertical
variation in intensity. In the middle image, it varies vertically only. In the rightmost
image, it varies in both dimensions.

The sinusoidal image has spatial frequency rather than temporal frequency. Its units
are cycles per unit distance. The images in figure 7.5 have frequencies of roughly 2.5
cycles/inch. Recall that a grayscale picture is represented by a function

Image : VerticalSpace x HorizontalSpace — Intensity.

So an image that varies sinusoidally along the horizontal direction (with a spatial period
of H inches) and is constant along the vertical direction is represented by

Vx € VerticalSpace Yy € HorizontalSpace Image(x,y) = sin(2my/H).

Similarly, an image that varies sinusoidally along the vertical direction (with a spatial
period of V inches) and is constant along the horizontal direction is represented by

Vx € VerticalSpace Yy € HorizontalSpace Image(x,y) = sin(2nx/V).
An image that varies sinusoidally along both directions is represented by
Vx € VerticalSpace Yy € HorizontalSpace Image(x,y) = sin(2nx/V) x sin(2my/H).

These sinusoidal images have much less meaning than audio sinusoids, which we perceive
as musical tones. Nonetheless, we will see that images can be described as sums of
sinusoids, and that such description is sometimes useful.

7.4 Periodic and finite signals

When the domain is continuous or discrete time, we can define a periodic signal. As-
suming the domain is R, a periodic signal x with period p € R is one where for all t € R

x(t) =x(t+p). (7.1)
A signal with period p also has period 2p, since

x(1) =x(t+p) =x(1+2p).

Lee & Varaiya, Signals and Systems 285


http://LeeVaraiya.org

7.4. PERIODIC AND FINITE SIGNALS

In fact, it has period Kp, for any positive integer K. Usually, we define the period to be
the smallest p > 0 such that

VieR, x(t)=x(+p).

Example 7.2: The sinusoidal signal x where for all 7 € R
x(t) = sin(@ot)
is a periodic signal with period 21t/®y since for all 7 € R

sin( (¢ 421/ o)) = sin(wot).

A periodic signal is defined over an infinite interval. If the domain is instead a subset
[a,b] C R, for some finite a and b, then we call this a finite signal.

Example 7.3: The signal y where for all 7 € [0,27/ay],
y(t) = sin(wot)

is a finite signal with duration 27/@p. This interval spans exactly one cycle of the
sine wave.

A finite signal with duration p can be used to define a periodic signal with period p. All
that is needed is to periodically repeat the finite signal. Formally, given a finite signal
y: [a,b] — R, we can define a signal y': R — R by

y(r) ifr € [a,b]

) (7.2)
0 otherwise

VteR, y’(t):{

286 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

7. FREQUENCY DOMAIN

In other words, y'(¢) is simply y(¢) inside its domain, and zero elsewhere. Then the
periodic signal can be given by!

oo

xt)= Y y(t—mp) (7.3)

m—=—oo

where p = b —a. This is called a shift-and-add summation, illustrated in Figure 7.6. The
periodic signal is a sum of versions of y'(7) that have been shifted in time by multiples of
p. Do not let the infinite sum intimidate: all but one of the terms of the summation are zero
for any fixed ¢! Thus, a periodic signal can be defined in terms of a finite signal, which
represents one period. Conversely, a finite signal can be defined in terms of a periodic
signal (by taking one period).

We can check that x given by (7.3) is indeed periodic with period p,

x(t+p) = Zy t+p—mp) Zyt— m—1)p)

m—=—oo m—=—oo

= Y Y —kp) = ().

k=—c0

by using a change of variables, k = m — 1.

It is also important to note that the periodic signal x agrees with y in the finite domain
[a,b] of y, since

Vt € la,b] x(t) = Z Y (t —mp)

because, by (7.2), forz € [a,b], y'(r) = y(t) and y'(t —mp) =0 if m # 0.

We will see that any periodic signal, and hence any finite signal, can be described as a sum
of sinusoidal signals. This result, known as the Fourier series, is one of the fundamental
tools in the study of signals and systems.

U1f this notation is unfamiliar, see box on page 77.

Lee & Varaiya, Signals and Systems 287


http://LeeVaraiya.org

7.4. PERIODIC AND FINITE SIGNALS

y'(t +p)
t
| >
y'(6)
t
>
al b
(L)
y'(t-p)

—1—>
YN
M

Figure 7.6: By repeating the finite signal y we can obtain a periodic signal x.

288 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

7. FREQUENCY DOMAIN

7.5 Fourier series

A remarkable result, due to Joseph Fourier, 1768-1830, is that a periodic signal x: R - R
with period p € R can (usually) be described as a constant term plus a sum of sinusoids,

x(1) = Ao+ Y. Agcos(koor + o) (7.4)
k=1

This representation of x is called its Fourier series. The Fourier series is widely used
for signal analysis. Each term in the summation is a cosine with amplitude A; and phase
0. The particular values of A; and ¢y depend on x, of course. The frequency @y, which
has units of radians per second (assuming the domain of x is in seconds), is called the
fundamental frequency, and is related to the period p by

Wy = Zﬁ/p.

In other words, a signal with fundamental frequency ®¢ has period p = 2n/®. The con-
stant term A is sometimes called the DC term, where “DC” stands for direct current, a
reference back to the early applications of this theory in electrical circuit analysis. The
terms where k > 2 are called harmonics.

Equation (7.4) is often called the Fourier series expansion for x because it expands x in
terms of its sinusoidal components.

If we had a facility for generating individual sinusoids, we could use the Fourier series
representation (7.4) to synthesize any periodic signal. However, using the Fourier series
expansion for synthesis of periodic signals is problematic because of the infinite summa-
tion. But for most practical signals, the coefficients Ay become very small (or even zero)
for large k, so a finite summation can be used as an approximation. A finite Fourier
series approximation with K + 1 terms has the form

K
X(t)=Ap+ ¥ Arcos(kmot + dy). (7.5)
k=1

The infinite summation of (7.4) is, in fact, the limit of (7.5) as K goes to infinity. We need
to be concerned, therefore, with whether this limit exists. The Fourier series expansion
is valid only if it exists. There are some technical mathematical conditions on x that, if
satisfied, ensure that the limit exists (see boxes on pages 295 and 296). Fortunately, these
conditions are met almost always by practical, real-world time-domain signals.

Lee & Varaiya, Signals and Systems 289


http://LeeVaraiya.org

7.5. FOURIER SERIES

n ideal —
101 K=1
i K=3--
05 K7
0.0 4 K=32
0.5 7]
-1.0L i
0 1 2 3 4 5 6 7 8
Time in seconds x10°
(a)
T T T T T T T T T
1.2 T
1.0 7
08[ 7]
06 7]
04l | i
02f I .
ool 0 Il ,IT|,|TI,I,II,ITI,|T|,|T|,|T_

0.0 0.5 1.0 1.5 2.0 25 3.0 3.5 4.0

Frequency in Hz x10

(b)

Figure 7.7: (a) One cycle of a square wave and some finite Fourier series ap-
proximations. (b) The amplitudes of the Fourier series terms for the square wave.

290 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

7. FREQUENCY DOMAIN

Example 7.4: Figure 7.7 shows a square wave with period 8 msec and some finite
Fourier series approximations to the square wave. Only one period of the square
wave is shown. The method for constructing these approximations will be covered
in detail in Chapter 10. Here, we will just observe the general structure of the
approximations.

Notice in Figure 7.7(a) that the K = 1 approximation consists only of the DC term
(which is zero in this case) and a sinusoid with an amplitude slightly larger than
that of the square wave. Its amplitude is depicted in Figure 7.7(b) as the height
of the largest bar. The horizontal position of the bar corresponds to the frequency
of the sinusoid, 125 Hz, which is 1/(8 msec), the fundamental frequency. The
K = 3 waveform is the sum of the K = 1 waveform and one additional sinusoid
with frequency 375 Hz and amplitude equal to the height of the second largest bar
in Figure 7.7(b).

A plot like that in Figure 7.7(b) is called a frequency domain representation of the square
wave, because it depicts the square wave by the amplitude and frequency of its sinusoidal
components. Actually, a complete frequency domain representation also needs to give the
phase of each sinusoidal component.

Notice in Figure 7.7(b) that all even terms of the Fourier series approximation have zero
amplitude. Thus, for example, there is no component at 250 Hz. This is a consequence of
the symmetry of the square wave, although it is beyond the scope of work now to explain
exactly why.

Also notice that as the number of terms in the summation increases, the approximation
more closely resembles a square wave, but the amount of its overshoot does not appear
to decrease. This is known as Gibb’s phenomenon. In fact, the maximum difference
between the finite Fourier series approximation and the square wave does not converge
to zero as the number of terms in the summation increases. In this sense, the square
wave cannot be exactly described with a Fourier series (see box on page 295). Intuitively,
the problem is due to the abrupt discontinuity in the square wave when it transitions
between its high value and its low value. In another sense, however, the square wave is
accurately described by a Fourier series. Although the maximum difference between the
approximation and the square wave does not go to zero, the mean square error does go
to zero (see box on page 296). For practical purposes, mean square error is an adequate

Lee & Varaiya, Signals and Systems 291


http://LeeVaraiya.org

7.5. FOURIER SERIES

criterion for convergence, so we can work with the Fourier series expansion of the square
wave.

Example 7.5: Figure 7.8 shows some finite Fourier series approximations for a
triangle wave. This waveform has no discontinuities, and therefore the maximum
error in the finite Fourier series approxination converges to zero (see box on page
295). Notice that its Fourier series components decrease in amplitude much more
rapidly than those of the square wave. Moreover, the time-domain approximations
appear to be more accurate with fewer terms in the finite summation.

Many practical, real-world signals, such as audio signals, do not have discontinuities, and
thus do not exhibit the sort of convergence problems exhibited by the square wave (Gibbs
phenomenon). Other signals, however, such as images, are full of discontinuities. A (spa-
tial) discontinuity in an image is simply an edge. Most images have edges. Nonetheless,
a Fourier series representation for such a signal is almost always still valid, in a mean
square error sense (see box on page 296). This is sufficient for almost all engineering
purposes.

Example 7.6: Consider an audio signal given by
s(t) = sin(440 x 2mt) + sin(550 x 27t) 4 sin(660 x 27t).

This is a major triad in a non-well-tempered scale. The first tone is A-440. The
third is approximately E, with a frequency 3/2 that of A-440. The middle term is
approximately Cf, with a frequency 5/4 that of A-440. It is these simple frequency
relationships that result in a pleasant sound. We choose the non-well-tempered
scale because it makes it much easier to construct a Fourier series expansion for
this waveform. We leave the more difficult problem of finding the Fourier series
coefficients for a well-tempered major triad to Exercise 5.

To construct the Fourier series expansion, we can follow these steps:

1. Find p, the period. The period is the smallest number p > 0 such that s(r) =
s(t — p) for all ¢ in the domain. To do this, note that

sin(21ft) = sin(2nf (¢t — p))

292 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

7. FREQUENCY DOMAIN

ideal —
K =

K=7-.
{4 K=32 ---

Time in seconds x10°

(a)

0.8 7

0.6 7

02 7

V. o o _

0.0

0.0 0.5 1.0 1.5 2.0 25 3.0 3.5 4.0

Frequency in Hz x1 O3

(b)

Figure 7.8: (a) One cycle of a triangle wave and some finite Fourier series approx-
imations. (b) The amplitudes of the Fourier series terms for the triangle wave.

Lee & Varaiya, Signals and Systems 293


http://LeeVaraiya.org

7.5. FOURIER SERIES

if fp is an integer. Thus, we want to find the smallest p such that 440p,
550p, and 660p are all integers. Equivalently, we want to find the largest
fundamental frequency fo = 1/p such that 440/ f, 550/ fo, and 660/ f; are
all integers. Such an fj is called the greatest common divisor of 440, 550,
and 660. This can be computed using the gcd function in Matlab. In this
case, however, we can do it in our heads, observing that fo = 110.

2. Find Ay, the constant term. By inspection, there is no constant component in
s(t), only sinusoidal components, so Ag = 0.

3. Find A, the fundamental term. By inspection, there is no component at 110
Hz, so Ay = 0. Since A; =0, ¢; is immaterial.

4. Find A,, the first harmonic. By inspection, there is no component at 220 Hz,
so A, =0.

5. Find As. By inspection, there is no component at 330 Hz, so A3 = 0.

6. Find A4. There is a component at 440 Hz, sin(440 x 27¢). We need to find A4
and ¢4 such that

A4 cos(440 x 2mr + ¢4) = sin(440 x 2mr).

By inspection, 04 = —1/2 and A4 = 1.
7. Similarly determine that As = Ag = 1, 05 = 06 = —7/2, and that all other
terms are zero.

Putting this all together, the Fourier series expansion can be written

s(t) = 26: cos(kwot —T/2)

k=4

where ®y = 27 fy = 2207.

The method used in the above example for determining the Fourier series coefficients is
tedious and error prone, and will only work for simple signals. We will see much better
techniques in chapters 8 and 10.

294 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

7. FREQUENCY DOMAIN

Probing Further: Uniform convergence

The Fourier series representation of a periodic signal x is a limit of a sequence of func-
tions xy for N =1,2,--- where

N
VieR, xy(t)=Ao+ Y Arcos(koor + ).
k=1

Specifically, for the Fourier series representation to be valid, we would like that for all
t eR,

x(t) = &gI‘LXN(t)'

A strong criterion for validity of the Fourier series is uniform convergence of this limit,
in which for each real number € > 0, there exists a positive integer M such that for all
tcRandforall N > M,

lx(r) —xn(t)] < €

A sufficient condition for uniform convergence is that the signal x be continuous and that
its first derivative be piecewise continuous.

A square wave, for example, is not continuous, and hence does not satisfy this suffi-
cient condition. Indeed, the Fourier series does not converge uniformly, as you can see in
figure 7.7 by observing that the peak difference between x() and xx (¢) does not decrease
to zero. A triangle wave, however, is continuous, and has a piecewise continuous first
derivative. Thus, it does satisfy the sufficient condition. Its Fourier series approximation
will therefore converge uniformly, as suggested in Figure 7.8. A weaker, but still useful,
criterion for validity of the Fourier series is considered on page 296. That criterion is
met by the square wave.

See for example R. G. Bartle, The Elements of Real Analysis, Second Edition, John
Wiley & Sons, 1976, p. 117 (for uniform convergence) and p. 337 (for this sufficient
condition).

Lee & Varaiya, Signals and Systems 295


http://LeeVaraiya.org

7.5. FOURIER SERIES

Probing Further: Mean square convergence

The Fourier series representation of a periodic signal x with period p is a limit of a
sequence of functions xy for N =1,2,--- where

N
VteR, XN<Z) =Ap+ ZAkCOS(k(J)ot +¢k).
k=1

Specifically, for the Fourier series representation to be valid, we would like that for all
teR,

x(t) = 1\1/i_120xN(t)'

For some practical signals, such as the square wave of figure 7.7, this statement is not
quite true for all # € R. For practical purposes, however, we don’t really need for this
to be true. A weaker condition for validity of the Fourier series is that the total energy
in the error over one period be zero. Specifically, we say that xy(7) converges in mean
square to x(z) if

lim / |x(2) 1) dt =
N—rc0

The integral here is the energy in the error x(7) — xy(¢) over one period. It turns out that
if x itself has finite energy over one period, then xy(¢) converges in mean square to x(z).
That is, all we need is that
p
/ Ix(2)[2dt < oo,
0

Virtually all signals with any engineering importance satisfy this criterion. Note that

convergence in mean square does not guarantee that at any particular 1 € R, x(r) =

Al[im xn/(t). For a condition that (almost) ensures this for all practical signals, see box on
—>00

page 297.
See for example R. V. Churchill, Fourier Series and Boundary Value Problems, Third
Edition, McGraw-Hill Book Company, New York, 1978.

296 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

7. FREQUENCY DOMAIN

7.5.1 Uniqueness of the Fourier series

Suppose x: R — R is a periodic function with period p. Then the Fourier series expansion
is unique. In other words if it is both true that

x(t) =Ao+ Z Ay cos(kmot + Oy)
k=1

Probing Further: Dirichlet conditions

The Fourier series representation of a periodic signal x with period p is a limit of a
sequence of finite Fourier series approximations xy for N = 1,2,.--. We have seen in
the box on page 295 a strong condition that ensures that V ¢ € R,

x(t) = lim xy(7). (7.6)
N—roo
We have seen in the box on page 296 a weaker condition that does not guarantee this,
but instead guarantees that the energy in the error over one period is zero. It turns that
for almost all signals of interest, we can assert that (7.6) holds for almost all t € R. In
particular, if the Dirichlet conditions are satisfied, then (7.6) holds for all # except where
x is discontinuous. The Dirichlet conditions are three:
e Over one period, x is absolutely integrable, meaning that

p

/ Ix(1)|dt < .

0

e Over one period, x is of bounded variation, meaning that there are no more than
a finite number of maxima or minima. That is, if the signal is oscillating between
high and low values, it can only oscillate a finite number of times in each period.

e Over one period, x is continuous at all but a finite number of points.

These conditions are satisfied by the square wave, and indeed by any signal of practical
engineering importance.

Lee & Varaiya, Signals and Systems 297


http://LeeVaraiya.org

7.5. FOURIER SERIES

and

X(l‘) =By+ Z By COS(k(l)ol + Gk),
k=1

where @y = 27/ p, then it must also be true that
Vk>0, A;=B;and ¢ mod 2w = 06; mod 2.

(The modulo operation is necessary because of the non-uniqueness of phase.) Thus, when
we talk about the frequency content of a signal, we are talking about something that
is unique and well defined. For a suggestion about how to prove this uniqueness, see
problem 11.

7.5.2 Periodic, finite, and aperiodic signals

We have seen in Section 7.4 that periodic signals and finite signals have much in common.
One can be defined in terms of the other. Thus, a Fourier series can be used to describe
a finite signal as well as a periodic one. The “period” is simply the extent of the finite
signal. Thus, if the domain of the signal is [a,b] C R, then p = b — a. The fundamental
frequency, therefore, is just wy = 21/(b —a).

An aperiodic signal, like an audio signal, can be partitioned into finite segments, and a
Fourier series can be constructed from each segment.

Example 7.7: Consider the train whistle shown in Figure 7.9(a). Figure 7.9(b)
shows a segment of 16 msec. Notice that within this segment, the sound clearly has
a somewhat periodic structure. It is not hard to envision how it could be described
as sums of sinusoids. The magnitudes of the Ay Fourier series coefficients for this
16 msec segment are shown in Figure 7.9(c). These are calculated on a computer
using techniques we will discuss later, rather than being calculated by hand as in
the previous example. Notice that there are three dominant frequency components
that give the train whistle its tonality and timbre.

298 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

7. FREQUENCY DOMAIN

0.4

-0.2[

-0.4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Time in seconds

(a)

0.0 7]

021

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

(b) x10°
T T T T T T T T T
010 M ]
0.08 [ ]
0.06 [ 7]
0.04[ 7]
0.02 ’_l> 7]
0.00 L comm=m |_|'I'|'|'I—r||'ﬂ—|—n—;_.—-—n-|—n—r A | i
1 1 1 1 1 1 1 1 L
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
(©) x10°

Figure 7.9: (a) A 1.6 second train whistle. (b) A 16 msec segment of the train
whistle. (c) The Fourier series coefficients for the 16 msec segment.

Lee & Varaiya, Signals and Systems 299


http://LeeVaraiya.org

7.6. DISCRETE-TIME SIGNALS

7.5.3 Fourier series approximations to images

Images are invariably finite signals. Given any image, it is possible to construct a periodic
image by just tiling a plane with the image. Thus, there is again a close relationship
between a periodic image and a finite one.

We have seen sinusoidal images (Figure 7.5), so it follows that it ought to be possible
to construct a Fourier series representation of an image. The only hard part is that im-
ages have a two-dimensional domain, and thus are finite in two distinct dimensions. The
sinusoidal images in Figure 7.5 have a vertical frequency, a horizontal frequency, or both.

Suppose that the domain of an image is [a,b] X [c,d] C Rx R. Let py = b—a, and
pv = d — c represent the horizontal and vertical “periods™ for the equivalent periodic
image. For constructing a Fourier series representation, we can define the horizontal and
vertical fundamental frequencies as follows:

Oy =21/ py

Oy = 27t/pv

The Fourier series representation of Image: [a,b] X [c,d] — Intensity is

Image(x,y) = Z Z A m cos(kopx + Ok ) cos(moyy + @y,)
k=0 m=0

For convenience, we have included the constant term Ag o in the summation, so we assume
that ¢o = @9 = 0. (Recall that cos(0) = 1).

7.6 Discrete-time signals

Consider signals of the form x: Z — R, which if the domain is interpreted as time are
discrete-time signals. Discrete-time signals can be decomposed into sinusoidal compo-
nents much like continuous-time signals. There are some minor subtleties, however.

7.6.1 Periodicity

A discrete-time signal is periodic if there is a non-zero integer p > 0 such that

VneZ, x(n+p)=uxn).

300 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

7. FREQUENCY DOMAIN

Note that, somewhat counterintuitively, not all sinusoidal discrete-time signals are peri-
odic. Consider

x(n) = cos(2mfn). (7.7)
For this to be periodic, we must be able to find a non-zero integer p such that for all
integers n,
x(n+p) =cos(2nfn+2nfp) = cos(2nfn) = x(n).
This can be true only if (2tfp) is an integer multiple of 2. That is, if there is some
integer m such that

2nfp = 2nm.

Dividing both sides by 21tp, we see that this signal is periodic only if we can find nonzero
integers p and m such that

f=m/p.

Basics: Discrete-time frequencies

When the domain of a signal is Z, then the units of frequency are cycles/sample.
Consider for example the discrete-time signal given by

VneZ, x(n)=cos(2nfn).

Suppose this represents an audio signal that is sampled at 8000 samples/second. Then
to convert f to Hertz, just watch the units:

fleycles/sample] x 8000[samples/second| = 8000 f[cycles/second].
The frequency could have been equally well given in units of radians/sample, as in
x(n) = cos(on).
for all n € Z. To convert ® to Hertz,

o[radians/sample] x 8000[samples/second] x (1/2m)[cycles/radian]
= (8000w/2m)|cycles/second).

Lee & Varaiya, Signals and Systems 301


http://LeeVaraiya.org

7.6. DISCRETE-TIME SIGNALS

In other words, f must be rational. Only if f is rational is this signal periodic.

Example 7.8: Consider a discrete-time sinusoid x given by
VneZ, x(n)=cos(4mn/s).
Putting this into the form of (7.7),
x(n) = cos(2m(2/5)n),

we see that it has frequency f = 2/5 cycles/sample. If this were a continuous-time
sinusoid, we could invert this to get the period. However, the inverse is not an inte-
ger, so it cannot possibly be the period. Noting that the inverse is 5/2 samples/cycle,
we need to find the smallest multiple of this that is an integer. Multiply by 2, we
get 5 samples/(2 cycles). So the period is p =5 samples.

In general, for a discrete sinusoid with frequency f cycles/sample, the period is p = K/ f,
where K > 0 is the smallest integer such that K/ f is an integer.

7.6.2 The discrete-time Fourier series

Assume we are given a periodic discrete-time signal x with period p. Just as with continuous-
time signals, this signal can be described as a sum of sinusoids, called the discrete-time
Fourier series (DFS) expansion,

x(n) =Ap+ f Ay cos(kmon + Ox) (7.8)
k=1

where
K— { (p—1)/2 if pisodd
p/2 if p is even
Unlike the continuous-time case, the sum is finite. Intuitively, this is because discrete-
time signals cannot represent frequencies above a certain value. We will examine this
phenomenon in more detail in Chapter 11, but for now, it proves extremely convenient.

302 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

7. FREQUENCY DOMAIN

Mathematically, the above relation is much simpler than the continuous-time Fourier se-
ries. All computations are finite. There is a finite number of signal values in one period
of the waveform. There is a finite number of terms in the Fourier series representation
for each signal value. Unlike the continuous-time case, it is easy for computers to man-
age this representation. Given a finite set of values, Ag,--- ,Ag, a computer can calculate
x(n). Moreover, the representation is exact for any periodic signal. No approximation is
needed, and there is no question of convergence. In the continuous-time case, the Fourier
series representation is accurate only for certain signals. For the discrete-time case, it is
always accurate.

The DFS can be calculated efficiently on a computer using an algorithm called the fast
Fourier transform (FFT). All of the Fourier series examples that are plotted in this text
were calculated using the FFT algorithm.

7.7 Summary

A time-based signal can be described as a sum of sinusoids. This sum is called a Fourier
series. The magnitudes and phases of the sinusoids, taken together as a function of fre-
quency, are called the frequency-domain representation of the signal. For audio signals,
this frequency-domain representation has a direct psychoacoustic significance. But we
will see in the next chapter that this representation has a significance for all signals when
LTI systems are used to process the signals. We will see that the effect that an LTI system
has on a signal is particularly easy to understand in the frequency domain.

Lee & Varaiya, Signals and Systems 303


http://LeeVaraiya.org

EXERCISES

Exercises

Note: each problem is annotated with the letter E, T, C which stands for exercise, requires
some thought, requires some conceptualization. Problems labeled E are usually mechan-
ical, those labeled T require a plan of attack, those labeled C usually have more than one
defensible answer.

1. E In (7.1) we defined periodic for continuous-time signals.

(a) Define finite and periodic for discrete-time signals, where the domain is Z.

(b) Define finite and periodic for images.

2. E Which of the following signals is periodic with a period greater than zero, and
what is that period? All functions are of the form x: R — C. The domain is time,
measured in seconds, and so the period is in seconds.

(a) VteR, x(r)=10sin(2mz) + (10 +2i) cos(2mr)
(b) ViR, x(t)=sin(2mt) + sin(v/2mr)
(c) Vt€R, x(t)=sin(2v/2nt)+ sin(v/2mr)

3. E Consider the discrete-time signal x where
VneZ, x(n)=1+cos(4nn/9).

(a) Find the period p, where p > 0.

(b) Give the fundamental frequency corresponding to the period in (1). Give the
units.

(c) Give the coefficients Ag,A1,Az,--- and ¢1,¢o,--- of the Fourier series expan-
sion for this signal.

4. E Consider a continuous-time signal x: R — R defined by
VieR, x(t)=cos(wit)+ cos(myt),
where 07 = 27 and ®, = 31 radians/second.

(a) Find the smallest period p € R, where p > 0.

(b) Give the fundamental frequency corresponding to the period in (a). Give the
units.

304 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

7. FREQUENCY DOMAIN

(c) Give the coefficients Ag,A1,A2,--- and ¢, ¢o,--- of the Fourier series expan-
sion for x.

5. T Determine the fundamental frequency and the Fourier series coefficients for the
well-tempered major triad,

(1) = sin(440 x 27t) 4 sin(554 x 27t) + sin(659 x 27t ).

6. EDefinex: R — R
VieR, x(t) = S5cos(oot+m/2)
+5cos(wor —m/6)
+5cos(wor —2m/3).
Find A and ¢ so that
VieR, x(t)=Acos(wo+0).
Hint: Appendix B might be useful.

7. T In this problem, we examine a practical application of the mathematical result in
problem 6. In particular, we consider multipath interference, a common problem
with wireless systems where multiple paths from a transmitter to a receiver can
result in destructive interference of a signal.

When a transmitter sends a radio signal to a receiver, the received signal consists
of the direct path plus several reflected paths. In Figure 7.10, the transmitter is on
a tower at the left of the figure, the receiver is the telephone in the foreground, and
there are three paths: the direct path is [y meters long, the path reflected from the
hill is /; meters long, and the path reflected from the building is /, meters long.

Suppose the transmitted signal is a f Hz sinusoid x: R — R,
VtieR, x(t)=Acos(2nft)
So the received signal is y such that V¢ € R,
y(t) = opAcos(2mf(t — %O))
oA cos(2mf(t — %))

+apAcos(2mf (1 — %2)) (7.9)

Lee & Varaiya, Signals and Systems 305


http://LeeVaraiya.org

EXERCISES

Here, 0 < a; < 1 are numbers that represent the attenuation (or reduction in signal

amplitude) of the signal, and ¢ = 3 x 10® m/s is the speed of light in a vacuum.

2

Answer the following questions.

(a)

(b)

(©)

(d)

(e

()

€]

Explain why the description of y given in (7.9) is a reasonable model of the
received signal.

What would be the description if instead of the 3 paths as shown in Figure
7.10, there were 10 paths (one direct and 9 reflected).

The signals received over the different paths cause different phase shifts, ¢,
so the signal y (with three paths) can also be written as

2
VieR, y(t)=Y ogxAcos(2mfr — o)
k=0

What are the ¢;? Give an expression in terms of f, [y, and c.

Let ® = max{0; — ¢o,02 — ¢o} be the largest difference in the phase of the
received signals and let L = max{l; —lo,l» — I} be the maximum path length
difference. What is the relationship between ®, L, f?

Suppose for simplicity that there is only one reflected path of distance /1, i.e.
take o = 0 in the expressions above. Then ® = ¢; — ¢9. When & = x, the
reflected signal is said to destroy the direct signal. Explain why the term “de-
stroy” is appropriate. (This phenomenon is called destructive interference.)

In the context of mobile radio shown in the figure, typically L < 500m. For
what values of f is ® < w/10? (Note that if & < /10 the signals will not
interact destructively by much.)

For the two-path case, derive an expression that relates the frequencies f that
interfere destructively to the path length difference L = I — Iy.

8. T The function x: R — R is given by its graph shown in Figure 7.11. Note that
Vit¢1[0,1], x(t) =0, and x(0.4) = 1. Define y by

oo

VieR, y()= Z x(t —kp)
k= —oo

where p is the period.

%In reality, the reflections are more complicated than the model here.

306

Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

7. FREQUENCY DOMAIN

reflected paths

"

direct path

Figure 7.10: A direct and two reflected paths from transmitter to receiver.

_7Tr/IL

Figure 7.11: The graph of x.

Lee & Varaiya, Signals and Systems 307


http://LeeVaraiya.org

EXERCISES

(a) Prove that y is periodic with period p, i.e.
VieR,y(r)=y(+p).

(b) Plotyfor p=1.

(c) Ploty for p=2.

(d) Ploty for p =0.8.

(e) Ploty for p =0.5.

(f) Suppose the function z is obtained by advancing x by 0.4, i.e.

VieR, z(r)=x(t+0.4).

Define w by

oo

VieR, w()= Y zr—kp)
k=—o0

What is the relation between w and y. Use this relation to plot w for p = 1.
9. T Suppose x: R — R is a periodic signal with period p, i.e.
VieR, x(t)=x(+p).
Let f: R — R be any function, and define the signal y: R - R by y = fox, i.e.
ViER, y(t)=f(x()).

(a) Prove that y is periodic with period p.
(b) Suppose Vit € R, x(t) =sin(2nt). Suppose f is the sign function, V a € R,

{ 1 ifa>0

F@=9 1 ifa<o

Plot x and y.

(c) SupposeVre€R, x(t)=sin(2nt). Suppose f is the square function, ¥V x € R,
f(x) =x2. Plot y.

10. C Suppose the periodic square wave shown on the left in Figure 7.12 has the Fourier
series representation

S}

Ao+ Z Ajcos(2mkt / p + k)
k=1

Use this to obtain a Fourier series representation of the two-dimensional pattern of
rectangles on the right.

308 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

7. FREQUENCY DOMAIN

>
2p/3 23| p
>
>

2p/3

>
P

Figure 7.12: A periodic square wave (left) and a periodic pattern (right).

11. T Suppose Ay € C, o € R, and k = 1,2, such that
VieR, A =A™ (7.10)

Show that A; = A, and w; = m,. Hint: Evaluate both sides of (7.10) at r = 0, and
evaluate their derivatives at t = 0.

Discussion: This result shows that in order for two complex exponential signals
to be equal, their frequencies, phases, and amplitudes must be equal. More in-
terestingly, this result can be used to show that if a signal can be described as a
sum of complex exponential signals, then that description is unique. There is no
other sum of complex exponentials (one involving different frequencies, phases,
or amplitudes) that will also describe the signal. In particular, the Fourier series
representation of a periodic signal is unique, as stated above in theorem 7.5.1.

Lee & Varaiya, Signals and Systems 309


http://LeeVaraiya.org

EXERCISES

310 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

Frequency Response

Contents
81 LTISystemsS. . . v v v v v v v v v v ot oot oo oo oo o oo oo 313
8.1.1 Timeinvariance . . . . . . . . . . . . oot 313
8.1.2 Linearity . . . . . . . .. ... 318
8.1.3 Linearity and time-invariance . . . . . . . ... . ... ... 321
8.2 Finding and using the frequency response . . . . . ... ...... 325
8.2.1 Linear difference and differential equations . . . . . .. . .. 328
Basics: Sinusoids in terms of complex exponentials . . . . . . .. .. 330
Tips and Tricks: Phasors . . . . . . . . .. . . ... 331
8.2.2 The Fourier series with complex exponentials . . . . . . . . . 338
823 Examples . . . . .. ... 339
8.3 Determining the Fourier series coefficients . ... ......... 339
8.3.1 Negative frequencies . . . . . . . ... ... ... ... ... 340
8.4 Frequency response and the Fourier series . . ........... 340
8.5 Frequency response of composite systems . . . ... ........ 342
8.5.1 Cascadeconnection. . . . . . ... ... ........... 342
8.5.2 Feedbackconnection . . . . ... ... .. .......... 344
8.6 SUMMArY . . . . v v v v i ittt e e e e e e 346
Probing Further: Relating DFS coefficients . . . . . ... ... ... 347
Probing Further: Formula for Fourier series coefficients . . . . . . . 349
Probing Further: Exchanging integrals and summations . . . . . . . 350
Probing Further: Feedback systems are LTI . . . .. ... ... ... 352
Exercises . ... ..ottt e e e e e 355

311



A class of systems that yield to sophisticated analysis techniques is the class of linear time-
invariant systems (LTI system), discussed in Chapter 5. LTI systems have a key property:
given a sinusoidal input, the output is a sinusoidal signal with the same frequency, but
possibly different amplitude and phase. Given an input that is a sum of sinusoids, the
output will be a sum of the same sinusoids, each with its amplitude and phase (possibly)
modified.

We can justify describing audio signals as sums of sinusoids on purely psychoacoustic
grounds. However, because of this property of LTI systems, it is often convenient to de-
scribe any signal as a sum of sinusoids, regardless of whether there is a psychoacoustic
justification. The real value in this mathematical device is that by using the theory of
LTI systems, we can design systems that operate more-or-less independently on the sinu-
soidal components of a signal. For example, abrupt changes in the signal value require
higher frequency components. Thus, we can enhance or suppress these abrupt changes by
enhancing or suppressing the higher frequency components. Such an operation is called
filtering because it filters frequency components. We design systems by crafting their
frequency response, their response to sinusoidal inputs. An audio equalizer, for exam-
ple, is a filter that enhances or suppresses certain frequency components. Images can also
be filtered. Enhancing the high frequency components will sharpen the image, whereas
suppressing the high frequency components will blur the image.

State-space models described in previous chapters are precise and concise, but in a sense,
not as powerful as a frequency response. For an LTI system, given a frequency response,
you can assert a great deal about the relationship between an input signal and an output
signal. Fewer assertions are practical in general with state-space models.

LTI systems, in fact, can also be described with state-space models, using difference
equations and differential equations, as explored in Chapter 5. But state-space models
can also describe systems that are not LTI. Thus, state-space models are more general.
It should come as no surprise that the price we pay for this increased generality is fewer
analysis and design techniques. In this chapter, we explore the (very powerful) analysis
and design techniques that apply to the special case of LTI systems.

312 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

8. FREQUENCY RESPONSE

8.1 LTI systems

LTI systems have received a great deal of intellectual attention for two reasons. First,
they are relatively easy to understand. Their behavior is predictable, and can be fully
characterized in fairly simple terms, based on the frequency domain representation of
signals that we introduced in the previous chapter. Second, many physical systems can
be reasonably approximated by them. Few physical systems perfectly fit the model, but
many fit very well within a certain regime of operation. Hybrid system models can be
used when we wish to model more than one such regime of operation.

8.1.1 Time invariance

Consider the set of signals whose domain is interpreted as time. Such signals are func-
tions of time, sometimes called time-domain signals. The domain might be R , for
continuous-time signals, or Z , for discrete-time signals. Physical audio signals, for
example, are continuous-time signals, while a digital audio file is a discrete-time sig-
nal. Systems with continuous-time input and output signals are called continuous-time
systems. Systems with discrete-time input and output signals are called discrete-time
systems.

A simple continuous-time system is the delay system Dz, where if the input is x, then the
output y = D¢(x) is given by

VieR, y(t)=x(—r). (8.1)

Positive values of T result in positive delays (despite the subtraction in x(f — T)). Any
delay results in a shifting left or right of the graph of a signal, as shown in Figure 8.1.

Example 8.1: Consider a continuous-time signal x given by
VieR, x(t)=cos(2m).
Let y = Dy s5(x). Then
VieR, y(t)=cos(2n(t—0.5)) =cos(2nt — ).
The delay by 0.5 seconds is equivalent to a phase shift of —7 radians. For a sinu-

soidal signal, and only for a sinusoidal signal, time delay and phase changes are

Lee & Varaiya, Signals and Systems 313


http://LeeVaraiya.org

8.1. LTI SYSTEMS

Figure 8.1: lllustration of the delay system D:. D_; 4(x) is the signal x to the left
by 1.4, and D o(x) is x moved to the right by 1.0.

equivalent, except for the fact that phase is measured in radians (or degrees) rather
than in seconds. In addition, a phase change of g is equivalent to a phase change
of ¢+ K2m for any integer K. Phase applies to sinusoidal signals, whereas delay
applies to any signal that is a function of time.

Intuitively, a time-invariant system is one whose response to inputs does not change with
time. More precisely, a continuous-time system S is said to be time invariant if

VieR, SoD;=D;oS. (8.2)

Figure 8.2 illustrates this equivalence, where the left hand side, S o D, is shown on top,
and the right hand side, D; 0 S, is shown on the bottom. Time invariance implies that the
upper and lower systems in figure 8.2 have identical behavior.

Equivalently, S is time-invariant if for all x and 7,
S(Dx(x)) = De(S(x)).
Since both sides above are functions, this equation means that
Vi€R,  S(Di(x))(t) = De(S(x))(7).
Thus a less compact version of (8.2) is'

VT6x, S(De(x))(t) = De(S(x))(0)-

"'We use the shorthand “V x” instead of “V x € [R — R]” when the set is understood. Similarly, we can
write “V T,7,x” instead of “VT € R,V € R,Vx € [R — R].

314 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

8. FREQUENCY RESPONSE

Figure 8.2: Time invariance implies that the top and bottom systems produce the
same output signal for the same input signal.

This is interpreted as follows:

A system S is time invariant if, for any input x that produces output y, a delayed input
D+ (x) produces output Dz(y).

Similarly, the discrete-time M-sample delay is written Dy;. The signal y = Dy(x) is given
by
VneZ, yn)=x(n—M). (8.3)

A discrete-time system S is time invariant if

VM,x, S(Du(x)) = Du(S(x)). (8.4)

Example 8.2: Consider a discrete-time system S,
S:[Z—R]—[Z—R].
Suppose that any input x produces output y where
VneZ, y(n)=x(n)+09x(n—1). (8.5)

This system is time-invariant. To show this, consider a delayed input £ = Dy(x),
for some integer M. That is,

Vn, x(n)=x(n—M). (8.6)

Lee & Varaiya, Signals and Systems 315



http://LeeVaraiya.org

8.1. LTI SYSTEMS

316

Suppose that this input produces output § = S(£). Then by the relation (8.5) be-
tween an input and an output,

Vn, $(n)==xn)+09%(n-1).
Substituting (8.6), we see that
Vn, $(n)=x(n—M)+09x(n—M—1)=y(n—M).

Since § = Dy(y), the system is time-invariant.

Example 8.3: Consider the system DelayAndSquare, or DS for short,
DS:[R—R]— [R—R].
Suppose that any input x produces output y where
VieR, y(t)=(x(t—1))> (8.7)

This system is time-invariant. To show this, consider a delayed input £ = D(x), for
some real number t. That is,

Ve, %(t)=x(t—r). (8.8)

Suppose that this input produces output § = S(£). Then by the relation (8.7) be-
tween an input and an output,

Vi, () = (%~ 1)
Substituting (8.8), we see that

Vi, $(0)=x(r—1-1)*=y(r—1).

Since § = D+(y), the system is time-invariant.

Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

8. FREQUENCY RESPONSE

Example 8.4: Consider a system ReverseTime or RT,
RT: R - R] = [R —R],
where any input x produces output y related by
VieR, y(t)=ux(—1). (8.9)

This system is not time-invariant. To show this, consider a delayed input £ = D¢(x),
for some real number t. That is,

Ve, x(t)=x(t—1). (8.10)

Suppose that this input produces output § = S(£). Then by the relation (8.9) be-
tween an input and an output,

Substituting (8.10), we see that

Ve, 9(t)=x(—t—1)#y@t—1)=x(—1+1).

Since § # D<(y), the system is not time-invariant.

To be completely convinced that these two signals are different in general, consider
a particular signal x such that V¢, x(¢) =, and take T = 1. Then $(0) = —1, but

(D(¥))(0) = 1.

Time invariance is a mathematical fiction. No electronic system is time invariant in the
strict sense. For one thing, such a system is turned on at some point in time. Clearly,
its behavior before it is turned on is not the same as its behavior after it is turned on.
Nevertheless, it proves to be a very convenient mathematical fiction, and it is a reasonable
approximation for many systems if their behavior is constant over a relatively long period
of time (relative to whatever phenomenon we are studying). For example, your audio
amplifier is not a time-invariant system. Its behavior changes drastically when you turn it
on or off, and changes less drastically when you raise or lower the volume. However, for

Lee & Varaiya, Signals and Systems 317


http://LeeVaraiya.org

8.1. LTI SYSTEMS

the duration of a compact disc, if you leave the volume fixed, the system can be reasonably
approximated as being time-invariant.

Some systems have a similar property even though they operate on signals whose domain
is not time. For example, the domain of an image is a region of a plane. The output
of an image processing system may not depend significantly on where in the plane the
input image is placed. Shifting the input image will only shift the output image by the
same amount. This property which generalizes time invariance and holds for some image
processing systems, is called shift invariance (see problem 5).

8.1.2 Linearity

Consider the set of signals whose range is R or C . Such signals are real-valued functions
or complex-valued functions. Since real-valued functions are a subset of complex-valued
functions, we only need to talk about complex-valued functions. It does not matter (for
now) whether they are continuous-time signals or discrete-time signals. The domain could
be R or Z.

Suppose x is a complex-valued function and a is a complex constant. Then we can define
a new complex-valued function ax such that for all ¢ in the domain of x,

(ax)(1) = a(x(1)).
In other words, the new function, which we call ax, is simply scaled by the constant a.

Similarly, given two complex-valued functions x| and x; with the same domain and range,
we can define a new function (x; +x;) such that for all # in the domain,

(x14+x2)(1) = x1(2) +x2(2).

Consider the set of all systems that map complex-valued functions to complex-valued
functions. Such systems are called complex systems. Again, it does not matter (for now)
whether they are discrete-time systems or continuous-time systems. Suppose that S is a
complex system. S is said to be linear if for all @ € C and for all complex signals x,

S(ax) = aS(x) (8.11)

and for all complex signals x; and x; in the domain of S,

S(x14+x2) = S(x1) + S(x2) (8.12)

318 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

8. FREQUENCY RESPONSE

Figure 8.3: If S is linear, then these two systems are equivalent. The triangle
represents a system that scales a signal by some complex constant a.

The first of these—called the homogeneity property—says that if you scale the input, the
output is scaled. The second one—called the additivity property—says that if the input
is described as the sum of two component signals, then the output can be described as
the sum of two signals that would result from the components alone. Recall that linear
functions were introduced in Section 5.2. A linear system is one whose function relating
the output to the input is linear.

In pictures, the first property says that the two systems in Figure 8.3 are equivalent if S is
linear. Here, the triangle represents the scaling operation. The second property says that
the two systems in Figure 8.4 are equivalent.

Example 8.5: Consider the same discrete-time system S of example 8.2, where
input x produces output y such that

VneZ, yn)=x(n)+09x(n—1).
This system is linear. To show this, we must show that (8.11) and (8.12) hold.
Suppose input £ = ax produces output § = S(£). Then
Vn, $(n) = xn)+09%(n—1)
ax(n)+0.9ax(n—1)
a(x(n)+0.9x(n—1))
= ay(n).

Lee & Varaiya, Signals and Systems 319


http://LeeVaraiya.org

8.1. LTI SYSTEMS

320

Figure 8.4: If S is linear, then these two systems are equivalent.

Thus, S(ax) = aS(x), establishing (8.11).

To check (8.12), suppose input x; produces output y; and x, produces y,. Let
X = x1 +x produce y. We must show that y = y; +y,. We leave this as an exercise.

Example 8.6: In the continuous-time system DelayAndSquare or DS of example
8.3, an input x produces output y where

VieR, y(t)=(x(t—1))>~

This system is not linear. To show this we must show that either (8.11) or (8.12)
does not hold for DS. We will show that (8.11) does not hold. To show this, consider
a scaled input X = ax, for some complex number a. Suppose that this input produces
output = S(%). Then,

Vi, $(1)=(x@r—1))>%

Since X = ax,

Vi, 3(1) = (ax(t — 1) = (x(t — 1)* # ay(t) = a(x(t — 1))

Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

8. FREQUENCY RESPONSE

In particular, take for example a = 2, t = 0, and x such that V 7, x(¢) = 1. These
values result in

$(t) =4#ay(t) =2.

Example 8.7: In the time-reversal system RT of example 8.4,
RT: R - R] = [R —R],
any input x produces output y related by
VeeR, y(t)=x(—t).

This system is linear. To show this we must show that (8.11) and (8.12) both hold.
We first show that (8.11) holds; that is, for alla € R,x € [R — R}, and 7 € R,

RT(ax)(t) = (aRT (x))(t).

But this is certainly true, since the left and right sides both evaluate to ax(—t). A
similar argument is used to show (8.12).

Linearity is a mathematical fiction. No electronic system is linear in the strict sense. A
system is designed to work with a range of input signals, and arbitrary scaling of the input
does not translate into arbitrary scaling of the output. If you provide an input to your
audio amplifier that is higher voltage than it is designed for, then it is not likely to just
produce louder sounds. Its input circuits will get overloaded and signal distortion will
result. Nonetheless, as a mathematical fiction, linearity is extremely convenient. It says
that we can decompose the inputs to a system and study the effect of the system on the
individual components.

8.1.3 Linearity and time-invariance

For time-domain systems, time-invariance is a useful (if fictional) property. For com-
plex (or real) systems, linearity is a useful (if fictional) property. For complex (or real)

Lee & Varaiya, Signals and Systems 321


http://LeeVaraiya.org

8.1. LTI SYSTEMS

time-domain systems, the combination of these properties is extremely useful. Linear
time-invariant (LTT) systems turn out to have particularly simple behavior with sinusoidal
inputs.

Given a sinusoid at the input, the output of an LTI system will be a sinusoid with the
same frequency, but possibly with different phase and amplitude.

It then follows that

Given an input that is described as a sum of sinusoids of certain frequencies, the output
can be described as a sum of sinusoids with the same frequencies, but with (possible)
phase and amplitude changes at each frequency.

A straightforward way to show that LTI systems have these properties starts by consid-
ering complex exponentials (for a review of complex numbers, see Appendix B). A
continuous-time complex exponential is a signal x € [R — C] where

VteR, x(t)=e =cos(t)+isin(ot).

Complex exponential functions have an interesting property that will prove useful to us.
Specifically, ‘ o
VieRandteR, x(t—1)=C0"0 = 070"

This follows from the multiplication property of exponentials,

eb-‘rc — ebec.

Since D+ (x)(t) = x(t — 1), we have that for the complex exponential x,

D¢(x) = ax, where a = ¢ "% (8.13)

In words, a delayed complex exponential is a scaled complex exponential, where the
scaling constant is the complex number a = e~'®".

We will now show that if the input to a continuous-time LTI system is ¢/, then the output
will be H(®)e'™, where H(®) is a constant (not a function of time) that depends on the
frequency ® of the complex exponential. In other words, the output is only a scaled
version of the input.

When the output of a system is only a scaled version of the input, the input is called an
eigenfunction, which comes from the German word for “same.” The output is (almost)
the same as the input.

322 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

8. FREQUENCY RESPONSE

Complex exponentials are eigenfunctions of LTI systems, as we will now show. This is
the most important reason for the focus on complex exponentials in the study of signals
and systems. This single property underlies much of the discipline of signal processing,
and is used heavily in circuit analysis, communication systems, and control systems.

Given an LTI system S : [R — C|] — [R — C], let x be an input signal where
VieR, x(t) =™

Recall that S is time invariant if for all T € R,

SoD;=D;0S.

Thus
S(Dx(x)) = Dr(S(x)).-
From (8.13),
S(D+(x)) = S(ax)

where a = ¢~'®%, and from linearity,

S(ax) = aS(x)
S0

aS(x) = D(S(x)). (8.14)
Let y = S(x) be the corresponding output signal. Substituting into (8.14) we get
ay = Dr(y).

In other words, .
Vi,teR, e %) =y —1).

In particular, this is true for r = 0, so letting t = 0,
VieR, y(—1)=e % (0).
Changing variables, letting t = —T , we note that this implies that
VieR, y(t)=e“y(0).

Recall that y(0) is the output evaluated at O when the input is . It is a constant, in that
it does not depend on ¢, so this establishes that the output is a complex exponential, just

Lee & Varaiya, Signals and Systems 323


http://LeeVaraiya.org

8.1. LTI SYSTEMS

like the input, except that it is scaled by y(0). However, y(0) does, in general, depend on
, so we define the function H: R — C by

VoeR, H(®)=y(0)=(Sx))(0), where Vs R, x(r) = e (8.15)

That is, H(®) is the output at time zero when the input is a complex exponential with
frequency .

Using this notation, we write the output y as

VteR, y(t)=H(o)e™

when the input is ¢/, Note that H(®) is a function of ® € R, the frequency of the input
complex exponential.

The function H : R — C is called the frequency response. It defines the response of the
LTI system to a complex exponential input at any given frequency. It gives the scaling
factor that the system imposes on that complex exponential.

For discrete-time systems, the situation is similar. By reasoning identical to that above,
for an LTI system, if the input is a discrete complex exponential,

VnezZ, x(n)=.e"

then the output is the same complex exponential scaled by a constant (a complex number
that does not depend on time),

VneZ, yn)=H®)e"

H is once again called the frequency response, and since it is a function of ®, and is
possibly complex valued, it has the form H: R — C.

There is one key difference, however, between discrete-time systems and continuous-time
systems. Since 7 is an integer, notice that

ion

oo — ez((o+2‘rt)n — ez(w+4‘rr,)n

)

and so on. That is, a discrete complex exponential with frequency ® is identical to a
discrete complex exponential with frequency ®+ 2K, for any integer K. The frequency
response, therefore, must be identical at these frequencies, since the inputs are identical.
That is

Vo eR, H(w)=H(0+2Kn)

for any integer K. That is, a discrete-time frequency response is periodic with period 27.

324 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

8. FREQUENCY RESPONSE

8.2 Finding and using the frequency response

We have seen that if the input to an LTI system is a complex exponential signal x € [R —
C] where

VteER, x(t)=e® =cos(ot)+isin(wt).

then the output is

VteR, y(t)=H(w)e®. (8.16)

where H () is a (possibly complex-valued) number that is a property of the system. H(®)
is called the frequency response at frequency .

Example 8.8: Consider a delay system S = Dy, for some 7 € R. It is an LTI
system, as is easy to verify by checking that (8.2), (8.11), and (8.12) are satisfied.
Suppose the input to the delay system is the complex exponential x given by

VieR, x(t)=e.
Then the output y satisfies
VieR, y(l‘) _ eim(th) — pioT jior
Comparing this to (8.16) we see that the frequency response of the delay is

H(o) =e T,

Example 8.9: Consider a discrete-time M-sample delay system S = Dy,. If y =
S(x) then y is given by

VneZ, yn)=x(n—M). (8.17)

This is an LTI system, as is easy to verify. We could find the frequency response
exactly the same way as in the previous example, but instead we use a slightly
different method. Since the system is LTI, we know that if the input is x such that

Lee & Varaiya, Signals and Systems 325


http://LeeVaraiya.org

8.2. FINDING AND USING THE FREQUENCY RESPONSE

for all n € Z, x(n) = €'®", then the output is H(®)e'™", where H is the frequency
response. By plugging this input and output into (8.17), we get

H(m)eim" _ eiw(n—M) _ eiwne—imM'
Divide both sides by ¢’®”" to get

H(®) =M,

The techniques in the previous examples can be used to find the frequency response of
more complicated systems. Simply replace the input x in a difference equation like (8.17)
with ¢/®, and replace the output y with H(®)e'®”, and then solve for H(®).

Example 8.10: Consider a discrete-time, length two moving average, given by the
difference equation

VneZ, y(n)= (x(n)+x(n—1))/2,

where x is the input and y is the output. When the input for all 7 is €®", this becomes

H(m)eimn _ (eimn _i_eim(n—l))/z'
Solving for H(®), we find that the frequency response is

H(®) = (1+e7?)/2.

A similar approach can find the frequency response of a continuous-time system described
by a differential equation.

Example 8.11:  Consider a continuous-time system with input x and output y
related by the differential equation

Y

Vit eR, RC
dt

(1) +y(1) = x(1), (8.18)

326 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

8. FREQUENCY RESPONSE

+ +
Q) C== 0

Figure 8.5: The RC circuit of example 8.11.

where R and C are real-valued constants. This differential equation describes the
RC circuit of Figure 8.5, which consists of an R-ohm resistance in series with a C-
farad capacitor. The circuit has input voltage x, provided by a voltage source, shown
as a circle on the left. The output is the voltage y across the capacitor. Kirchhoft’s
voltage law gives the differential equation. It is easy to verify that this differntial
equation describes an LTI system.

We can determine the frequency response of this system by assuming that the input
x is given by V ¢ € R, x(¢) = ¢, and finding the output. Since the system is LTI,
the output will be given by y(¢) = H(®)e'®. Plugging these values for x and y into
(8.18) gives

RC(io)H (®)e™ + H(w)e'™ = ™ (8.19)

because

d :
d—);(t) = ioH (®)e'™.

Dividing both sides of (8.19) by ¢ yields the frequency response of this circuit,

1

Lee & Varaiya, Signals and Systems 327


http://LeeVaraiya.org

8.2. FINDING AND USING THE FREQUENCY RESPONSE

8.2.1 Linear difference and differential equations

The procedure of example 8.10 can be used to write down by inspection the frequency
response of any high-order linear difference equation of the form, V n € Z,

apy(n)+ayy(n—1)4---+ayy(n—N) =box(n) +bix(n—1)+---+byx(n—M). (8.20)

The coefficients of this difference equation, ag,--- ,ay and by, - - - , by, are real constants.
(They could also be complex.) This describes an LTI system, and a good way to recognize
that a discrete-time system is LTI is to write it in this form. If the input for all n is
x(n) = €'®, then the output for all n is y(n) = H(®)e'®". Plugging these values of input
and output into (8.20) gives,

aoH(O))ei(M + CZ]H((O)eiw(n—l) 4 aNH(O))ei“)(”_N)
— boe® 4+ by fo o e M)

Recognizing that e @'~ = ¢=im®ion e can divide both sides by ¢ and solve for
H(m) to get

_ bo+bie T+ -+ bye MO
C aptaje '+ +aye N0

Vo €R, H(w) (8.21)

Observe that the frequency response (8.21) is a ratio of two polynomials in e ~/®,

Example 8.12: Consider an LTI system given by the difference equation
VneZ, yn)—ymn—3)=x(n)+2x(n—1)+x(n—2).
Its frequency response is

|- T
VoeR, H(w)= g

In a similar way one can obtain the frequency response of any linear differential equation
of the form,

N,
VIER,  ayiF ()4 +ar R (t) +aoy(r) =
bMddTA;;C([)+...+b1%([)+box([), (8.22)

328 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

8. FREQUENCY RESPONSE

where the coefficients ay,---,a9 and by, -- ,bg, are real (or complex) constants. This
describes an LTI system, and a good way to recognize that a continuous-time system is
LTI is to write it in this form. If the input for all 7 is x(t) = ¢'®, the output for all ¢ is
y(t) = H(®)e'™ . Plugging these values of input and output into (8.22), and recognizing
that

dv . ok

Welﬂ)l — (l(l)) el(Ol7
gives,

ay(i0)VH(@)e™ +--- +  a1(io)H(®)e™ +agH(w)e'™ =
bu(io)Me™ + - +b(i0)e™ + bpe'.

We can divide both sides by ¢/® to get

by (i)Y + -+ by (i) + by

R, H(w)=
Vo € R, (@) ay(io)N +- -+ a1 (i) +ag

(8.23)

Observe that the frequency response (8.23) is a ratio of two polynomials in i(.

Example 8.13: Consider the continuous-time system given by the differential
equation

d’y dy dx
22032 2 -
22 (1) =3 (0) +2y(t) = —

where x is the input and y is the output. It has frequency response

VteR, +x(t),

im+1

Complex exponentials as inputs are rather abstract. We have seen that with audio signals,
sinusoidal signals are intrinsically significant because the human ear interprets the fre-
quency of the sinusoid as its tone. Note that a real-valued sinusoidal signal can be given
as a combination of exponential signals (see box on page 330),

cos(wt) = (" +e ') /2.

Lee & Varaiya, Signals and Systems 329


http://LeeVaraiya.org

8.2. FINDING AND USING THE FREQUENCY RESPONSE

Thus, if this is the input to an LTI system with frequency response H, then the output will
be

y(t) = (H(0)e"™ + H(—o)e ™) /2. (8.25)

Many (or most) LTI systems are not capable of producing complex-valued outputs when
the input is real, so for such systems, this y(¢) must be real. This implies that

H(w) =H"(—). (8.26)

To see why this is so, note that if y(¢) is real then so is H(®)e' + H(—m)e~ . But for
this to be real, it must be that the imaginary parts of the two terms cancel,

Im{H(®)e'™} = —Im{H(—m)e "™} (8.27)

Note that
Im{H(co)eimt} = Re{H ()} sin(ot) + Im{H (®) } cos(wt).

Basics: Sinusoids in terms of complex exponentials
Euler’s formula states that
e = cos(8) +isin(0).

The complex conjugate is _
e = cos(8) —isin(0).

Summing these, _ _
¢® + e =2c0s(0)

or

cos(8) = (e® +¢79) /2.

Thus, for example, ) .
cos(ar) = (e +e7') /2.

Similarly,

sin(0) = —i(e® —e71?)/2.

In appendix A we show that many useful trigonometric identities are easily derived from
these simple relations.

330 Lee & Varaiya, Signals and Systems



http://LeeVaraiya.org

8. FREQUENCY RESPONSE

Using a similar fact for the right side of (8.27), we get
Re{H ()} sin(ot) + Im{H (®)} cos(ox)
= —Re{H(—w)}sin(—o¢t) — Im{H(—w) } cos(—wr).

Tips and Tricks: Phasors

Consider a general continuous-time sinusoidal signal, x(1) = A cos(wr +¢), forall # € R.
Here A is the amplitude, ¢ is the phase, and ® is the frequency of the sinewave. (We
call this a sinewave, even though we are using cosine to describe it.) The units of ¢ are
radians. The units of ® are radians per second, assuming ¢ is in seconds. This can be
written

x(t) = Re{Ae"® ™} = Re{Ae®e™} = Re{X ™™}

where X = Ae'® is called the complex amplitude or phasor. The representation

x(t) = Re{X e} (8.24)

is called the phasor representation of x. It can be convenient. For example, consider
summing two sinusoids with the same frequency,

x(t) = Ay cos(0t +¢1) + Az cos(0r + 2).
This is particularly easy using phasors, since
x(r) = Re{(X1 +Xz)e'™ } = |X1 + Xz cos(or + £(X1 +X2))

where X; = A€® and X, = Ae™®. Thus, addition of the sinusoids reduces to addition
of two complex numbers.

The exponential Xe'® in (8.24) is complex valued. If we represent it in a two-
dimensional plane as in Figure 8.6, it will rotate in a counter-clockwise direction as ¢
increases. The frequency of rotation will be ® radians per second. At time O it will be X,
shown in gray. The real-valued sinewave x(t) is the projection of Xe'® on the real axis,
namely

Re{Xe™} = |X|cos(or + £X).

The sum of two sinusoids with the same frequency is similarly depicted in Figure 8.7.
The two phasors, X; and X, are put head to tail and then rotated together. A similar
method can be used to add sinusoids of different frequencies, but then the two vectors
will rotate at different rates.

Lee & Varaiya, Signals and Systems 331


http://LeeVaraiya.org

8.2. FINDING AND USING THE FREQUENCY RESPONSE

wt

)Re

Re{Xei®"} = X cos(ot + £X)

Figure 8.6: Phasor representation of a sinusoid.

If we evaluate this at t = 0 we get
Im{H(®)} = —Im{H(-o)},
and if we evaluate it att = w/(2m), we get
Re{H(w)} = Re{H(~w)}.

which together imply (8.26).

Property (8.26) is called conjugate symmetry. The frequency response of a real system
(one whose input and output signals are real-valued) is conjugate symmetric. Thus,
combining (8.25) and (8.26), when the input is x(¢) = cos(t), the output is

VteER, y(t)=Re{H(®)e™}.

If we write H(®) in polar form,

332 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

8. FREQUENCY RESPONSE

IX,+X,| cos(wf + £(X+X5))

Figure 8.7: Phasor representation of the sum of two sinusoids with the same
frequency.

Lee & Varaiya, Signals and Systems 333


http://LeeVaraiya.org

8.2. FINDING AND USING THE FREQUENCY RESPONSE

then when the input is cos(wr), the output is

ViteR, y(t)=|H(®)| cos(owr+LH()).

Thus, H(®) gives the gain |H(®)| and phase shift /H(®) that a sinusoidal input with
frequency ® experiences. |H ()| is called the magnitude response of the system, and
ZH () is called the phase response.

334

Example 8.14: The delay system S = Dy of example 8.8 has frequency response
H(o) =e T,
The magnitude response is
|H(@)| = 1.

Thus, any cosine input into a delay yields a cosine output with the same amplitude
(obviously). A filter with a constant unity magnitude response is called an allpass
filter, because it passes all frequencies equally. A delay is a particularly simple
form of an allpass filter.

The phase response is
ZH(0) = —oT.

Thus, any cosine input with frequency ® yields a cosine output with the same fre-
quency, but phase shift —®7.

Example 8.15: The M-sample discrete-time delay of example 8.9 is also an allpass
filter. Its phase response is
ZH(®) = —oM.

Example 8.16: The magnitude response of the length-two moving average con-
sidered in example 8.10 is

|H(@)] =[(1+e7)/2].

Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

8. FREQUENCY RESPONSE

We can plot this using the following Matlab code, which (after adjusting the labels)
results in Figure 8.8.

omega = [0:pi/250:pi];
H = (1 + exp(—ixomega))/2;
plot (omega, abs(H));

Notice that at frequency zero (a cosine with zero frequency has constant value), the
magnitude response is 1. That is, a constant signal gets through the filter without
any reduction in amplitude. This is expected, since the average of two neighbor-
ing samples of a constant signal is simply the value of the constant signal. Notice
that the magnitude response decreases as the frequency increases. Thus, higher
frequency signals have their amplitudes reduced more by the filter than lower fre-
quency signals. Such a filter is called a lowpass filter because it passes lower fre-
quencies better than higher frequencies.

Example 8.17: The RC circuit of example 8.11 has frequency response given by

1

We can express this in polar form, H(®) = |[H(®)|¢!“#(®) to get the magnitude and
phase responses,

1
H(®)| = ———, /H(®)=—tan"'RCo.

1+ (RCw)?’

If for all ¢, x(¢) = cos(t), then y(¢) = |H(w)| cos(ot — ZH(®)). Since |H(®)| — 0
as M — oo, this RC circuit is a (not very good) low-pass filter.

Lee & Varaiya, Signals and Systems 335


http://LeeVaraiya.org

8.2. FINDING AND USING THE FREQUENCY RESPONSE

0.9 A

0.7 b

0.6 B

0.4 .

0.3 B

0.2+ i

0.1+ i

0 I I I I I I
0 0.5 1 1.5 2 2.5 3

frequency in radians/sample

Figure 8.8: The magnitude response of a length-two moving average.

Often, we are given a frequency response, rather than some other description of an LTI
system such as a difference equation. The frequency response, in fact, tells us everything
we need to know about the system. The next example begins the exploration of that idea.

336

Example 8.18: Suppose that the frequency response H of a discrete-time LTI
system Filter is given by

VoeR, H(o)=cos(2m)

where ® has units of radians/sample. Suppose that the input signal x: Z — R is

such that for all n € Z,
= +1 neven
=1 =1 nodd

Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

8. FREQUENCY RESPONSE

We can determine the output. All we have to do is notice that the input can be
written as
x(n) = cos(mn).

Thus, the input is a cosine with frequency 7 radians/sample. Hence, the output is
y(n) = |H(n)|cos(nn+ ZH(m)) = cos(nn) = x(n).
This input is passed unchanged by the system.
Suppose instead that the input is given by
x(n) =5.
Once again, the input is a cosine, but this time with zero frequency,
x(n) = 5cos(0n).
Hence the output is
y(n) = |H(0)|-5cos(0n+ £H(0)) =5 =x(n).
This input is also passed unchanged by the system.
Suppose instead that the input is
x(n) = cos(mn/2).
This input is given explicitly as a cosine, making our task easier. The output is
y(n) = |H(n/2)|cos(nn/2+ LH(®/2))
= cos(nn/2+m)
= —cos(nn/2)

= —x(n).
This input is inverted by the system.
Finally, suppose that the input is
x(n) = cos(mn/4).

The output is
y(n)=|H(n/4)|cos(nn/4+ £ZH(n/4)) = 0.

This input is filtered out by the system.

Lee & Varaiya, Signals and Systems 337


http://LeeVaraiya.org

8.2. FINDING AND USING THE FREQUENCY RESPONSE

8.2.2 The Fourier series with complex exponentials

The Fourier series for a continuous-time, periodic signal x : R — R with period p =
21/ o, can be written as (see (7.4))

x(1) = Ao+ Y Axcos(keor + O).
k=1

For reasons that we can now understand, the Fourier series is usually written in terms of
complex exponentials rather than cosines. Since complex exponentials are eigenfunctions
of LTI systems, this form of the Fourier series decomposes a signal into components that
when processed by the system are only scaled.

Each term of the Fourier series expansion has the form
Ay cos(kmot + )
which we can write (see box on page 330)
Ay cos(koot + O ) = Ag(e/FP0rH00) 4 p=itkoor+00)) /o

So the Fourier series can also be written

=Ay+ Z kwol+¢k te (kﬂ)olﬂl)k))'
Observe that
ei(k(x)ot+¢k) _ eik(ﬂoteiq)k’
and let
Ao ifk=0
X =< 0.5Ae®% ifk>0 (8.28)

0.5A_pe 0+ ifk<0

Then the Fourier series becomes

)= ¥ Xeelkoo, (8.29)
k=—o0

This is the form in which one usually sees the Fourier series. Notice from (8.28) that the
Fourier series coefficients are conjugate symmetric,

338 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

8. FREQUENCY RESPONSE

Of course, since (8.29) is an infinite sum, we need to worry about convergence (see box
on page 295).

The discrete-time Fourier series (DFS) can be similarly written. If x : Z — R is a peri-
odic signal with period p = 21t/®y, then we can write

r—1 .
= Y Xgelkoon (8.30)
k=0

x(n)

for suitably defined coefficients X;. Relating the coefficients X; to the coefficients A; and
0y is a bit more difficult in the discrete-time case than in the continuous-time case (see
box on page 347).

There are two differences between (8.29) and (8.30). First, the sum in the discrete-time
case is finite, making it manageable by computer. Second, it is exact for any periodic
waveform. There are no mathematically tricky cases, and no approximation needed.

8.2.3 Examples

The Fourier series coefficients Ay of a square wave are shown in figure 7.7 in the previous
chapter. The magnitudes of the corresponding coefficients X for the Fourier series ex-
pansion of (8.29) are shown in figure 8.9. Since each cosine is composed of two complex
exponentials, there are twice as many coefficients.

Notice the symmetry in the figure. There are frequency components shown at both pos-
itive and negative frequencies. Notice also that the amplitude of the components is half
that in Figure 7.7, |X;| = |Ax|/2. This is because there are now two components, one at
negative frequencies and one at positive frequencies, that contribute.

8.3 Determining the Fourier series coefficients

We have seen in the previous chapter that determining the Fourier series coefficients by
directly attempting to determine the amplitude of individual frequency components can be
difficult, even when the individual frequency components are known. Usually, however,
they are not known. A general formula for computing the coefficients for a continuous-
time periodic signal is

Lee & Varaiya, Signals and Systems 339


http://LeeVaraiya.org

8.4. FREQUENCY RESPONSE AND THE FOURIER SERIES

o

p .
X = L [x(t)em ™m0 dr. (8.32)
0

The m-th Fourier series coefficient is obtained by multiplying x by a complex exponential
with frequency —m®( and averaging. The validity of this equation is demonstrated in the
box on page 349.

The discrete-time case is somewhat simpler. A discrete-time periodic signal x with period
P € Z has Fourier series coefficients given by

X = ;7 Y x(m)e~mkeo, (8.33)

This can be shown by manipulations similar to those in the box on page 349. The practical
importance in computing is much greater than that of the Fourier series for continuous-
time signals. Since this sum is finite, the DFS coefficients can be easily computed pre-
cisely on a computer.

8.3.1 Negative frequencies

The Fourier series expansion for a periodic signal x(¢) is

x(t) = Z X etkot
k=—c0

This includes Fourier series coefficients for the constant term (when k = 0, e*®! = 1),
plus the fundamental and harmonics (k > 1). But it also includes terms that seem to
correspond to negative frequencies. When k < —1, the frequency kwy is negative. These
negative frequencies balance the positive ones so that the resulting sum is real-valued.

8.4 Frequency response and the Fourier series

Recall that if the input to an LTI system S is a complex exponential signal x € [R — C]
where _
VieR, x(t)=e® = cos(w)+isin(wot).

340 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

8. FREQUENCY RESPONSE

then the output for all ¢ is
¥(1) = H(wp)e'™",

where the complex number H () is the frequency response of the system at the funda-
mental frequency g of the periodic input. It is equal to the output at time zero y(0) when
the input is /™', H itself is a function H: R — C that in principle can be evaluated for
any frequency ® € R, including negative frequencies.

Recall further that if an input x to the system S is a periodic signal with period p, then it
can be represented as a Fourier series,

VieR, x()= Y, Xy
k=—c0

where @y = 2nt/p. By linearity and time invariance of S, the output y = S(x) for this
periodic input x, is given by

=3

VieR, y(t)= Y H(kop)Xe*®.
k=—c

Thus, linearity tells us that if the input is decomposed into a sum of components, then the
output can be decomposed into a sum of components where each component is the re-
sponse of the system to a single input component. Linearity together with time invariance
tells us that each component, which is a complex exponential, is simply scaled. Thus, the
output is given by a Fourier series with coefficients X;H (k).

This major result is summarized below:

For an LTI system, if the input is given by a sum of complex exponentials, then the
output can be given by a sum of the same complex exponentials, each one scaled by the
frequency response evaluated at the corresponding frequency.

Among other things, this result tells us:

e There are no frequency components in the output that were not in the input. The
output consists of the same frequency components as the input, but with each com-
ponent individually scaled.

e LTI systems can be used to enhance or suppress certain frequency components.
Such operations are called filtering.

Lee & Varaiya, Signals and Systems 341


http://LeeVaraiya.org

8.5. FREQUENCY RESPONSE OF COMPOSITE SYSTEMS

e The frequency response function characterizes which frequencies are enhanced or
suppressed, and also what phase shifts might be imposed on individual components
by the system.

We will see many examples of filtering in the next chapter.

8.5 Frequency response of composite systems

In section 2.1.5 we studied several ways of composing systems (using block diagrams) to
obtain more complex, composite systems. We will see in this section that when each block
is an LTI system, the resulting composite system is also LTI. Moreover, we can easily ob-
tain the frequency response of the composite system from the frequency response of each
block. This provides a useful way to construct interesting and complex systems by as-
sembling simpler components. This tool works equally well with discrete and continuous
systems.

8.5.1 Cascade connection

Consider the composite system S obtained by the cascade connection of systems S; and
S, in figure 8.10. Suppose S; and S, are LTI. We first show that § = S, 0 S; is LTI To
show that § is time-invariant, we must show that for any T, So Dy = D; 0 S. But,
SoD; = S§08,0D;
= §Sro0D;0S§], since S is time-invariant
= D;o0S508], since S, is time-invariant
= D;oS,

as required.

We now show that S is linear. Let x be any input signal and a any complex number. Then
Slax) = (S2081) (@)

S2(S1(ax))

Sa(aS (x)

aS>(Sy(x)

= aS(x).

), since S is linear

)
), since Sy is linear

342 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

8. FREQUENCY RESPONSE

Lastly, if x and y are two input signals, then

Sx+y) = (S2081)(x+y)
= $(Si(x+y))
= S52(S1(x)+S1(y)), since S; is linear
= 85(81(x))+S2(S1(y)), since S, is linear
= S(x)+S0).

This shows that S is linear.

We now compute the frequency response of S. Let H;(®), H> (), H(®) be the frequency
response of Sy, Sy, and S, respectively, at the frequency ®. Consider the complex expo-
nential input x given by

ViER, x(r) =€,

Then the signal y = S;(x) is a multiple of x, namely, y = H;(®)x. In particular, y is a
(scaled) complex exponential, and so z = S, (y) is given by

2= Hy(0)y = Hy(w)H, (®)x.

But since H() is the frequency response of S at the frequency ®, we also have

and so we obtain

VoeR, H(w)=H(0)H (0). (8.34)

The frequency response of the cascade composition is the product of the frequency re-
sponses of the components. Exactly the same formula applies in the discrete-time case.
This is a remarkable result. First, suppose that the cascade connection of Figure 8.10 is
reversed, i.e. consider the system S = §; 0 S,. Then the frequency response of S is

H(w) = H | (0)Hy(®) = Hy(0)H, (0) = H(®).

That is, S and S have the same frequency response! This implies, in fact, that S and S are
equivalent; they give the same output for the same input. Hence,

In any cascade connection of LTI systems, the order in which the systems are composed
does not matter.

Lee & Varaiya, Signals and Systems 343


http://LeeVaraiya.org

8.5. FREQUENCY RESPONSE OF COMPOSITE SYSTEMS

8.5.2 Feedback connection

The feedback arrangement shown in figure 8.11 is fundamental to the design of control
systems. Typically, S; is some physical system, and S, is a controller that we design to
get the physical system to do our bidding. The overall system S is called a closed-loop
system. We first show that S'is LTTif S; and S, are LTI, and we then calculate its frequency
response.

Suppose x is the input signal, and define the signals u,z and y as shown. The circle with
the plus sign represents the relationship # = x +z. The signals are then related by
y = Si(u)
= Six+2)
= Si1(x)+Si(z), since S| is linear
= $1(x)+81(52(»)),

Note that this equation relates the input and output, but the output appears on both sides.
We can rewrite this as

y=S81(852(y)) = S1(x). (8.35)
Thus, given the input signal x, the output signal y is obtained by solving this equation. We
will assume that for any signal x, (8.35) has a unique solution y. Then, of course, y = S(x).
We can use (8.35) and methods similar to the ones we used for the cascade example to
show that § is LTI (see box on page 352).

We now compute the frequency response H(®) of S at frequency ®. Let the frequency
response of S; be Hy, and of S, be H,. Suppose the input signal is the complex exponential
VieR, x(t)=e™
For this input, we know that S;(x) = H;(®)x and S>(x) = Ha(®)x. Since S is LTI, we

know that the output signal y is given by
y=H(®)x.
Using this relation for y in (8.35) we get
H(®)x—Si(S2(H(w)x)) = H(w)x—S1(S2(x))], since S»,S; are linear

= H(o)[x— Hi(0)Hy ()]
= H(o0)[l—H (0)H(®)]x
= S](X)

= H;(o)x, by (8.35),

344 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

8. FREQUENCY RESPONSE

from which we get the frequency response of the feedback system,

_ H (o)
H(o)=1—¢ (lco)Hz((o)

(8.38)

This relation is at the foundation of linear feedback control design.

Example 8.19: Consider a discrete-time feedback system as in Figure 8.11 where
S1 simply scales the input by 0.9. That is, for all discrete-time input signals u,
S1(u) = 0.9u. Suppose further that S, is a one-sample delay. That is, S» = Dj.
From example 8.9, the frequency response of S, is given by

VoeR, Hz(())) = i@
The frequency response of S is (trivially) given by
VoeR, H(w)=0.9.

Thus, the frequency response of the feedback composition is

0.9

We can plot the magnitude of this using the following Matlab code, which (after
adjusting the labels) results in Figure 8.12.

omega = [0:pi/250:pi];
H=0.9./(1 - 0.9.xexp(-1+omega)) ;
plot (omega, abs (H));

Notice that at zero frequency, the gain is 9, and that it rapidly drops off at higher
frequencies. Thus, this system behaves as a lowpass filter.

Example 8.20: We can use formula (8.38) to obtain the frequency response of
more complex composition, such as the one shown in Figure 8.13. To find the

Lee & Varaiya, Signals and Systems 345


http://LeeVaraiya.org

8.6. SUMMARY

frequency response of the composition S given on the left of the figure, we first
express as the composition on the right where the system S3 is given in the lower
part of the figure. The frequency response H of S can now be obtained from formula
(8.38) as

1 —H(0)H;3(®)

The same formula also gives the frequency response H3 of Sz,

Hi () = AT i{;ﬁ:)(l)),

which, upon substitution in the previous expression, yields,

H1 (O))Hz((l))

H((D) = 1 _Hz((o) — H; (OJ)HZ(O)) .

8.6 Summary

Linear time-invariant systems have a particularly nice property: if the input is a sinusoid,
then the output is a sinusoid of the same frequency. Moreover, if the input is a sum of two
sinusoids, then the output will be a sum of two sinusoids with the same frequencies as the
input sinusoids. Each sinusoid is scaled and shifted in phase by the system. The scaling
and phase shift, as a function of frequency, is called the frequency response of the system.

It turns out that mathematically, this phenomenon is easiest to analyze using complex
exponentials instead of real-valued sinusoids. The reason for this is that the phase shift
and scaling together amount to simple multiplication of the complex exponential by a
complex constant. If an input is represented as a sum of complex exponentials (a form
of the Fourier series), then the output is simply the same Fourier series with each term of
the series scaled by a complex constant. These scaling constants, viewed as a function of
frequency, are the frequency response of the system.

Composing LTI system becomes particularly easy. The frequency response of the cascade
of two LTI systems is simply the product of the frequency responses of the individual
systems. This simple fact can be used to quickly ascertain the frequency response of
complicated compositions.

346 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

8. FREQUENCY RESPONSE

Probing Further: Relating DFS coefficients

We have two discrete-time Fourier series expansions (see (8.30) and (7.8)),

p—1 )
=Y Xt (8.31)
=0

. e
—1)/2 if pisodd
x(n) =Ao+ Y Arcos(kwon+0x), K= { ;];2 U jfllj is even

There is a relationship between the coefficients Ay, 0 and X, but the relationship is
more complicated than in the continuous-time case, given by (8.28). To develop that
relationship, begin with the second of these expansions and write

— Ag+ Z o (koon+0i) o~ (k0)0"+¢k)).

Note that since 0 = 27/ p, then for all integers n, €'®”" = 1, so

e—i(kwon+¢k) _ e—i(k(oon-i-(bk)ei(oopn _ ei((oo(p—k)n—(l)k)‘

Thus K Ay koon+ Ak _ioy_io(p—k
x(n) = AO+1;1 > 0k gikon +kz:1 > e~ 0k i P(p—k)n
0 ik A 0
= Ap+ PP Won-+ + [P0 e n- melwomn
Z mEK 2
by change of variables. Comparing this against (8.31),
Ao ifk=0
P Ape'® /2 ifke{l,-- . K—1}
K7 Apei® )2+ Are % /2 = Agcos(ty) if k=K
A, e Ort /2 ifke{K+1,--,p—1}

This relationship is more complicated than (8.28). Fortunately, it is rare that we need to
use both forms of the DFS, so we can usually just pick one of the two forms and work
only with its set of coefficients.

Lee & Varaiya, Signals and Systems 347


http://LeeVaraiya.org

8.6. SUMMARY

T T T T T T T T T
K=1—
| | K=8
1.0 K=7 --
K=32 -
05 7]
0.0 7]
0.5[ 7
1.0L i
1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8
Time in seconds x10°
(a)
T T T T T T T T T
0.6 7
0.5 7
0.4 7
03[ 7
0.2[ 7
ool aiiitilll] | L0 |
1 1 1 1 1 1 1 1 1
-4 -3 -2 -1 0 1 2 3 4
Frequency in Hz x10°
(b)

Figure 8.9: (a) Some finite Fourier series approximations to one cycle of a square
wave. The number of Fourier series terms that are included in the approximation
is 2K+ 1, so K is the magnitude of the largest index the terms. (b) The magnitude
of the complex Fourier series coefficients shown as a function of frequency.

348 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

8. FREQUENCY RESPONSE

Probing Further: Formula for Fourier series coefficients

To see that (8.32) is valid, try substituting for x(r) its Fourier series expansion,

x(t)="Y X"
k=—o0

to get Xm:l / P Y X koot y—imot 1,
pPJO

Exchange the integral and sum (assuming this is valid, see box on page 350) to get

= P
Xy = — Z Xk/ kot im0t gy
P 0

The exponentials can be combined to get

1 & P .
Xn==Y X / elk=meot gy
Pr—c 0

In the summation, where k varies over all integers, there will be exactly one term of the
summation where k = m. In that term, the integral evaluates to p. For the rest of the
terms, k # m. Separating these two situations, we can write

o p

1 .
Xn=Xn+t- Y X / eltkmt gy,
Pi="cckstm

where the first term X, is the value of the term in the summation where k = m. For each
remaining term of the summation, the integral evaluates to zero, thus establishing our
result. To show that the integral evaluates to zero, let n = k — m, and note that n # 0.
Then

p . P .
/ elnwotdt = / COS(n(,O()t)dt + l/ Sln(n('oot)dt
0 0 g

Since wy = 21/ p, these two integrals exactly span one or more complete cycles of the
cosine or sine, and hence integrate to zero.

Lee & Varaiya, Signals and Systems 349


http://LeeVaraiya.org

8.6. SUMMARY

Probing Further: Exchanging integrals and summations

The demonstration of the validity of the formula for the Fourier series coefficients in the
box on page 349 relies on being able to exchange an integral and an infinite summation.
The infinite summation can be given as a limit of a sequence of functions

N
() =Y, Xy
k=—N

Thus, we wish to exchange the integral and limit in

| R
X, = p/o (l\llgiloxN(t))dt.
A sufficient condition for being able to perform the exchange is that the limit converges
uniformly in the interval [0, p]. A sufficient condition for uniform convergence is that x
is continuous and that its first derivative is piecewise continuous.

See R. G. Bartle, The Elements of Real Analysis, Second Edition, John Wiley & Sons,
1976, p. 241.

Figure 8.10: The cascade connection of the two LTI systems is the system S =
S, 08;. The frequency response is related by Vo, H(®) = H, (0)H (®).

350 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

8. FREQUENCY RESPONSE

Figure 8.11: The feedback connection of the two LTI systems Si, S, is the LTI
system S. The frequency response is related by Vo € R H(®) = H(®)/[1 —
H, (0)H(o)].

Lee & Varaiya, Signals and Systems 351


http://LeeVaraiya.org

8.6. SUMMARY

Probing Further: Feedback systems are LTI

To show that S in Figure 8.11 is time-invariant we must show that for any T € R,
S§(Dx(x)) = Dx(S(x)) = Da(y), (8.36)

that is, we must show that D¢(y) is the output of S when the input is D;(x). Now the
left-hand side of (8.35) with y replaced by D<(y) is

Di(y) =$1(82(Dx(y))) = Di(y) —Da(S1(S2(»)),
since S and S, are time-invariant

= D(y—Si(S2(y))), since Dy is linear,

= D¢(S1(x)), by (8.35)

= S1(D«(x)), since S; is time-invariant
so that D¢(y) is indeed the solution of (8.35) when the input is D (x). This proves (8.36).
Linearity is shown similarly. Let a be any complex number. To show that ay is the output
when the input is ax, we evaluate the left-hand side of (8.35) at ay,

ay—S1(S2(ay)) = ay—aSi(S2(y)), since S, and S are linear

= aly—S51(852())]
= aS(x), by (8.35)

= Si(ax), since S| is linear

which shows that S(ax) = aS(x).
Now suppose w is another input and z = S(w) is the corresponding output. Le.,

72—81(82(2)) = S1(w). (8.37)

We evaluate the left-hand side of (8.35) at y + z, using that S, and S; are linear,

O+2)=S1(S200+2)) = D—=51(8200)] + [z = S1(52(2)],
= S;(x)+S;(w), by (8.35) and (8.37)

= Sj(x+w), since S is linear

and so S(x+w) =y+2z=S(x)+S(z).

352 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

8. FREQUENCY RESPONSE

amplitude response
N
T
1

O L L L L L
0 0.5 1 1.5 2 2.5 3 3.5

frequency (radians/sample)

Figure 8.12: The magnitude response of the feedback composition of example
8.19.

Lee & Varaiya, Signals and Systems 353


http://LeeVaraiya.org

8.6. SUMMARY

X u y X y
_4?—» Sy s, > (> s s >
S S
_éi Sy >
S3

Figure 8.13: The composition on the left can be expressed as the one on the
right, where S3 is the system at the bottom.

354 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

8. FREQUENCY RESPONSE

Exercises

Each problem is annotated with the letter E, T, C which stands for exercise, requires some
thought, requires some conceptualization. Problems labeled E are usually mechanical,
those labeled T require a plan of attack, those labeled C usually have more than one
defensible answer.

1. E Find A € C so that
Yt € Reals, Ae'™ 4 A*e "™ = cos(ot +1/4),
where A* is the complex conjugate of A.

2. E Plot the function s: R — R given by
VxeR, s(x)=Im{e 2™,

You are free to choose a reasonable interval for your plot, but be sure it includes
x=0.

3. E This exercise explores the fact that a delay in a sinewave causes a phase shift.
That is, for any real numbers T and , there is a phase shift ¢ € R such that for all
teR,

sin(o(f — 1)) = sin(of — 0).
Give ¢ in terms of T,®. What are the units of T, ®,¢? Hint: The argument to the

sin function has units of radians.

4. E Let x : R — R. Show that x is periodic with period p if and only if D,(x) = x.
Now show that if S is a time-invariant system and x is a periodic signal, then S(x)
is also periodic with period p.

5. E Analogously to Dz in (8.1) and Dy, in Section 8.1.3, define formally the following
variants:

(a) A shift operator S, , that shifts an image v units vertically and / units horizon-
tally, where v e R and h € R.

(b) A shift operator S,, , that shifts a discrete image m units vertically and » units
horizontally, where m € Z and n € 7Z.

Lee & Varaiya, Signals and Systems 355


http://LeeVaraiya.org

EXERCISES

6. E Consider a discrete-time system D: [Z — R] — [Z — R], where if y = D(x) then
VneZ, yn)=x(n—1).

(a) Is D linear? Justify your answer.

(b) Is D time-invariant? Justify your answer.

7. E Consider a continuous-time system TimeScale: [R — R] — [R — R], where if
y = TimeScale(x) then
VieR, y(t)=x(21).

(a) Is TimeScale linear? Justify your answer.

(b) Is TimeScale time-invariant? Justify your answer.
8. E Consider the continuous-time signal x where
VteR, x(t)=14cos(nt)+cos(2nt).
Suppose that x is the input to an LTI system with frequency response given by

10 B .
VoeR, Hw =4 ¢ || < 4 radians/second
0  otherwise
Find the output y of the system.

9. T Suppose that the continuous-time signal x: R — R is periodic with period p. Let
the fundamental frequency be wy = 27/p. Suppose that the Fourier series coeffi-

cients for this signal are known constants Ag,A1,Az,--- and ¢1,¢2,---. Give the
Fourier series coefficients A, A’,A5, -+ and 0/,0),--- for each of the following
signals:

(a) ax, where a € R is a constant;
(b) D¢(x), where T € R is a constant and Dy is the delay system; and
(c) S(x), where S is an LTI system with frequency response H given by

1; ifo=0

VoeR, H(o)= { 0; otherwise

(Note that this is a highly unrealistic frequency response.)

356 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

8. FREQUENCY RESPONSE

(d) Lety: R — R be another periodic signal with period p. Suppose y has Fourier
series coefficients Ajj, A}, A}, -+ and ¢/,07,---. Give the Fourier series coef-
ficients of x 4+ y.

10. E Consider discrete-time systems with input x: Z — R and output y: Z — R. Each
of the following defines such a system. For each, indicate whether it is linear (L),
time-invariant (TI), both (LTT), or neither (N).

(@ VneZ, yn)=x(n)+09y(n—1)

(b) VneZ, y(n)=cos(2nn)x(n)

() VneZ, y(n)=-cos(2nn/9)x(n)

(d) VneZ, y(n)=cos(2nn/9)(x(n)+x(n—1))
(e) VneZ, y(n)=x(n)+0.1(x(n))?

) YneZ, yn)=x(n)+0.1(x(n—1))>

11. E Suppose that the frequency response of a discrete-time LTI system S is given by
H() = [sin(o)|

where ® has units of radians/sample. Suppose the input is the discrete-time signal
x givenby Vn € Z, x(n) = 1. Give a simple expression for y = S(x).

12. T Find the smallest positive integer n such that
n
Z S5kT/6 _ ()
k=0

Hint: Note that the term being summed is a periodic function of k. What is its
period? What is the sum of a complex exponential over one period?

13. T Consider a continuous-time periodic signal x with fundamental frequency g = 1
radian/second. Suppose that the Fourier series coefficients (see (7.4)) are

A — 1 k=0,1,0r2
k=0  otherwise

and for all k£ € Ny, ¢ = 0.

(a) Find the Fourier series coefficients X for all k € Z (see (8.29)).

Lee & Varaiya, Signals and Systems 357


http://LeeVaraiya.org

EXERCISES

14.

15.

358

(b) Consider a continuous-time LTI system Filter: [R — R] — [R — R], with

frequency response
H(®) = cos(nw/2).

Find y = Filter(x). Le., give a simple expression for y() that is valid for all
teR.
(c) For y calculated in (b), find the fundamental frequency in radians per second.
Le., find the largest @f, > 0 such that
VieR, y(t)=y(+2n/w)

T Consider a continuous-time LTI system S. Suppose that when the input x is given

by
1, if0o<r<1

Vi € Reals, x(t) = { 0, otherwise
then the output y = S(x) is given by

1, ifo<r<2

Vt € Reals, )’(f):{ 0, otherwise

Give an expression and a sketch for the output of the same system if the input is

(a)

1, if0<r<1
Vt € Reals, X'(t)=<¢ —1, if1<t<2
0, otherwise

(b)
1, ifo<r<1/2

Vt € Reals, x'(t)= { 0, otherwise

T Suppose that the frequency response H of a discrete-time LTI system Filter is
given by:
Voce[-nmn, Ho) =|o.

where ® has units of radians/sample. Note that since a discrete-time frequency
response is periodic with period 27, this definition implicitly gives H(®) for all
o € R. Give simple expressions for the output y when the input signal x : Z — R is
such that V n € Z each of the following is true:

(a) x(n) =cos(nn/2).

Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

8. FREQUENCY RESPONSE

(b) x(n) =5.

+1, neven

(©) x(n) :{ —1, nodd

16. T Consider a continuous-time LTI system S. Suppose that when the input is given
by

x(t) =

then the output y = S(x) is given by

sin(mr)  0<r<1
0 otherwise

sin(tt) 0<tr<1
y(t)=<sin(n(t—1)) 1<r<?2
0 otherwise

forall t € R.

(a) Carefully sketch these two signals.

(b) Give an expression and a sketch for the output of the same system if the input
is

sin(7tt) 0<r<1
x(t)=< —sin(n(t—1)) 1<r<2
0 otherwise

17. T Suppose you are given the building blocks shown below for building block dia-
grams:

-0.51n-

— > +

0.5in

These blocks are defined as follows:

e An LTI system Hy: [R — R] — [R — R] that has a rectangular frequency
response given by

I W<o<W

VoeR, H(o)= {() otherwise

where W is a parameter you can set.

Lee & Varaiya, Signals and Systems 359


http://LeeVaraiya.org

EXERCISES

e A gainblock G,: [R — R] — [R — R] where if y = g(x), then
VieR, y(1)=gx(t)

where g € R is a parameter you can set.

e Anadder, which can add two continuous-time signals. Specifically, Add: [R —
R] x [R — R] — [R — R] such that if y = Add(x],x;) then

VieR, y(t)=xi(t)+x(r).

Use these building blocks to construct a system with the frequency response shown
below:

A H(w)
2
.
w
2 g o
18. T Let u be a discrete-time signal given by
1 0<n

VneZ, un)= {0 otherwise
This is the unit step signal, which we saw before in (2.16). Suppose that a discrete-
time system H that is known to be LTI is such that if the input is u, the output is
y = H(u) given by

VneZ, y(n)=nu(n).

This is called the step response of the system. Find a simple expression for the
output w = H(p) when the input is p given by

2 0<n<8
VneZ, pn)= {0 otherwise

Sketch w.

19. T Suppose you are given the Fourier series coefficients ---X_1, Xp, X1, Xp,--- for a
periodic signal x: R — R with period p. Find the fundamental frequency and the
Fourier series coefficients of the following signals in terms of those of x.

360 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

8. FREQUENCY RESPONSE

(a) ysuchthat Vs € R, y(r) =x(ar), for some positive real number a.
(b) wsuchthatVt € R, w(t) = x(¢)e'’, where 0y = 21t/p.
(c) zsuchthatVt e R, z(r) = x(t)cos(mot), where @y = 27/ p.

20. E Analogously to the box on page 349, show that the formula (8.33) for the discrete
Fourier series coefficients is valid.

21. C Consider a system Squarer: [R — R] — [R — R], where if y = Squarer(x) then
VieR, y()=(x(n)

(a) Show that this system is memoryless.
(b) Show that this system is not linear.
(c) Show that this system is time invariant.

(d) Suppose that the input x is given by
VieR, x(t)=cos(mr),

for some fixed ®. Show that the output y contains a component at frequency
20.

Lee & Varaiya, Signals and Systems 361


http://LeeVaraiya.org

EXERCISES

362 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

Filtering

Contents
91 Convolution . ..........c.c00 ittt 365
9.1.1 Convolution sum and integral . . . . .. ... ... ..... 367
9.1.2 TImpulses . . ... ... ... .. ... 371
9.1.3  Signals as sums of weighted delta functions . . . . . . .. .. 372
9.14 Impulse response and convolution . . . . . ... ... .... 375
9.2 Frequency response and impulseresponse . . . . . ......... 378
93 Causality . . . . . . v i i i it i e e e e e e e 382
9.4 Finite impulse response (FIR) filters . . . .. ... ......... 382
Probing Further: Causality . . . . . . . . . ... .. ... ...... 383
9.4.1 Designof FIRfilters . . . . . ... ... ... ........ 385
942 Decibels. . . .. ... 391
Probing Further: Decibels . . . . . ... ... ... ......... 394
9.5 Infinite impulse response (IIR) filters . . ... ........... 395
9.5.1 Designing IR filters . . . . . ... ... ... ... ..... 396
9.6 Implementationoffilters . ...................... 398
9.6.1 Matlab implementation . . . . . .. ... ... .. ...... 398
9.6.2 Signalflowgraphs . . ... ... .. ... ... ... ... 400
Probing Further: Java implementation of an FIR filter . . . . .. .. 401
Probing Further: FIR filter in a programmable DSP . . . . . . . . .. 402
L | 111111 T 1 403
Exercises . . .. ..ottt it e e e e e 406

363



Linear time invariant systems have the property that if the input is described as a sum of
sinusoids, then the output is a sum of sinusoids of the same frequencies. Each sinusoidal
component will typically be scaled differently, and each will be subjected to a phase
change, but the output will not contain any sinusoidal components that are not also present
in the input. For this reason, an LTI system is often called a filter. It can filter out
frequency components of the input, and also enhance other components, but it cannot
introduce components that are not already present in the input. It merely changes the
relative amplitudes and phases of the frequency components that are present in the inputs.

LTI systems arise in two circumstances in an engineering context. First, they may be used
as a model of a physical system. Many physical systems are accurately modeled as LTI
systems. Second, they may present an ideal for an engineered system. For example, they
may specify the behavior that an electronic system is expected to exhibit.

Consider for example an audio system. The human ear hears frequencies in the range of
about 30 to 20,000 Hz, so a specification for a high fidelity audio system typically requires
that the frequency response be constant (in magnitude) over this range. The human ear is
relatively insensitive to phase, so the same specification may say nothing about the phase
response (the argument, or angle of the frequency response). An audio system is free to
filter out frequencies outside this range.

Consider an acoustic environment, a physical context such as a lecture hall where sounds
are heard. The hall itself alters the sound. The sound heard by your ear is not identical to
the sound created by the lecturer. The room introduces echoes, caused by reflections of the
sound by the walls. These echoes tend to occur more for the lower frequency components
in the sound than the higher frequency components because the walls and objects in the
room tend to absorb higher frequency sounds better. Thus, the lower frequency sounds
bounce around in the room, reinforcing each other, while the higher frequency sounds,
which are more quickly absorbed, become relatively less pronounced. In an extreme
circumstance, in a room where the walls are lined with shag carpeting, for example, the
higher frequency sounds are absorbed so effectively that the sound gets muffled by the
room.

The room can be modeled by an LTI system where the frequency response H (®) is smaller
in magnitude for large ® than for small ®. This is a simple form of distortion introduced
by a channel (the room), which in this case carries a sound from its transmitter (the
lecturer) to its receiver (the listener). This form of distortion is called linear distortion, a
shorthand for linear, time-invariant distortion (the time invariance is left implicit).

364 Lee & Varaiya, Signals and Systems


http://LeeVaraiya.org

9. FILTERING

A public address system in a lecture hall may compensate for the acoustics of the room by
boosting the high frequency content in the sound. Such a compensator is called an equal-
izer because it corrects for distortion in the channel so that all frequencies are received
equally well by the receiver.

In a communications system, a channel may be a physical medium, such as a pair of
wires, that carries an electrical signal. That physical medium distorts the signal, and this
distortion is often reasonably well approximated as linear and time invariant. An equalizer
in the receiver compensates for this distortion. Unlike the audio example, however, such
an equalizer often needs to compensate for the phase response, not just the magnitude
response. Because the human ear is relatively insensitive to phase distortion, a public
address system equalizer need not compensate for phase distortion. But the wire pair may
be carrying a signal that is not an audio signal. It may be, for example, a modem signal.

Images may also be processed by LTI systems. Consider the three images shown in Figure
9.1. The top image is the original, undistorted image. The lower left image is blurred,

as might result for example from unfocused optics. The lower right image is, in a sense,
the opposite of the blurred image. Whereas the blurred image deemphasizes the patterns
in the outfit, for example, the right image deemphasizes the regions of constant value,
changing them all to a neutral gray.

For images, time is not the critical variable. Its role is replaced by two spatial variables,
one in the horizontal direction and one in the vertical direction. Thus, instead of LTI, we
might talk about an image processing system being a linear, space-invariant (LSI) sys-
tem. The blurred image is constructed from the original by an LSI system that eliminates
high (spatial) frequencies, passing unaltered the low frequencies. Such a system