


Copyright c©2011
Edward Ashford Lee & Pravin Varaiya

All rights reserved

Second Edition, Version 2.04

ISBN 978-0-578-07719-2

Please cite this book as:

E. A. Lee and P. Varaiya,
Structure and Interpretation of Signals and Systems,

Second Edition, LeeVaraiya.org, 2011.

First Edition was printed by:

Addison-Wesley, ISBN 0-201-74551-8, 2003, Pearson Education, Inc.



Contents

Preface ix

1 Signals and Systems 1

1.1 Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2 Defining Signals and Systems 49

2.1 Defining functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.2 Defining signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.3 Defining systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3 State Machines 93
3.1 Structure of state machines . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.2 Finite state machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.3 Nondeterministic state machines . . . . . . . . . . . . . . . . . . . . . . 107

iii



3.4 Simulation relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4 Composing State Machines 137

4.1 Synchrony . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.2 Side-by-side composition . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.3 Cascade composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.4 Product-form inputs and outputs . . . . . . . . . . . . . . . . . . . . . . 148

4.5 General feedforward composition . . . . . . . . . . . . . . . . . . . . . 151

4.6 Hierarchical composition . . . . . . . . . . . . . . . . . . . . . . . . . . 154

4.7 Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

5 Linear Systems 187

5.1 Operation of an infinite state machine . . . . . . . . . . . . . . . . . . . 189

5.2 Linear functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

5.3 The [A,B,C,D] representation of a system . . . . . . . . . . . . . . . . . 195

5.4 Continuous-time state-space models . . . . . . . . . . . . . . . . . . . . 218

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

6 Hybrid Systems 231

6.1 Mixed models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
6.2 Modal models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
6.3 Timed automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
6.4 More interesting dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 250

6.5 Supervisory control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

6.6 Formal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

iv Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

7 Frequency Domain 275

7.1 Frequency decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 277

7.2 Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
7.3 Spatial frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

7.4 Periodic and finite signals . . . . . . . . . . . . . . . . . . . . . . . . . . 285

7.5 Fourier series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
7.6 Discrete-time signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

7.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

8 Frequency Response 311

8.1 LTI systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

8.2 Finding and using the frequency response . . . . . . . . . . . . . . . . . 325

8.3 Determining the Fourier series coefficients . . . . . . . . . . . . . . . . . 339

8.4 Frequency response and the Fourier series . . . . . . . . . . . . . . . . . 340

8.5 Frequency response of composite systems . . . . . . . . . . . . . . . . . 342

8.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

9 Filtering 363

9.1 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
9.2 Frequency response and impulse response . . . . . . . . . . . . . . . . . 378

9.3 Causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

9.4 Finite impulse response (FIR) filters . . . . . . . . . . . . . . . . . . . . 382

9.5 Infinite impulse response (IIR) filters . . . . . . . . . . . . . . . . . . . . 395

9.6 Implementation of filters . . . . . . . . . . . . . . . . . . . . . . . . . . 398

9.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403

Lee & Varaiya, Signals and Systems v

http://LeeVaraiya.org


Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

10 The Four Fourier Transforms 413
10.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
10.2 The Fourier series (FS) . . . . . . . . . . . . . . . . . . . . . . . . . . . 415

10.3 The discrete Fourier transform (DFT) . . . . . . . . . . . . . . . . . . . 421

10.4 The discrete-Time Fourier transform (DTFT) . . . . . . . . . . . . . . . 424

10.5 The continuous-time Fourier transform . . . . . . . . . . . . . . . . . . . 428
10.6 Fourier transforms vs. Fourier series . . . . . . . . . . . . . . . . . . . . 434
10.7 Properties of Fourier transforms . . . . . . . . . . . . . . . . . . . . . . 444

10.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460

11 Sampling and Reconstruction 473

11.1 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474

11.2 Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
11.3 The Nyquist-Shannon sampling theorem . . . . . . . . . . . . . . . . . . 488

11.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495

12 Stability 499

12.1 Boundedness and stability . . . . . . . . . . . . . . . . . . . . . . . . . 503

12.2 The Z transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
12.3 The Laplace transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 521

12.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532

13 Laplace and Z Transforms 537

13.1 Properties of the Z tranform . . . . . . . . . . . . . . . . . . . . . . . . 538

13.2 Frequency response and pole-zero plots . . . . . . . . . . . . . . . . . . 550

13.3 Properties of the Laplace transform . . . . . . . . . . . . . . . . . . . . . 552

vi Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


13.4 Frequency response and pole-zero plots . . . . . . . . . . . . . . . . . . 557

13.5 The inverse transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
13.6 Steady state response . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570

13.7 Linear difference and differential equations . . . . . . . . . . . . . . . . 573

13.8 State-space models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584

13.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603

14 Composition and Feedback Control 611

14.1 Cascade composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613

14.2 Parallel composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620

14.3 Feedback composition . . . . . . . . . . . . . . . . . . . . . . . . . . . 626

14.4 PID controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639
14.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648

A Sets and Functions 655
A.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656
A.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677
A.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 680

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684

B Complex Numbers 689

B.1 Imaginary numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 690

B.2 Arithmetic of imaginary numbers . . . . . . . . . . . . . . . . . . . . . . 691

B.3 Complex numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 692

B.4 Arithmetic of complex numbers . . . . . . . . . . . . . . . . . . . . . . 693

B.5 Exponentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694

B.6 Polar coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701

Lee & Varaiya, Signals and Systems vii

http://LeeVaraiya.org


Bibliography 703

Notation Index 704

Index 708

viii Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


Preface

Signals convey information. Systems transform signals. This book introduces the mathe-
matical models used to design and understand both. It is intended for students interested
in developing a deep understanding of how to digitally create and manipulate signals to
measure and control the physical world and to enhance human experience and communi-
cation.

The discipline known as “signals and systems” is rooted in the intellectual tradition of
electrical engineering (EE). This tradition, however, has evolved in unexpected ways.
EE has lost its tight coupling with the “electrical.” So although many of the techniques
introduced in this book were first developed to analyze circuits, today they are widely
applied in information processing, system biology, mechanical engineering, finance, and
many other disciplines.

This book approaches signals and systems from a computational point of view. A more
traditional introduction to signals and systems would be biased towards the historic ap-
plication, analysis and design of circuits. It would focus almost exclusively on linear
time-invariant systems, and would develop continuous-time models first, with discrete-
time models then treated as an advanced topic.

The approach in this book benefits students by showing from the start that the methods of
signals and systems are applicable to software systems, and most interestingly, to systems

ix



Preface

that mix computers with physical devices and processes, including mechanical control
systems, biological systems, chemical processes, transportation systems, and financial
systems. Such systems have become pervasive, and profoundly affect our daily lives.

The shift away from circuits implies some changes in the way the methodology of signals
and systems is presented. While it is still true that a voltage that varies over time is
a signal, so is a packet sequence on a network. This text defines signals to cover both.
While it is still true that an RLC circuit is a system, so is a computer program for decoding
Internet audio. This text defines systems to cover both. While for some systems the state
is still captured adequately by variables in a differential equation, for many it is now the
values in registers and memory of a computer. This text defines state to cover both.

The fundamental limits also change. Although we still face thermal noise and the speed
of light, we are likely to encounter other limits–such as complexity, computability, chaos,
and, most commonly, limits imposed by other human constructions–before we get to
these. The limitations imposed, for example, when transporting voice signals over the In-
ternet, are not primarily physical limitations. They are instead limitations arising from the
design and implementation of the Internet, and from the fact that transporting voice was
never one of the original intentions of the design. Similarly, computer-based audio sys-
tems face latency and jitter imposed by an operating system designed to time share scarce
computing resources among data processing tasks. This text focuses on composition of
systems so that the limits imposed by one system on another can be understood.

The mathematical basis for the discipline also changes with this new emphasis. The
mathematical foundations of circuit analysis are calculus and differential equations. Al-
though we still use calculus and differential equations, we frequently need discrete math,
set theory, and mathematical logic. Whereas the mathematics of calculus and differential
equations evolved to describe the physical world, the world we face as system designers
often has nonphysical properties that are not such a good match for this mathematics.
This text bases the entire study on a highly adaptable formalism rooted in elementary set
theory.

Despite these fundamental changes in the medium with which we operate, the methodol-
ogy of signals and systems remains robust and powerful. It is the methodology, not the
medium, that defines the field.

The book is based on a course at Berkeley required of all majors in Electrical Engineer-
ing and Computer Sciences (EECS). The experience developing the course is reflected in
certain distinguished features of this book. First, no background in electrical engineer-

x Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


Preface

ing or computer science is assumed. Readers should have some exposure to calculus,
elementary set theory, series, first order linear differential equations, trigonometry, and
elementary complex numbers. The appendices review set theory and complex numbers,
so this background can be made up students.

Approach

This book is about mathematical modeling and analysis of signals and systems, appli-
cations of these methods, and the connection between mathematical models and compu-
tational realizations. We develop three themes. The first theme is the use of sets and
functions as a universal language to describe diverse signals and systems. Signals—
voice, images, bit sequences—are represented as functions with an appropriate domain
and range. Systems are represented as functions whose domain and range are themselves
sets of signals. Thus, for example, an Internet voice signal is represented as a function
that maps voice-like signals into sequences of packets.

The second theme is that complex systems are constructed by connecting simpler sub-
systems in standard ways—cascade, parallel, feedback. The connections determine the
behavior of the interconnected system from the behaviors of component subsystems. The
connections place consistency requirements on the input and output signals of the systems
being connected.

Our third theme is to relate the declarative view (mathematical, “what is”) with the imper-
ative view (procedural, “how to”). That is, we associate mathematical analysis of systems
with realizations of these systems. This is the heart of engineering. When electrical en-
gineering was entirely about circuits, this was relatively easy, because it was the physics
of the circuits that was being described by the mathematics. Today we have to some-
how associate the mathematical analysis with very different realizations of the systems,
most especially software. We do this association through the study of state machines, and
through the consideration of many real-world signals, which, unlike their mathematical
abstractions, have little discernable declarative structure. Speech signals, for instance, are
far more interesting than sinusoids, and yet many signals and systems textbooks talk only
about sinusoids.

Lee & Varaiya, Signals and Systems xi

http://LeeVaraiya.org


Preface

Content

We begin in Chapter 1 by describing signals as functions, focusing on characterizing the
domain and the range for familiar signals that humans perceive, such as sound, images,
video, trajectories of vehicles, as well as signals typically used by machines to store or
manipulate information, such as sequences of words or bits.

Systems, also introduced in Chapter 1, are described as functions, but now the domain and
the range are themselves sets of signals. Systems can be connected to form a more com-
plex system, and the function describing these more complex systems is a composition of
functions describing the component systems.

Chapter 2 focuses on how to define the functions that we use to model both signals and
systems. It distinguishes declarative definitions (assertions of what a signal or system is)
from imperative ones (descriptions of how a signal is produced or processed by a system).

The imperative approach is further developed in Chapter 3 using the notion of state, the
state transition function, and the output function, all in the context of finite state machines.
In Chapter 4, state machines are composed in various ways (cascade, parallel, and feed-
back) to make more interesting systems. Applications to feedback control illustrate the
power of the state machine model.

In Chapter 5, time-based systems are studied, first with discrete-time systems (which have
simpler mathematics), and then with continuous-time systems. We introduce the notion
of a state machine and define linear time-invariant (LTI) systems as state machines with
linear state transition and output functions and zero initial state. The input-output behavior
of these systems is fully characterized by their impulse response.

Chapter 7 introduces frequency decomposition of signals, Chapter 8 introduces frequency
response of LTI systems, and Chapter 9 brings the two together by discussing filtering.
The approach is to present frequency domain concepts as a complementary toolset, differ-
ent from that of state machines, and much more powerful when applicable. Frequency de-
composition of signals is motivated first using psychoacoustics, and gradually developed
until all four Fourier transforms (the Fourier series, the Fourier transform, the discrete-
time Fourier transform, and the discrete Fourier transform) have been described. We
linger on the first of these, the Fourier series, since it is conceptually the easiest, and then
more quickly present the others as generalizations of the Fourier series. LTI systems yield
best to frequency-domain analysis because of the property that complex exponentials are
eigenfunctions (the output is a scaled version of the input). Consequently, they are fully

xii Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


Preface

characterized by their frequency response—the main reason that frequency domain meth-
ods are important in the analysis of filters and feedback control.

Chapter 10 covers classical Fourier transform material such as properties of the four
Fourier transforms and transforms of basic signals. Chapter 11 applies frequency domain
methods to a study of sampling and aliasing.

Chapters 12, 13 and 14 extend frequency domain techniques to include the Z transform
and the Laplace transform. Applications in signal processing and feedback control illus-
trate the concepts and the utility of the techniques. Mathematically, the Z transform and
the Laplace transform are introduced as extensions of the discrete-time and continuous-
time Fourier transforms to signals on which Fourier transforms do not work, specifically
signals that are not absolutely summable or integrable. Practically, the concern is for
systems that are not stable and for systems that consume unbounded amounts of energy.
These chapters extend the intuition of previous chapters to cover such systems.

The unified modeling approach in this text is rich enough to describe a wide range of
signals and systems, including those based on discrete events and those based on sig-
nals in time, both continuous and discrete. The complementary tools of state machines
and frequency domain methods permit analysis and implementation of concrete signals
and systems. Hybrid systems and modal models offer systematic ways to combine these
complementary toolsets. The framework and the tools of this text provide a foundation
on which to build later courses on digital systems, embedded systems, communications,
signal processing, hybrid systems, and control.

Pedagogical features

This book has a number of highlights that make it well suited as a textbook for an intro-
ductory course.

1. “Probing Further” sidebars briefly introduce the reader to interesting extensions of
the subject, to applications, and to more advanced material. They serve to indicate
directions in which the subject can be explored.

2. “Basics” sidebars offer readers with less mathematical background some basic tools
and methods.

Lee & Varaiya, Signals and Systems xiii

http://LeeVaraiya.org


Preface

3. Appendix A reviews basic set theory and helps establish the notation used through-
out the book.

4. Appendix B reviews complex variables, making it unnecessary for students to have
much background in this area.

5. Key equations are boxed to emphasize their importance. They can serve as the
places to pause in a quick reading. In the index, the page numbers where key terms
are defined are shown in bold.

6. The exercises at the end of each chapter are annotated with the letters E, T , or
C to distinguish those exercises that are mechanical (E for excercise) from those
requiring a plan of attack (T for thought) and those that generally have more than
one reasonable answer (C for conceptualization).

Notation

The notation in this text is unusual when compared to standard texts on signals and sys-
tems. We explain our reasons for this as follows:

Domains and ranges. It is common in signals and systems texts to use the form of the
argument of a function to define its domain. For example, x(n) is a discrete-time signal,
while x(t) is a continuous-time signal; X( jω) is the continuous-time Fourier transform
and X(e jω) is the discrete-time Fourier transform. This leads to apparent nonsense like
x(n) = x(nT ) to define sampling, or to confusion like X( jω) 6= X(e jω) even when jω =
e jω.

We treat the domain of a function as part of its definition. Thus a discrete-time, real-
valued signal is a function x : Z→ R, which maps integers to real numbers. Its discrete-
time Fourier transform (DTFT) is a function X : R→ C, which maps real numbers into
complex numbers. The DTFT is found using a function whose domain and range are sets
of functions,

DTFT : [Z→ R]→ [R→ C].

This function maps functions of the form x : Z→R into functions of the form X : R→C.
The notation [Z→ R] means the set of all functions mapping integers into real numbers.
Then we can unambiguously write X = DTFT(x).

xiv Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


Preface

Functions as values. Most texts call the expression x(t) a function. A better interpretation
is that x(t) is an element in the range of the function x. The difficulty with the former
interpretation becomes obvious when talking about systems. Many texts pay lip service
to the notion that a system is a function by introducing a notation like y(t) = T (x(t)). This
makes it seem that T acts on the value x(t) rather than on the entire function x.

Our notation includes set of functions, allowing systems to be defined as functions with
such sets as the domain and range. Continuous-time convolution, for example, becomes

Convolution : [R→ R]× [R→ R]→ [R→ R].

We then introduce the notation ∗ as a shorthand,

y = x∗h = Convolution(x,h),

and define the convolution function by

∀ t ∈ R, y(t) = (x∗h)(t) =
∞∫
−∞

x(τ)y(t− τ)dτ.

Note the careful parenthesization. The more traditional notation, y(t) = x(t)∗h(t), would
seem to imply that y(t − T ) = x(t − T ) ∗ h(t − T ). But it is not so! Such notation un-
dermines a student’s confidence in algebra, since substitution of a value for t does not
work!

A major advantage of our notation is that it easily extends beyond LTI systems to the sorts
of systems that inevitably arise in any real world application, such as mixtures of discrete
event and continuous-time systems.

Names of functions. We use long names for functions and variables when they have a
concrete interpretation. Thus, instead of x we might use Sound. This follows a long-
standing tradition in software, where readability is considerably improved by long names.
By giving us a much richer set of names to use, this helps us avoid some of the preceding
pitfalls. For example, to define sampling of an audio signal, we might write

SampledSound = SamplerT (Sound).

It also helps bridge the gap between realizations of systems (which are often software)
and their mathematical models. How to manage and understand this gap is a major theme
of our approach.

Lee & Varaiya, Signals and Systems xv

http://LeeVaraiya.org


Preface

How to use this book

At Berkeley, the first 11 chapters of this book are covered in a 15-week, one-semester
course. Even though it leaves Laplace transforms, Z transforms, and feedback control
systems to a follow-up course, it remains a fairly intense experience. Each week consists
of three 50-minute lectures, a one-hour problem session, and one three-hour laboratory.
The lectures and problem sessions are conducted by a faculty member while the laboratory
is led by teaching assistants, who are usually graduate students, but are also often talented
juniors or seniors.

We have developed laboratory components based on MATLAB and Simulink, and a sep-
arate set based on LabVIEW. In both cases, then lab content is closely coordinated with
the lectures. The text does not offer a tutorial on LabVIEW, MATLAB, or Simulink,
although the labs include enough material so that, combined with on-line help, they are
sufficient. Some examples in the text and some exercises at the ends of the chapters de-
pend on MathScript, the mathematical expression language used by both MATLAB and
LabVIEW.

At Berkeley, this course is taken by all electrical engineering and computer science stu-
dents, and is followed by a more traditional signals and systems course. That course
covers the material in the last three chapters plus applications of frequency-domain meth-
ods to communications systems. The follow-up course is not taken by most computer
science students. In a program that is more purely electrical and computer engineering
than ours, a better approach might be to spend two quarters or two semesters on the mate-
rial in this text, since the unity of notation and approach would be better than having two
disjoint courses, the introductory one using a modern approach, and the follow-up course
using a traditional one.

Acknowledgements

Many people have contributed to the content of this book. Dave Messerschmitt concep-
tualized the first version of the course on which the book is based, and later committed
considerable departmental resources to the development of the course while he was chair
of the EECS department at Berkeley. Randy Katz, Richard Newton, and Shankar Sas-
try continued to invest considerable resources in the course when they each took over as
chair, and backed our efforts to establish the course as a cornerstone of our undergraduate

xvi Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


Preface

curriculum. This took considerable courage, since the conceptual approach of the course
was largely unproven.

Tom Henzinger probably had more intellectual influence over the approach than any other
individual. The view of state machines, of composition of systems, and of hybrid systems
owe a great deal to Tom. Gerard Berry also contributed a great deal to our way of pre-
senting synchronous composition.

We were impressed by the approach of Harold Abelson and and Gerald Jay Sussman,
in Structure and Interpretation of Computer Programs (MIT Press, 1996), who con-
fronted a similar transition in their discipline. The title of our book shows their influ-
ence. Jim McLellan, Ron Shafer, and Mark Yoder influenced this book through their
pioneering departure from tradition in signals and systems, DSP First—A Multimedia
Approach (Prentice-Hall, 1998). Ken Steiglitz greatly influenced the labs with his inspi-
rational book, A DSP Primer: With Applications to Digital Audio and Computer Music
(Addison-Wesley, 1996). Babak Ayazifar, with his visionary treatment of the course, has
significantly influenced more recent versions of the book.

A number of people have been involved in the media applications, examples, the labo-
ratory development, and the web content associated with the book. These include Brian
Evans and Ferenc Kovac. We also owe gratitude for the superb technical support from
Christopher Brooks. Jie Liu contributed sticky masses example to the hybrid systems
chapter, and Yuhong Xiong contributed the technical stock trading example. Other exam-
ples and ideas were contributed by Steve Neuendorffer, Cory Sharp, and Tunc Simsek.

Over several years, students at Berkeley have taken the course that provided the impetus
for this book. They used successive versions of the book and the Web content. Their
varied response to the course helped us define the structure of the book and the level of
discussion. The course is taught with the help of undergraduate teaching assistants. Their
comments helped shape the laboratory material.

Parts of this book were reviewed by more than 30 faculty members around the coun-
try. Their criticisms helped us correct defects and inconsistencies in earlier versions.
Of course, we alone are responsible for the opinions expressed in the book, and the er-
rors that remain. We especially thank: Jack Kurzweil, San Jose State University; Lee
Swindlehurst, Brigham Young University; Malur K. Sundareshan, University of Arizona;
Stéphane Lafortune, University of Michigan; Ronald E. Nelson, Arkansas Tech Univer-
sity; Ravi Mazumdar, Purdue University; Ratnesh Kumar, University of Kentucky; Rahul
Singh, San Diego State University; Paul Neudorfer, Seattle University; R. Mark Nelms,

Lee & Varaiya, Signals and Systems xvii

http://LeeVaraiya.org


Preface

Auburn University; Chen-Ching Liu, University of Washington; John H. Painter, Texas
A&M University; T. Kirubarajan, University of Connecticut; James Harris, California
Polytechnic State University in San Luis Obispo; Frank B. Gross, Florida A&M Uni-
versity; Donald L. Snyder, Washington University in St. Louis; Theodore E. Djaferis,
University of Massachusetts in Amherst; Soura Dasgupta, University Iowa; Maurice Fe-
lix Aburdene, Bucknell University; and Don H. Johnson, Rice University.

Many of these reviews were solicited by Heather Shelstad of Brooks/Cole, Denise Penrose
of Morgan-Kaufmann, and Susan Hartman and Galia Shokry of Addison-Wesley, who
handled the publication of the first edition of this book. We are grateful to these editors for
their interest and encouragement. To Susan Hartman, Galia Shokry and Nancy Lombardi
we owe a special thanks; their enthusiasm and managerial skills helped us and others keep
the deadlines in bringing the first edition of the book to print. Subsequent editions build
on this.

It took much longer to write this book than we expected when we embarked on this
project. It has been a worthwhile effort nonetheless. Our friendship has deepened, and
our mutual respect has grown as we learned from each other. Rhonda Righter and Ruth
Varaiya have been remarkably sympathetic and encouraging through the many hours at
nights and on weekends that this project has demanded. To them we owe our immense
gratitude.

xviii Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


1
Signals and Systems

Contents
1.1 Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Audio signals . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Probing Further: Household electrical power . . . . . . . . . . . . . 11
1.1.2 Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Probing Further: Color and light . . . . . . . . . . . . . . . . . . . . 15
1.1.3 Video signals . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.1.4 Signals representing physical attributes . . . . . . . . . . . . 17
1.1.5 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.1.6 Discrete signals and sampling . . . . . . . . . . . . . . . . . 22

1.2 Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.2.1 Systems as functions . . . . . . . . . . . . . . . . . . . . . . 28
1.2.2 Telecommunications systems . . . . . . . . . . . . . . . . . . 29
Probing Further: Wireless communication . . . . . . . . . . . . . . . 32
Probing Further: LEO telephony . . . . . . . . . . . . . . . . . . . . 33
1.2.3 Audio storage and retrieval . . . . . . . . . . . . . . . . . . . 36
1.2.4 Modem negotiation . . . . . . . . . . . . . . . . . . . . . . . 37
1.2.5 Feedback control systems . . . . . . . . . . . . . . . . . . . 38

1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Probing Further: Modems and Encrypted speech . . . . . . . . . . . 43

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1



1.1. SIGNALS

1.1 Signals

Broadly speaking, a signal is a means to convey information. This printed page, for
example, is a signal. So is the sound of someone reading the page aloud. In this text, a
system is a process that generates signals or transforms signals. A person reading this
book aloud, for example, is a system that converts the printed page signal into a sound
signal. So is an electronic book reader for the blind. This book is about developing a
deep enough understanding of signals and systems to be able to understand how such a
book reader and many other systems work. We gain this understanding by dissecting the
structure of signals, examining their interpretation, and developing systematic ways to
analyze and synthesize them. Consider a few examples of signals and systems.

Example 1.1: A sound is a signal. A sequence of bits stored in a flash memory is
also a signal. An MP3 player is a system that converts such a sequence of bits into
high-quality stereo sound. A sequence of commands issued to a computer is also
a signal. An interactive voice response (IVR) system converts spoken words into
commands to a computer. IVR systems are commonly used today in call centers to
efficiently handle high call volumes, for example in customer service centers.

Many mechanical machines produce sound as they operate. As they wear, the sound
that they produce may change. Automated analysis of the sound that they pro-
duce can identify problems before the equipment fails. Such early detection is
extremely valuable, particularly in safety-critical systems, such as jet engines or
power-generation turbines. This book can help understand how to design systems
for such automated detection.

Sound signals can also be converted to images. The famous iTunes visualizer is a
beautiful example; it generates aesthetically pleasing colorful patterns on a screen
that undulate synchronously with music. An ultrasound imaging system generates
sounds with frequencies that are too high for humans to hear, and listens for their
reflections. The sounds are reflected in materials where two distinct materials meet.
These reflections can be used to safely construct images of a baby in a womb, for
example, without exposing the baby to potentially harmful radiation.

2 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


1. SIGNALS AND SYSTEMS

Example 1.2: An image is a signal. A system that analyzes images, recogniz-
ing objects, faces, animals, etc., might form the heart of an Internet image search
engine. A system that compares images might be used to enforce copyrights. In
factory automation, it is common to use imaging systems to detect manufacturing
defects. An image enhancement system might be used in a digital camera to, for
example, automatically remove red eye, a bright reflection from the back of the
retina that occurs when a camera flash is close to the camera lens.

Example 1.3: A computer program, which is a sequence of commands, is also
a signal. Malware, short for malicious software, is software that surreptitiously
performs undesired functions on your computer. A system that detects malware
transforms the program signal into a simple yes or no answer. Either the program
contains malware or it does not. Although they are far from perfect, such sys-
tems have gotten quite sophisticated, and they can often even detect obfuscated
programs, programs that have been deliberately altered to attempt to hide their ma-
licious intent.

Example 1.4: DNA molecules contain the genetic instructions used in the devel-
opment and functioning of almost all known living organisms. A DNA molecule,
therefore, is a signal, and a biological system uses the structure of the molecule
to synthesize other molecules. The structure of a DNA molecule can be relatively
simply represented as a sequence of one of four types of nucleotides denoted by the
letters A, T, C, and G. A sequence of such letters, therefore, encodes the signal that
the DNA molecule represents.

Example 1.5: Electromagnetic radiation can function as a signal. A radio broad-
cast system, for example, converts sound signals into electromagnetic radiation,
which is then picked up by a radio antenna and converted back to sound. A tele-
vision broadcast system converts images into sequences of bits, and then converts

Lee & Varaiya, Signals and Systems 3

http://LeeVaraiya.org


1.1. SIGNALS

the sequences of bits into radio signals. A TV receiver reverses these conversions.
A radar system generates an electromagnetic signal, transmits it, listens for reflec-
tions, and then converts the reflections into images. Radar signals are routinely
used in air traffic control systems, for example, and for collision avoidance systems
in high-end cars.

One way to get a deeper understanding of a subject is to formalize it, to develop mathemat-
ical models. Such models admit manipulation with a level of confidence not achievable
with less formal models. We know that if we follow the rules of mathematics, then a
transformed model still relates strongly to the original model. There is a sense in which
mathematical manipulation preserves “truth” in a way that is elusive with almost any other
intellectual manipulation of a subject. We can leverage this truth-preservation to gain con-
fidence in the design of a system, to extract hidden information from a signal, or simply
to gain insight.

Mathematically, we model both signals and systems as functions. A signal is a function
that maps a domain, often time or space, into a range, often a physical measure such as air
pressure or light intensity. A system is a function that maps signals from its domain—its
input signals—into signals in its range—its output signals. The domain and the range are
both sets of signals; we call a set of signals a signal space. Thus, systems are functions
whose domains and ranges are signal spaces.

We use the mathematical language of sets and functions to make our models unambigu-
ous, precise, and manipulable. This language has its own notation and rules, which are
reviewed in Appendix A. We begin to use this language in this chapter. Depending on the
situation, we represent physical quantities such as time, voltage, current, light intensity,
air pressure, or the content of a memory location by variables that range over appropriate
sets. A variable has a name, such as n or Intensity, and a set of values that can be assigned
to the variable.

Example 1.6: Time may be represented by a variable n ∈ N, where N represents
the set of natural numbers {1,2,3, · · ·}. We read the expression “n∈N” as “n in the
set of natural numbers,” and it means that n is a variable that can have any value in
N. For example, in Unix time or POSIX time, used by many computer systems to
keep track of the date and time, the value of n represents the number of seconds that

4 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


1. SIGNALS AND SYSTEMS

have elapsed since midnight on January 1, 1970. The time at which we are writing
this paragraph is n = 1290876962, a natural number.

Time may be represented many other ways. For example, the time of day may
be represented as h : m : s, where h ∈ {0,1, · · · ,23} represents the hour, m ∈
{0,1, · · · ,59} represents the minute, and s ∈ {0,1, · · · ,59} represents the second.
Mathematically, these three numbers form a three-tuple,

(h,m,s) ∈ {0,1, · · · ,23}×{0,1, · · · ,59}×{0,1, · · · ,59},

where the × operator forms the Cartesian product of sets.

In the study of physical systems, time is often represented by a variable t ∈ R+,
where R+ is the set of non-negative real numbers, or t ∈ R, the real numbers. In
such a representation, the particular value t = 0 will typically have some meaning,
representing for example the time at which a system first begins functioning. Such a
model of time is often called continuous time, reflecting the fact that the set of real
numbers is a continuum. (Technically, a continuum is ordered set that is dense, in
the sense that between any two elements of the set there is another element, and for
which every non-empty ordered subset that has an upper bound has a least upper
bound. But this is more technical than we need for now.)

Example 1.7: The intensity of light reflected from a point on a page may be repre-
sented by a continuous variable x ∈ [0,MaxIntensity], where [0,MaxIntensity]⊂ R
represents a range of real numbers from zero to MaxIntensity, where MaxIntensity
is some maximum value of the intensity. The value x = 0 represents no reflected
light, indicating that the point on the page is black, whereas MaxIntensity represents
maximum reflected light, indicating that the point on the page is white.

1.1.1 Audio signals

Our ears are sensitive to sound, which physically is rapid variations in air pressure at a
point in space. A particular sound can be represented as a function

Sound : Time→ Pressure

Lee & Varaiya, Signals and Systems 5

http://LeeVaraiya.org


1.1. SIGNALS

-2

-1

0

1

2

3
x104

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Time in seconds

Figure 1.1: Waveform of a speech fragment.

where Time is the domain of the function, and Pressure is the codomain.∗ Pressure is a
set consisting of possible values of air pressure, and Time is a set representing the time
interval over which we wish to consider the signal.

Example 1.8: A one-second segment of a voice signal is a function of the form

Voice : [0,1]→ Pressure,

where [0,1] ⊂ R represents one second of time. An example of such a function is
plotted in Figure 1.1. The horizontal axis represents times t ∈ [0,1], and the vertical
axis represents the values Voice(t)∈Pressure for each t ∈ [0,1]. Such a plot is often
called a waveform.

The signal in Figure 1.1 varies over positive and negative values, averaging ap-
proximately zero. But air pressure cannot be negative, so the vertical axis does not
directly represent air pressure. It is customary to normalize the representation of

∗For a review of the notation of sets and functions, see Appendix A.

6 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


1. SIGNALS AND SYSTEMS

sound by subtracting the ambient air pressure (which averages about 101,325 pas-
cals, where one pascal (written Pa) equals one newton per square meter. Our ears,
after all, are not sensitive to constant ambient air pressure (as we will see later, our
ears are a highpass system). Thus, we take Pressure = R, the real numbers, where
negative pressure means a drop in pressure relative to ambient air pressure.

As plotted, the vertical axis in Figure 1.1 ranges from approximately −32,768 to
32,767 (notice the annotation ×104, which indicates that the values labeling the
axis should be multiplied by 10,000). This is because the voice signal that is plotted
is actually the internal representation in a computer of the voice signal, and each
value of air pressure is represented by a 16-bit integer. Let us call the set of 16-bit
integers Integers16 = {−32768, ...,32767}. Then a more precise representation of
the function would show that the codomain is Integers16,

Voice : [0,1]→ Integers16.

When a computer plays back an audio signal, the audio hardware of the computer
is responsible for converting members of the set Integers16 into air pressure. The
actual air pressure at a human ear will depend on the audio hardware, its volume
setting, the distance to the listener, and the acoustic properties of the media between
the audio hardware and the listener.

The previous example models time as a continuum. However, a computer cannot directly
handle such a continuum. In a computer, a sound is represented not as a continuous
waveform, but rather as a list of numbers. Each number is called a sample of the signal.
To get audio quality that is sufficient to make speech signals intelligible (voice-quality
audio), 8,000 samples for every second of speech are generally sufficient. This is what
is typically used for Internet voice signals. Voice transmission over the internet is called
voice over IP or VoIP, where IP stands for Internet protocol. To get audio quality that is
sufficient for music, 44,100 samples for every second of sound are typically used. This
is the standard rate for compact discs (CDs), and it is the most commonly used rate for
MP3 files and other music encoding formats. The tradeoff between sound quality and the
number of samples per second is considered in Chapter 11.

Example 1.9: A close-up of a section of the speech waveform of Figure 1.1 is
shown in Figure 1.2. That plot shows 100 samples. For emphasis, that plot shows

Lee & Varaiya, Signals and Systems 7

http://LeeVaraiya.org


1.1. SIGNALS

a dot for each sample rather than a continuous curve, with a stem connecting the
dot to the horizontal axis. Such a plot is called a stem plot. Since there are 8,000
samples per second, the 100 points in figure 1.2 represent 100/8,000 seconds, or
12.5 milliseconds of speech.

Such signals are said to be discrete-time signals because they are defined only at discrete
points in time. A discrete-time one-second voice signal in a computer is a function

ComputerVoice : DiscreteTime→ Integers16,

where DiscreteTime = {0,1/8000,2/8000, . . . ,7999/8000} is the set of sampling times.
By contrast, continuous-time signals are functions defined over a continuous interval
of time (technically, a continuum in the set R). The audio hardware of the computer
is responsible for converting the ComputerVoice function into a function of the form
Sound : Time→ Pressure. That hardware, which converts an input signal into a differ-
ent output signal, is a system.

-1.5

-1.0

-0.5

0.0

0.5

1.0

x104

0.188 0.190 0.192 0.194 0.196 0.198 0.200

Time in seconds

Figure 1.2: Discrete-time representation of a speech fragment.

8 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


1. SIGNALS AND SYSTEMS

The functions Voice and ComputerVoice of the previous examples are not easily defined
by a mathematical expression that, given a value in the domain, provides a value in the
codomain. We now consider an example where there is such an expression.

Example 1.10: The sound emitted by a precisely tuned and idealized 440 Hz
tuning fork over the infinite time interval R= (−∞,∞) is the function

PureTone : R→ R,

where the time-to-(normalized) pressure assignment is

∀ t ∈ R, PureTone(t) = Psin(2π×440t).

(If the notation here is unfamiliar, see Appendix A.) Here, P is the amplitude of
the sinusoidal signal PureTone. It is a real-valued constant. Figure 1.3 is a graph of
a portion of this pure tone (showing only a subset of the domain, R ). In the figure,
P = 1.

The number 440 in this example is the frequency of the sinusoidal signal shown in Figure
1.3, in units of cycles per second or Hertz, abbreviated Hz.† It simply asserts that the
sinusoid completes 440 cycles per second. Alternatively, it completes one cycle in 1/440
seconds or about 2.3 milliseconds. The time to complete one cycle, 2.3 milliseconds, is
called the period.

The Voice signal in Figure 1.1 is much more irregular than PureTone in Figure 1.3. An
important theorem, which we will study in subsequent chapters, says that, despite its
irregularity, a function like Voice is a sum of signals of the form of PureTone, but with
different frequencies. A sum of two pure tones of frequencies, say 440 Hz and 660 Hz, is
the function SumOfTones : R→ R given by

∀ t ∈ R, SumOfTones(t) = P1 sin(2π×440t)+P2 sin(2π×660t)

Notice that summing two signals amounts to adding the values of their functions at each
point in the domain. The two components are shown in Figure 1.4. At any point on

†The unit of frequency called Hertz is named after physicist Heinrich Rudolf Hertz (1857-94), for his
research in electromagnetic waves.

Lee & Varaiya, Signals and Systems 9

http://LeeVaraiya.org


1.1. SIGNALS

the horizontal axis, the value of the sum is simply the addition of the values of the two
components.

0 1 2 3 4 5 6 7 8 
1 

0.5 

0 

0.5 

1 

time in milliseconds 

Figure 1.3: Portion of the graph of a pure tone with frequency 440 Hz.

0 1 2 3 4 5 6 7 8 
2 

1 

0 

1 

2 

time in milliseconds 

Figure 1.4: Sum of two pure tones (in bold), one at 440 Hz (dashed line) and the
other at 660 Hz (solid line).

10 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


1. SIGNALS AND SYSTEMS

Probing Further: Household electrical power

In the U.S., household current is delivered on three wires, a neutral wire and two hot
wires. The voltage between either hot wire and the neutral wire is around 110 to 120
volts, RMS (root mean square, the square root of the average of the voltage squared).
The voltage between the two hot wires is around 220 to 240 volts, RMS. The higher
voltage is used for appliances that need more power, such as air conditioners. The volt-
age between the hot wires and the neutral wire is sinusoidal with a frequency of 60 Hz.
Thus, for one of the hot wires, it is a function x : R→ R where the domain represents
time and the range represents voltage, and

∀ t ∈ R, x(t) = 170cos(60×2πt).

This 60 Hertz sinusoidal waveform completes one cycle in a period of T = 1/60 seconds.
Why is the amplitude 170 volts, rather than 120? Because the 120 voltage is RMS (root
mean square). That is,

voltageRMS =

√
1
T

∫ T

0
x2(t)dt volts = 120,

the square root of the average of the square of the voltage.
The voltage between the second hot wire and the neutral wire is a function y : R→ R

where ∀ t ∈ R, y(t) =−170cos(60×2πt) =−x(t).

It is the negative of the other voltage at any time t. This sinusoidal signal is said to have
a phase shift of 180 degrees, or π radians, compared to the first sinusoid. Equivalently,
it is said to be 180 degrees out of phase. We can now see how to get the higher voltage
for power-hungry appliances. We simply use the two hot wires rather than one hot wire
and the neutral wire. The voltage between the two hot wires is the difference, a function
z : R→ R where

∀ t ∈ R, z(t) = x(t)− y(t) = 340cos(60×2πt).

This corresponds to 240 volts RMS, as shown in figure 1.5.
Note that the neutral wire should not be confused with the ground wire in a three-

prong plug. The ground wire is a safety feature to allow current to flow into the earth
rather than through a person.

Lee & Varaiya, Signals and Systems 11

http://LeeVaraiya.org


1.1. SIGNALS

1.1.2 Images

If an image is a grayscale picture on a 11× 8.5 inch sheet of paper, the picture is repre-
sented by a function

Image : [0,11]× [0,8.5]→ [0,MaxIntensity], (1.1)

where MaxIntensity is the maximum grayscale value (0 is black and MaxIntensity is
white). The set [0,11]× [0,8.5] defines the space of the sheet of paper. More generally, a

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018

- 300

- 200

- 100

0

100

200

300

Phase 1 - Neutral

Phase 2 - Neutral

Phase 1 - Phase 2

Neutral

Figure 1.5: The voltages between the two hot wires and the neutral wire and
between the two hot wires in household electrical power in the U.S.

12 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


1. SIGNALS AND SYSTEMS

grayscale image is a function

Image : VerticalSpace×HorizontalSpace→ Intensity,

where Intensity= [0,MaxIntensity] is the intensity range from black to white. An example
is shown in Figure 1.6.

For a color picture, the reflected light is sometimes measured in terms of its RGB values
(i.e. the magnitudes of the red, green, and blue colors), and so a color picture is repre-
sented by a function

ColorImage : VerticalSpace×HorizontalSpace→ Intensity3.

The RGB values assigned by ColorImage at any point (x,y) in its domain is the triple
(r,g,b) ∈ Intensity3 given by

(r,g,b) = ColorImage(x,y).

Different images will be represented by functions with different spatial domains (the size
of the image might be different), different ranges (we may consider a more or less detailed

Figure 1.6: Grayscale image on the left, and its enlarged pixels on the right.

Lee & Varaiya, Signals and Systems 13

http://LeeVaraiya.org


1.1. SIGNALS

way of representing light intensity and color than grayscale or RGB values), and different
assignments of color values to points in the domain.

Since a computer has finite memory and finite wordlength, an image is stored by dis-
cretizing both the domain and the range, similarly to the ComputerVoice function. So, for
example, your computer may represent an image by storing a function of the form

ComputerImage :

DiscreteVerticalSpace×DiscreteHorizontalSpace→ Integers8

where
DiscreteVerticalSpace = {1,2, · · · ,300},

DiscreteHorizontalSpace = {1,2, · · · ,200},and
Integers8 = {0,1, · · · ,255}.

It is customary to say that ComputerImage stores 300× 200 pixels, where a pixel is an
individual picture element. The value of a pixel is

ComputerImage(row,column) ∈ Integers8,

where row ∈ DiscreteVerticalSpace, column ∈ DiscreteHorizontalSpace. In this example
the range Integers8 has 256 elements, so in the computer these elements can be repre-
sented by an 8-bit integer (hence the name of the range, Integers8). An example of such
an image is shown in Figure 1.6, where the right-hand version of the image is magnified
to show the discretization implied by the individual pixels.

A computer can store a color image in one of two ways. One way is to represent it as a
function

ColorComputerImage :

DiscreteVerticalSpace×DiscreteHorizontalSpace→ Integers83 (1.2)

so each pixel value is an element of {0,1, · · · ,255}3. Such a pixel can be represented as
three 8-bit integers. A common method that saves memory is to use a colormap. Define
the set ColorMapIndexes = {0, · · · ,255}, together with a Display function,

Display : ColorMapIndexes→ Intensity3. (1.3)

Display assigns to each element of ColorMapIndexes the three (r,g,b) color intensities.
This is depicted in the block diagram in Figure 1.7. Use of a colormap reduces the re-
quired memory to store an image by a factor of three because each pixel is now repre-
sented by a single 8-bit number. But only 256 colors can be represented in any given
image. The function Display is typically represented in the computer as a lookup table.

14 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


1. SIGNALS AND SYSTEMS

Probing Further: Color and light

The human eye is sensitive to electromagnetic waves of certain frequency. The frequency
f in Hertz of a purely sinusoidal electromagnetic wave is related to its wavelength λ in
meters by the formula, f = c/λ, where c is the speed of light (about 3×108 meters/sec-
ond). The wavelengths of visible light range from about 350-400 nm (nanometers or
10−9 meters) to 750-800 nm. We experience light of different wavelengths as having
different colors: violet (350 nm), indigo, blue, green, yellow, orange, red (800 nm).

The retina has three different groups of cones, each sensitive to one of the three pri-
mary colors–red, green, and blue. Other colors are perceived when these three groups
are stimulated in different combinations, as shown below:

Red

BlueGreen

Ma
gen

taYellow

Cyan

White

By combining its red, green, and blue light sources in different amounts, a computer
monitor can create the perception of all colors. The color white is obtained by adding
all three primary colors, and the absence of any light is perceived as black. This “ad-
ditive” model of color perception was proposed in 1802 by Thomas Young and H.L.F.
Helmholz.

In a computer, if the amount of each primary color is typically represented by an 8-bit
word, and each color is represented by three 8-bit words, giving a total of 28×28×28 =
224 = 16,777,216 different colors. An 8-bit colormap by contrast can only generate 256
different colors.

Painting works by subtraction: different pigments of color absorb (subtract) light of
different wavelengths. The primary subtractive colors are magenta, yellow, and cyan.

The ear and eye are quite different perceptual systems. If we listen to a sound con-
sisting of the sum of two pure tones, we can distinguish the two tones. However, we
cannot perceive the difference between, say, a yellow light source and an appropriate
combination of red and green sources. The ear can be modeled as a linear time-invariant
system, see Chapter 5. The eye cannot.

Lee & Varaiya, Signals and Systems 15

http://LeeVaraiya.org


1.1. SIGNALS

Display : ColorMapIndexes →  Intensity3

(specified as a colormap table)
image display device

(e.g. monitor)

red

green

bluecolormap index

Figure 1.7: In a computer representation of a color image that uses a colormap,
pixel values are elements of the set ColorMapIndexes. The function Display con-
verts these indexes to an RGB representation.

1.1.3 Video signals

A video is a sequence of still images displayed at a certain rate (frequency) ranging from
25 frames per second to much higher (for specialty video). To the human visual system,
a sequence of still images displayed at a high enough rate looks like continuous motion.

At 30 frames per second, the domain of a video signal is discrete time, FrameTimes =
{0,1/30,2/30, · · ·}, and its range is a set of images, ImageSet. A video signal, therefore,
is a function

Video : FrameTimes→ ImageSet. (1.4)

For any time t ∈ FrameTimes, the image Video(t) ∈ ImageSet is displayed. The signal
Video is illustrated in Figure 1.8.

An alternative way of specifying a video signal is by the function Video′ whose domain is
a product set as follows:

Video′ : FrameTimes×DiscreteVerticalSpace×HorizontalSpace→ Intensity3.

Similarly to Figure 1.8, we can depict Video′ as in Figure 1.9. The RGB value assigned
to a point (x,y) at time t is

(r,g,b) = Video′(t,x,y). (1.5)

If the signals specified in (1.4) and (1.5) represent the same video, then for all t ∈FrameTimes
and (x,y) ∈ DiscreteVerticalSpace×HorizontalSpace,

(Video(t))(x,y) = Video′(t,x,y). (1.6)

16 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


1. SIGNALS AND SYSTEMS

It is worth pausing to understand the notation used in (1.6). Video is a function of t,
so Video(t) is an element in its range ImageSet. Since elements in ImageSet them-
selves are functions, Video(t) is a function. The domain of Video(t) is the product set
DiscreteVerticalSpace×HorizontalSpace, so (Video(t))(x,y) is the value of this func-
tion at the point (x,y) in its domain. This value is an element of Intensity3. On the
right-hand side of (1.6), Video′ is a function of (t,x,y) and so Video′(t,x,y) is an ele-
ment in its range, Intensity3. The equality (1.6) asserts that for all values of t,x,y the
two sides are the same. On the left-hand side of (1.6) the parentheses enclosing Video(t)
are not necessary; we could equally well write Video(t)(x,y). However, the parentheses
improve readability.

1.1.4 Signals representing physical attributes

The change over time in the attributes of a physical object or device can be represented as
functions of time or space.

Example 1.11: The position of an airplane can be expressed as

Position : Time→ R3,

0 1/30 2/30 3/30 n/30... ...

ImageSet

FrameTimes

Figure 1.8: Illustration of the function Video.

Lee & Varaiya, Signals and Systems 17

http://LeeVaraiya.org


1.1. SIGNALS

0 1/30 2/30 n/30... ...

R

B

G
(r,g,b)

(x,y)

red, green, blue values

Figure 1.9: Illustration of the function Video′.

where for all t ∈ Time,

Position(t) = (x(t),y(t),z(t))

is its position in 3-dimensional space at time t. The position and velocity of the
airplane is a function

s : Time→ R6, (1.7)

where
s(t) = (x(t),y(t),z(t),vx(t),vy(t),vz(t)) (1.8)

gives its position and velocity at t ∈ Time.

The position of the pendulum shown in the left panel of figure 1.10 is represented
by the function

θ : Time→ [−π,π],

where θ(t) is the angle with the vertical made by the pendulum at time t.

18 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


1. SIGNALS AND SYSTEMS

The position of the upper and lower arms of a robot depicted in the right panel of
Figure 1.10 can be represented by the function

(θu,θl) : Time→ [−π,π]2,

where θu(t) is the angle at the elbow made by the upper arm with the vertical, and
θl(t) is the angle made by the lower arm with the upper arm at time t. Note that
we can regard (θu,θl) as a single function with range as the product set [−π,π]2

or as two functions θu and θl each with range [−π,π]. Similarly, we can regard s
in (1.7) as a single function with range R6 or as a collection of six functions, each
with range R, as suggested by (1.8).

Example 1.12: The spatial variation of temperature over some volume of space
can be represented by a function

AirTemp : X×Y ×Z→ R

where X×Y ×Z ⊂R3 is the volume of interest, and AirTemp(x,y,z) is the temper-
ature at the point (x,y,z).

Pendulum Robot Arm

θ

Shoulder

Armθu

θl

Figure 1.10: Position of a pendulum and upper and lower arms of a robot.

Lee & Varaiya, Signals and Systems 19

http://LeeVaraiya.org


1.1. SIGNALS

1.1.5 Sequences

Above we studied examples in which temporal or spatial information is represented by
functions of a variable representing time or space. The domain of time or space may be
continuous as in Voice and Image or discrete as in ComputerVoice and ComputerImage.

In many situations, information is represented as sequences of symbols rather than as
functions of time or space. These sequences occur in two ways: as a representation of
data or as a representation of an event stream. Sequences, in fact, are special sorts of
functions.

Examples of data represented by sequences are common. A file stored in a computer in
binary form is a sequence of bits, or binary symbols, i.e. a sequence of 0’s and 1’s. A text
is a sequence of words. A sheet of music represents a sequence of notes.

Example 1.13: Consider an N-bit long binary file,

b1,b2, · · · ,bN ,

where each bi ∈ Binary = {0,1}. We can regard this file as a function

File : {1,2, · · · ,N}→ Binary,

with the assignment File(n) = bn for every n ∈ {1, · · · ,N}.
Sometimes we can give a mathematical expression for a binary signal. For instance,
the N-bit long binary file Alt consisting of an alternating sequence of 0’s and 1’s is
given by for all n,

Alt(n) =
{

0, n even
1, n odd

If instead of Binary we take the range to be EnglishWords, then an N-word long
English text is a function

EnglishText : {1,2, · · · ,N}→ EnglishWords.

20 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


1. SIGNALS AND SYSTEMS

In general, data sequences are functions of the form

Data : Indices→ Symbols, (1.9)

where Indices ⊂ N, where N is the set of natural numbers, is an appropriate index set
such as {1,2, · · · ,N}, and Symbols is an appropriate set of symbols such as Binary or
EnglishWords.

One advantage of the representation (1.9) is that we can then interpret Data as a discrete-
time signal, and so some of the techniques that we will develop in later chapters for those
signals will automatically apply to data sequences. However, the domain Indices in (1.9)
does not necessarily represent uniformly spaced instances of time. All we can say is
that if m and n are in Indices with m < n, then the m-th symbol Data(m) occurs in the
data sequence before the n-th symbol Data(n), but we cannot say how much time elapses
between the occurrence of those two symbols.

The second way in which sequences arise is as representations of event streams. An event
stream or event trace is a record or log of the significant events that occur in a system of
interest. Here are some everyday examples.

Example 1.14: When you send a file to a printer, the normal trace of events is

CommandPrintFile, FilePrinting, PrintingComplete

but if the printer has run out of paper, the trace might be

CommandPrintFile, FilePrinting, MessageOutofPaper, InsertPaper, · · ·

When you enter your car the starting trace of events might be

StartEngine, SeatbeltSignOn, BuckleSeatbelt, SeatbeltSignOff, · · ·

Thus event streams are functions of the form

EventStream : Indices→ EventSet.

We will see in Chapter 3 that the behavior of finite state machines is best described in
terms of event traces, and that systems that operate on event streams are often best de-
scribed as finite state machines.

Lee & Varaiya, Signals and Systems 21

http://LeeVaraiya.org


1.1. SIGNALS

1.1.6 Discrete signals and sampling

Voice and PureTone are said to be continuous-time signals because their domain Time is
a continuous interval of the form [α,β]⊂ R. The domain of Image, similarly, is a contin-
uous 2-dimensional rectangle of the form [a,b]× [c,d]⊂ R2. The signals ComputerVoice
and ComputerImage have domains of time and space that are discrete sets. Video is also
a discrete-time signal, but in principle it could be a function of a space continuum. We
can define a function ComputerVideo where all three sets that are composed to form the
domain are discrete.

Discrete signals often arise from signals with continuous domains by sampling. We
briefly motivate sampling here, with a detailed discussion to be taken up later. Continuous
domains have an infinite number of elements. Even the domain [0,1]⊂ Time representing
a finite time interval has an infinite number of elements. The signal assigns a value in its
range to each of these infinitely many elements. Such a signal cannot be stored in a finite
digital memory device such as that in a computer. If we wish to store, say, Voice, we must
approximate it by a signal with a finite domain.

A common way to approximate a function with a continuous domain like Voice and Image
by a function with a finite domain is by uniformly sampling its continuous domain.

Example 1.15: If we sample a 10-second long domain of Voice,

Voice : [0,10]→ Pressure,

10,000 times a second (i.e. at a frequency of 10 kHz) we get the signal

SampledVoice : {0,0.0001,0.0002, · · · ,9.9998,9.9999,10}→ Pressure, (1.10)

with the assignment

SampledVoice(t) = Voice(t),

for all t ∈ {0,0.0001,0.0002, · · · ,9.9999,10}. (1.11)

Notice from (1.10) that uniform sampling means picking a uniformly spaced subset
of points of the continuous domain [0,10].

22 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


1. SIGNALS AND SYSTEMS

In the example, the sampling interval or sampling period is 0.0001 sec, corresponding
to a sampling frequency or sampling rate of 10,000 Hz. Since the continuous domain is
10 seconds long, the domain of SampledVoice has 100,000 points. A sampling frequency
of 5,000 Hz would give the domain {0,0.0002, · · · ,9.9998,10}, which has half as many
points. The sampled domain is finite, and its elements are discrete values of time.

Figure 1.11 shows an exponential function Exp : [−1,1]→ R defined by

Exp(x) = ex.

SampledExp is obtained by sampling with a sampling interval of 0.2. So its domain is

{−1,−0.8, · · · ,0.8,1.0}.

The continuous domain of Image given by (1.1), which describes a grayscale image on an
8.5 by 11 inch sheet of paper, is the rectangle [0,11]× [0,8.5], representing the space of

-1 - 0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

-1 - 0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

Figure 1.11: The exponential functions Exp and SampledExp, obtained by sam-
pling with a sampling interval of 0.2.

Lee & Varaiya, Signals and Systems 23

http://LeeVaraiya.org


1.1. SIGNALS

the page. In this case, too, a common way to approximate Image by a signal with finite
domain is to sample the rectangle. Uniform sampling with a spatial resolution of say, 100
dots per inch, in each dimension, gives the finite domain D = {0,0.01, · · · ,8.49,8.5}×
{0,0.01, · · · ,10.99,11.0}. So the sampled grayscale picture is

SampledImage : D→ [0,MaxIntensity]

with
SampledImage(x,y) = Image(x,y), for all (x,y) ∈ D.

As mentioned before, each sample of the image is called a pixel, and the size of the image
is often given in pixels. The size of your computer screen display, for example, may be
600×800 or 768×1024 pixels.

Sampling and approximation

Let f be a continuous-time function, and let Sampledf be the discrete-time function ob-
tained by sampling f . Suppose we are given Sampledf , as, for example, in the left panel
of Figure 1.12. Can we reconstruct or recover f from Sampledf ? This question lies at
the heart of digital storage and communication technologies. The general answer to this
question tells us, for example, what audio quality we can obtain from a given discrete
representation of a sound. The format for a compact disc is based on the answer to this
question. We will discuss it in much detail in later chapters.

For the moment, let us note that the short answer to the question above is no. For example,
we cannot tell whether the discrete-time function in the left panel of Figure 1.12 was
obtained by sampling the continuous-time function in the middle panel or the function
in the right panel. Indeed there are infinitely many such functions, and one must make a
choice. One option is to connect the sampled values by straight line segments, as shown
in the middle panel. Another choice is shown in the right panel. The choice made by your
CD player is different from both of these, as explored further in Chapter 11.

Similarly, an image like Image cannot be uniquely recovered from its sampled version
SampledImage. Several different choices are commonly used.

Digital signals and quantization

Even though SampledVoice in example 1.15 has a finite domain, we may yet be unable
to store it in a finite amount of memory. To see why, suppose that the range Pressure

24 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


1. SIGNALS AND SYSTEMS

of the function SampledVoice is the continuous interval [a,b]. To represent every value
in [a,b] requires infinite precision. In a computer, where data are represented digitally
as finite collections of bits, such precision would require an infinite number of bits for
just one sample. But a finite digital memory has a finite wordlength in which we can
store only a finite number of values. For instance, if a word is 8 bits long, it can have
28 = 256 different values. So we must approximate each number in the range [a,b] by
one of 256 values. The most common approximation method is to quantize the signal.
A common approach is to choose 256 uniformly-spaced values in the range [a,b], and
to approximate each value in [a,b] by the one of these 256 values that is closest. An
alternative approximation, called truncation, is to choose the largest of the 256 values
that is less than or equal to the desired value.

Example 1.16: Figure 1.13 shows a PureTone signal, SampledPureTone ob-
tained after sampling, and a quantized DigitalPureTone obtained using 4-bit or 16-

−1 0 1
0

0.5

1

1.5

2

2.5

3

−1 0 1
0

0.5

1

1.5

2

2.5

3

−1 0 1
0

0.5

1

1.5

2

2.5

3

Figure 1.12: The discrete-time signal on the left is obtained by sampling the
continuous-time signal in the middle or the one on the right.

Lee & Varaiya, Signals and Systems 25

http://LeeVaraiya.org


1.1. SIGNALS

level truncation. PureTone has continuous domain and continuous range, while
SampledPureTone (depicted with circles) has discrete domain and continuous
range, and DigitalPureTone (depicted with x’s) has discrete domain and discrete
range. Only the last of these can be precisely represented on a computer.

It is customary to call a signal with continuous domain and continuous range like PureTone
an analog signal, and a signal with discrete domain and range, like DigitalPureTone, a
digital signal.

Example 1.17: In digital telephones, voice is sampled every 125µsec, or at a
sampling frequency of 8,000 Hz. Each sample is quantized into an 8-bit word, or
256 levels. This gives an overall rate of 8,000× 8 = 64,000 bits per second. The

−4 −3 −2 −1 0 1 2 3 4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 1.13: PureTone (continuous curve), SampledPureTone (circles), and
DigitalPureTone signals (x’s).

26 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


1. SIGNALS AND SYSTEMS

worldwide digital telephony network, therefore, is composed primarily of channels
capable of carrying 64,000 bits per second, or multiples of this (so that multiple
telephone channels can be carried together). In cellular phones, voice samples are
further compressed to bit rates of 8,000 to 32,000 bits per second.

1.2 Systems

Systems are functions that transform signals. There are many reasons for transforming
signals. A signal carries information. A transformed signal may carry the same informa-
tion in a different way. For example, in a live concert, music is represented as sound. A
recording system may convert that sound into a sequence of numbers stored on a magnetic
disk drive. The original signal, the sound, is difficult to preserve for posterity. The disk
has a more persistent representation of the same information. Thus, storage is one of the
tasks accomplished by systems.

A system may transform a signal into a form that is more convenient for transmission.
Sound signals cannot be carried by the Internet. There is simply no physical mechanism in
the Internet for transporting rapid variations in air pressure. The Internet provides instead
a mechanism for transporting sequences of bits. A system must convert a sound signal
into a sequence of bits. Such a system is called an encoder or coder. At the far end, a
decoder is needed to convert the sequence back into sound. When a coder and a decoder
are combined into the same physical device, the device is often called a codec.

A system may transform a signal to hide its information so that snoops do not have access
to it. This is called encryption. To be useful, we need matching decryption.

A system may enhance a signal by emphasizing some of the information it carries and
deemphasizing some other information. For example, an audio equalizer may compen-
sate for poor room acoustics by reducing the magnitude of certain low frequencies that
happen to resonate in the room. In transmission, signals are often degraded by noise or
distorted by physical effects in the transmission medium. A system may attempt to reduce
the noise or reverse the distortion. When the signal is carrying digital information over
a physical channel, the extraction of the digital information from the degraded signal is
called detection.

Lee & Varaiya, Signals and Systems 27

http://LeeVaraiya.org


1.2. SYSTEMS

Systems are also designed to control physical processes such as the heating in a room,
the ignition in an automobile engine, the flight of an aircraft. The state of the physical
process (room temperature, cylinder pressure, aircraft speed) is sensed. The sensed signal
is processed to generate signals that drive actuators, such as motors or switches. Engineers
design a system called the controller which, on the basis of the processed sensor signal,
determines the signals that control the physical process (turn the heater on or off, adjust
the ignition timing, change the aircraft flaps) so that the process has the desired behavior
(room temperature adjusts to the desired setting, engine delivers more torque, aircraft
descends smoothly).

Systems are also designed for translation from one format to another. For example, a
command sequence from a musician may be transformed into musical sounds. Or the
detection of risk of collision in an aircraft might be translated into control signals that
perform evasive maneuvers.

1.2.1 Systems as functions

Consider a system S that transforms input signal x into output signal y. The system is a
function, so y = S(x). Suppose x : D→ R is a signal with domain D and range R. For
example, x might be a sound, x : R→ Pressure. The domain of S is the set X of all such
sounds, which we write

X = [D→ R] = {x | x : D→ R} (1.12)

This notation reads “X , also written [D→ R], is the set of all x such that x is a function
from D to R.” This set is called a signal space or function space. A signal or function
space is a set of all functions with a given domain and range.

Example 1.18: The set of all sound segments with duration [0,1] and range
Pressure is written

[[0,1]→ Pressure].

Notice that square brackets are used for both a subset of reals, as in [0,1], and for
a function space, as in [D→ R], although obviously the meanings of these two
notations are very different.

28 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


1. SIGNALS AND SYSTEMS

The set ImageSet considered in section 1.1.3 is the function space

ImageSet = [DiscreteVerticalSpace×HorizontalSpace→ Intensity3].

Since this is a set, we can define functions that use it as a domain or range, as we
have done above with

Video : FrameTimes→ ImageSet.

Similarly, the set of all binary files of length N is

BinaryFiles = [Indices→ Binary].

where Indices = {1, · · · ,N}.

A system S is a function mapping a signal space into a signal space,

S : [D→ R]→ [D′→ R′].

Systems, therefore, are much like signals, except that their domain and range are both
signal spaces. Thus, if x ∈ [D→ R] and y = S(x), then it must be that y ∈ [D′ → R′].
Furthermore, if z is an element of D′, z ∈ D′, then

y(z) = S(x)(z) = (S(x))(z) ∈ R′.

The parentheses around S(x) in (S(x))(z) are not necessary, but may improve readability.

1.2.2 Telecommunications systems

We give some examples of systems that occur in or interact with the global telecommu-
nications network. This network is unquestionably one of the most remarkable accom-
plishments of humankind. It is astonishingly complex, composed of hundreds of distinct
corporations and linking billions of people. It originated with a basic service, POTS, or
plain-old telephone service, but the network has evolved into a global, high-speed, wire-
less and wired digital network that carries not just voice, but also video, images, and
computer data, including much of the traffic in the Internet.

Lee & Varaiya, Signals and Systems 29

http://LeeVaraiya.org


1.2. SYSTEMS

Figure 1.14 depicts a small portion of the global telecommunications network. POTS ser-
vice is represented at the upper right, where a twisted pair of copper wires connects a
central office to a home telephone. This twisted pair is called the local loop or subscriber
line. At the central office, the twisted pair is connected to a line card, which usually con-
verts the signal from the telephone immediately into digital form. The line card, in turn, is

The global
telecommunications

network

Cable

Optical Fiber

Home Customer

Small Business/Home

Small Business/Home

Large Business Customer

ISDN
Modem Telephone

Computer

Modem

Fax

Telephone

Computer PBX

Satellite

Public Switch

T1 line

Line Card

Microwave Tower

DSL Card

ISDN card

Satellite dish

DSL
Modem Telephone

Computer

Twiste
d P

air

Twisted Pair

Twisted Pair

Coax Cable

Home Customer

Telephone

Line Card

Twiste
d P

air

Voiceband Data
Modem Computer

Figure 1.14: A portion of the global telecommunications network.

30 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


1. SIGNALS AND SYSTEMS

connected to a switch, which routes incoming and outgoing telephone connections. The
Berkeley central office is located on Bancroft, between Oxford and Shattuck.

The digital representation of a voice signal, a sequence of bits, is routed through the
telephone network. Usually it is combined with other bit sequences, which are other
voices or computer data, and sent over high-speed links implemented with optical fiber,
microwave radio, coaxial cable, or satellites.

Of course, a telephone conversation usually involves two parties, so the network delivers
to the same line card a digital sequence representing the far-end speaker. That digital
sequence is decoded and delivered to the telephone via the twisted pair. The line card,
therefore, includes a codec.

The telephone itself, of course, is a system. It transforms the electrical signal that propa-
gates down the twisted pair into a sound signal, and transforms a local sound signal into
an electrical signal that can propagate down the twisted pair.

POTS can be abstracted as shown in Figure 1.15. The entire network is reduced to a model
that accepts an electrical representation of a voice signal and transports it to a remote
telephone. In this abstraction, the digital nature of the telephone network is irrelevant.
The system simply transports (and degrades somewhat) a voice signal.

DTMF

Even in POTS, not all of the information transported is voice. At a minimum, the tele-
phone needs to be able to convey to the central office a telephone number in order to

POTS

voice-like signal

Telephone
Line Card

voice-like signal

Network

Line Card
Telephone

Figure 1.15: Abstraction of plain-old telephone service (POTS).

Lee & Varaiya, Signals and Systems 31

http://LeeVaraiya.org


1.2. SYSTEMS

Probing Further: Wireless communication

The telephone network has been steadily freeing itself of its dependence on wires. Cel-
lular telephones, which came into widespread use in the 1990s, use radio waves to con-
nect a small, hand-held telephone to a nearby base station. The base station connects
directly to the telephone network.

There are three major challenges in the design of cellular networks. First, radio spec-
trum is scarce. Frequencies are allocated by regulatory bodies, often constrained by
international treaties. Finding frequencies for new technologies is difficult. Thus, wire-
less communication devices have to be efficient in their use of the available frequencies.
Second, the power available to drive a cellular phone is limited. Cellular phones must
operate for long periods of time using only small batteries that fit easily within the hand-
set. Although battery technology has been improving, the power that these batteries can
deliver severely limits the range of a cellular phone (how far it can be from a base sta-
tion) and the processing complexity (the microprocessors in a cellular phone consume
considerable power). Third, networking is complicated. In order to be able to route tele-
phone calls to a cellular phone, the network needs to know where the phone is (which
base station is closest). Moreover, the network needs to support phone calls in moving
vehicles, which implies that a phone may move out of range of one base station and into
the range of another during the course of a telephone call. The network must hand off
the call seamlessly.

Although “radio telephones” have existed for a long time, particularly for maritime
applications where wireline telephony is impossible, it was the cellular concept that
made it possible to offer radio telephony to large numbers of users. Radio waves prop-
agating along the surface of the earth lose power approximately proportionally to the
inverse of the fourth power of distance. That is, if at distance d meters from a transmitter
your receive w watts of radio power, then at distance 2d you will receive approximately
w/24 = w/16 watts of radio power. This fourth-power propagation loss was tradition-
ally considered to be a hindrance to wireless communication. It had to be overcome by
boosting the transmitted power. The cellular concept turns this hindrance into an ad-
vantage. It observes that since the loss is so high, beyond a certain distance the same
frequencies can be re-used without significant interference. The service area is divided
into cells. A second benefit is that the distance to base station is smaller than it would
be in a more centralized system, so less radio power is required.

32 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


1. SIGNALS AND SYSTEMS

establish a connection. A telephone number is not a voice signal. It is intrinsically dis-
crete. Since the system is designed to carry voice signals, one option is to convert the

Probing Further: LEO telephony

Ideally, a cellular phone, with its one phone number, could be called anywhere in the
world, wherever it happens to be, without the caller needing to know where it is. The
technological and organizational infrastructure has evolved to make this possible in most
places. When a phone “roams” out of its primary service area, it negotiates with the
local service provider in a new area for service. If that service provider has a business
agreement with the customer’s main service provider, then it provides service. This
requires complex networking so that telephone calls to the customer are routed to the
correct locale.

However, digital cellular service is difficult to make universal, with many remote areas
not served. Providing such service by installing base stations is expensive. Moreover,
marine service away from coastlines is technically impossible with cellular technology.

One candidate technology for truly global telephony services is based on low-earth-
orbit (LEO) satellites. One such project (which failed in the marketplace) was the Irid-
ium project, spearheaded by Motorola, and so named because in the initial conception,
there would be 77 satellites. The iridium atom has 77 electrons. The idea is that enough
satellites are put into orbit that one is always near enough to communicate with a hand-
held telephone. When the orbit is low enough that a hand-held telephone can reach the
satellite (a few hundred kilometers above the surface of the earth), the satellites move
by fairly quickly. As a consequence, during the course of a telephone conversation, the
connection may have to be handed off from one satellite to another. In addition, in order
to be able to serve enough users simultaneously, each satellite has to re-use frequencies
according to the cellular concept. To do that, it focuses multiple beams on the surface of
the earth using multi-element antenna arrays.

As of this writing, this approach has not yet proved economically viable. The
investment already has been huge, with at least one high-profile bankruptcy already,
so the risks are high. Better networking of terrestrial cellular services may provide
formidable competition, particularly as service improves to rural areas. The LEO
approach, however, has one advantage that terrestrial services cannot hope to match
anytime soon: truly worldwide service. The satellites provide service essentially
everywhere, even in remote wilderness areas and at sea.

Lee & Varaiya, Signals and Systems 33

http://LeeVaraiya.org


1.2. SYSTEMS

telephone number into a voice-like signal. A system is needed with the structure shown
in Figure 1.16. The block labeled “DTMF” is a system that transforms a sequence of
numbers (coming from the keypad on the left) into a voice-like signal.

DTMF
numbers

voice-like
signal

1 2 3

4 5 6

7 8 9

* 0 #

697 Hz.

770 Hz.

852 Hz.

941 Hz.

12
09

 H
z.

13
36

 H
z.

14
77

 H
z.

Figure 1.16: DTMF converts numbers from a keypad into a voice-like signal.

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 
2 

1 

0 

1 

2 

time in seconds 

Figure 1.17: Waveform representing the “0” key in DTMF.

34 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


1. SIGNALS AND SYSTEMS

The DTMF standard—dual-tone, multi-frequency—provides precisely such a mecha-
nism. As indicated at the left in the figure, when the customer pushes one of the buttons
on the telephone keypad, a sound is generated that is the sum of two sinusoidal signals.
The frequencies of the two sinusoids are given by the row and column of the key. For
example, a “0” is represented as a sum of two sinusoids with frequencies 941 Hz and
1336 Hz. The waveform for such a sound is shown in Figure 1.17. The line card in the
central office measures these frequencies to determine which digit was dialed.

Signal degradation

A voice received via the telephone network is different from the original in several re-
spects. These differences can be modeled by a system that degrades the voice signal.

First, there is a loss of information because of sampling and quantization in the encoder,
as discussed in the section 1.1.6. Moreover, the media that carry the signal, such as the
twisted pair, are not perfect. They distort the signal. One cause of distortion is addition of
noise to the signal. Noise, by definition, is any undesired component in the signal. Noise
in the telephone network is sometimes audible as background hiss, or as crosstalk, i.e.,
leakage from other telephone channels into your own. Another degradation is that the
medium attenuates the signal, and this attenuation depends on the signal frequency. The
line card, in particular, usually contains a bandlimiting filter that discards the high fre-
quency components of the signal. This is why telephone channels do not transport music
well. Finally, the signal propagates over a physical medium at a finite speed, bounded by
the speed of light, and so there is a delay between the time you say something and the
time when the person at the other end hears what you say. Light travels through 1 km
of optical fiber in approximately 5 µs, so the 5,000 km between Berkeley and New York
causes a delay of about 25 ms, which is not easily perceptible.‡

‡ A phone conversation relayed by satellite has a much larger delay. Most satellites traditionally used
in the telecommunications network are geosynchronous, meaning that they hover at the same point over
the surface of the earth. To do that, they have to orbit at a height of 22,300 miles or 35,900 kilometers. It
takes a radio signal about 120 ms to traverse that distance; since a signal has to go up and back, there is an
end-to-end delay of at least 240 ms (not counting delays in the electronics). If you are using this channel for
a telephone conversation, then the round-trip delay from when you say something to when you get a reaction
is a minimum of 480 ms. This delay can be quite annoying, impeding your ability to converse until you got
used to it. If you use Internet telephony, the delays are even larger, and they can be irregular depending upon
how congested the Internet is when you call.

Lee & Varaiya, Signals and Systems 35

http://LeeVaraiya.org


1.2. SYSTEMS

Communications engineering is concerned with how to minimize the degradation for all
kinds of communication systems, including radio, TV, cellular phones, and computer
networks (such as the Internet).

1.2.3 Audio storage and retrieval

We have seen how audio signals can be represented as sequences of numbers. Digital
audio storage and retrieval is all about finding a physical and persistent representation for
these numbers. These numbers can be converted into a single sequence of bits (binary
digits) and then “printed” onto some physical medium from which they can later be read
back. The transformation of sound into its persistent representation can be modeled as a
system, as can the reverse or playback process.

Example 1.19: In the case of compact discs (CDs), the physical medium is a layer
of aluminum on a platter into which tiny pits are etched. In the playback device, a
laser aimed at the platter uses an interference pattern to determine whether or not
a pit exists at a particular point in the platter. These pits, thus, naturally represent
binary digits, since they can have two states (present or not present).

While a voiceband data modem converts bit sequences into voice-like signals, a
musical recording studio does the reverse, creating a representation of the sound
that is a bit sequence,

RecordingStudio : Sounds→ BitStreams.

There is a great deal of engineering in the details, however. For instance, CDs are
vulnerable to surface defects, which may arise in manufacturing or in the hands
of the user. These defects may obscure some of the pits, or fool the reading laser
into detecting a pit where there is none. To guard against this, a very clever error-
correcting code called a Reed-Solomon code is used. The coding process can be
viewed as a function

Encoding : BitStreams→ RedundantBitStreams.

where RedundantBitStreams⊂ BitStreams is the set of all possible encoded bit se-
quences. These bit sequences are redundant, in that they contain more bits than

36 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


1. SIGNALS AND SYSTEMS

are necessary to represent the original bit sequence. The extra bits are used to de-
tect errors, and (sometimes) to correct them. Of course, if the surface of the CD
is too badly damaged, even this clever scheme fails, and the audio data will not be
recoverable.

CDs also contain meta data, which is extra information about the audio signal.
This information allows the CD player to identify the start of a musical number and
its length, and sometimes the title and the artist.

The CD format can also be used to contain purely digital data. Such a CD is called a
CD ROM (read-only memory). It is called this because, like a computer memory,
it contains digital information. But unlike a computer memory, that information
cannot be modified.

DVD (digital video discs) take this concept much further, including much more
meta data. They may eventually replace CDs. They are entirely compatible, in that
they can contain exactly the same audio data that a CD can. DVD players can play
CDs, but not the reverse, however. DVDs can also contain digital video information
and, in fact, any other digital data. DAT (digital audio tape) is also a competitor
to CDs, but has failed to capture much of a market.

1.2.4 Modem negotiation

A very different kind of system is the one that manages the establishment of a connec-
tion between two voiceband data modems. These two modems are at physically different
locations, are probably manufactured by different manufacturers, and possibly use differ-
ent communication standards. Both modems convert bit streams to and from voice-like
signals, but other than that, they do not have much in common.

When a connection is established through the telephone network, the answering modem
emits a tone that announces “I am a modem.” The initiating modem listens for this tone,
and if it fails to detect it, assumes that no connection can be established and hangs up.
If it does detect the tone, then it answers with a voice-like signal that announces “I am a
modem that can communicate according to ITU standard x,” where x is one of the many
modem standard published by the International Telecommunication Union, or ITU.

The answering modem may or may not recognize the signal from the initiating modem.
The initiating modem, for example, may be a newer modem using a standard that was

Lee & Varaiya, Signals and Systems 37

http://LeeVaraiya.org


1.2. SYSTEMS

established after the answering modem was manufactured. If the answering modem does
recognize the signal, then it responds with a signal that says “good, I too can communi-
cation using standard x, so let’s get started.” Otherwise, it remains silent. The initiating
modem, if it fails to get a response, tries another signal, announcing “I am a modem that
can communicate according to ITU standard y,” where y is typically now an older (and
slower) standard. This process continues until the two modems agree on a standard.

Once agreement is reached, the modems need to make measurements of the telephone
channel to compensate for its distortion. They do this by sending each other pre-agreed
signals called training signals, defined by the standard. The training signal is distorted
by the channel, and, since the receiving modem knows the signal, it can measure the
distortion. It uses this measurement to set up a device called an adaptive equalizer.
Once both modems have completed their setup, they begin to send data to one another.

As systems go, modem negotiation is fairly complex. It involves both event sequences
and voice-like signals. The voice like signals need to be analyzed in fairly sophisticated
ways, sometimes producing events in the event sequences. It will take this entire book
to analyze all parts of this system. The handling of the event sequences will be treated
using finite state machines, and the handling of the voice-like signals will be treated using
frequency-domain concepts and filtering.

1.2.5 Feedback control systems

Feedback control systems are composite systems where a plant embodies a physical pro-
cess whose behavior is guided by a control signal. A plant may be a mechanical device,
such as the power train of a car, or a chemical process, or an aircraft with certain inertial
and aerodynamic properties, for example. Sensors attached to the plant produce signals
that are fed to the controller, which then generates the control signal. This arrangement,
where the plant feeds the controller and the controller feeds the plant, is a complicated
sort of composite system called a feedback control system. It has extremely interesting
properties which we will explore in much more depth in subsequent chapters.

In this section, we construct a model of a feedback control system using the syntax of
block diagrams. The model consists of several interconnected components. We will iden-
tify the input and output signals of each component and how the components are inter-
connected, and we will argue on the basis of a common-sense physics how the overall
system will behave.

38 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


1. SIGNALS AND SYSTEMS

Example 1.20: Consider a forced air heating system, which heats a room in a
home or office to a desired temperature. Our first task is to identify the individual
components of the heating system. These are

• a furnace/blower unit (which we will simply call the heater) that heats air and
blows the hot air through vents into a room,

• a temperature sensor that measures the temperature in a room, and

• the control system that compares the specified desired temperature with the
sensed temperature and turns the furnace/blower unit on or off depending on
whether the sensed temperature is below or above the demanded temperature.

The interconnection of these components is shown in Figure 1.18.

Our second task is to specify the input and output signals of each component sys-
tem (the domain and range of the function), ensuring the input-output matching
conditions. The heater produces hot air depending on whether it is turned on or off.
So its input signal is simply a function of time which takes one of two values, On
or Off . We call input to the heater (a signal) OnOff ,

OnOff : Time→{On,Off},

and we take Time = R+, the non-negative reals. So the input signal space is

OnOffProfiles = [R+→{On,Off}].

(Recall that the notation [D→ R] defines a function space, as explained in Section
1.2.1.) When the heater is turned on it produces heat at some rate that depends on
the capacity of the furnace and blower. We measure this heating rate in BTUs per
hour. So the output signal of the heater, which we name Heat is of the form

Heat : R+→{0,Bc},

where Bc is the heater capacity measured in BTU/hour. If we name the output signal
space HeatProfiles, then

HeatProfiles = [R+→{0,Bc}].

Thus the Heater system is described by a function

Heater : OnOffProfiles→ HeatProfiles. (1.13)

Lee & Varaiya, Signals and Systems 39

http://LeeVaraiya.org


1.2. SYSTEMS

Common-sense physics tells us that when the heater is turned on the room will
begin to warm up and when the heater is turned off the room temperature will fall
until it reaches the outside temperature. So the room temperature depends on both
the heat delivered by the heater and the outside temperature. Thus the input signal
to the room is the pair (Heat,OutsideTemp). We can take OutsideTemp to be of the
form

OutsideTemp : R+→ [min,max],

where [min,max] is the range of possible outside temperatures, measured in degrees
Celsius, say. The output signal of the room is of course the room temperature,

RoomTemp : R+→ [min,max].

If we denote
OutsideTempProfiles = [R+→ [min,max]],

and
RoomTempProfiles = [R+→ [min,max]],

then the behavior of the Room system is described by a function

Room : HeatProfiles×OutsideTempProfiles→ RoomTempProfiles (1.14)

In a similar manner, the Sensor system is described by a function

Sensor : RoomTempProfiles→ SensedTempProfiles (1.15)

with input signal space RoomTempProfiles and output signal space

SensedTempProfiles = [R+→ [min,max]].

The Controller is described by the function

Controller : DesiredTempProfile×SensedTempProfile→ OnOffProfile, (1.16)

where
DesiredTempProfiles = [R+→ [min,max]].

We have constructed a model where the input-output matching condition is satisfied
everywhere.

40 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


1. SIGNALS AND SYSTEMS

The overall forced air heating system (the shaded part of Figure 1.18) has a pair of
input signals, desired temperature and outside temperature, and one output signal,
room temperature. So it is described by the function

ForcedHeat : DesiredTempProfiles×OutsideTempProfiles

→ RoomTempProfiles.

If we are given the input signal values x of desired temperature and the value y of
outside temperature, we can compute the value z = ForcedHeat(x,y) by solving the
following four simultaneous equations

u = Controller(x,w)
v = Heater(u)
z = Room(y,v)
w = Sensor(z)

(1.17)

Given x and y, we must solve these four equations to determine the four unknown
functions u,v,w,z of which u,v,w are the internal signals, and z is the output signal.
Of course to solve these simultaneous equations, we need to specify the four system
functions. So far we have simply given names to those functions and identified
their domain and range. To complete the specification we must describe how those
functions assign output signals to input signals.

If the sensor is functioning properly we expect Sensor’s output signal to be the
room temperature, that is, for all z and for all t ∈ R+,

w(t) = Sensor(z)(t) = z(t).

A thermostatic controller has a simple behavior: it turns the heater on if the sensed
temperature falls below the desired temperature by a certain amount, say δ1, and
it turns the heater off if the sensed temperature rises above the desired temperature
by, say δ2. That is, for all x,w and for all t ∈ R+,

u(t) = Controller(x,w)(t) =
{

On, if w(t)− x(t)≤−δ1
Off , if w(t)− x(t)≥ δ2

Suppose finally that the desired temperature is set to some constant, say x∗, i.e. for
all t ∈ R+,

x(t) = x∗.

Lee & Varaiya, Signals and Systems 41

http://LeeVaraiya.org


1.3. SUMMARY

We can expect the behavior depicted in Figure 1.19. When w(t)− x∗ drops below
−δ1, the controller will turn on the heater, the room temperature will increase until
w(t)− x∗ rises above δ2, and then the controller will turn off the heater. Thus the
room temperature will fluctuate around the desired temperature, x∗.

1.3 Summary

Signals are functions that represent information. We studied examples of three classes of
signals. In the first class are functions of discrete or continuous time and space that occur
in human perception and eletromechanical sensors. In the second class are functions of
time and space representing attributes of physical objects or devices. The third class of
signals consist of sequences of symbols representing data or the occurrences of events. In
each case, the domain and the range can be defined precisely.

Systems are functions that transform signals. We looked at telecommunication systems,
where a network that was originally designed for carrying voice signals is used for many
other kinds of signals today. One way to accomplish this is to design systems such as
modems that transform signals so that they masquerade as voice-like signals. We also
looked at system models for signal degradation and for storage of signals. We looked
at systems that are primarily concerned with discrete events and command sequences,
and we examined a feedback control system. The telephone system and the forced air
heating system were both described using block diagrams as interconnections of simpler
component systems. In all cases, systems were given as functions where the domain and
the range are function spaces, or sets of functions.

42 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


1. SIGNALS AND SYSTEMS

Probing Further: Modems and Encrypted speech

POTS service is designed to carry speech signals. With proper encoding, however, it can
carry any signal that resembles speech in certain technical ways that we will discuss.
Data can be transmitted over POTS networks using a voiceband data modem, shown
just below the upper right in Figure 1.14. This used to provide a routine way to connect
to the Internet, but has since been supplanted (mostly) by broadband connections.

Data are represented by bit sequences, which are functions of the form

BitSequence : Indices→ Binary,

where Indices⊂N, the natural numbers, and Binary = {0,1}. In order for a bit sequence
to traverse a POTS phone line, it has to be transformed into something that resembles
a voice signal. Furthermore, a system is needed to transform the voice-like signal back
into a bit sequence. A modem does this. The word modem is a contraction of modulator,
demodulator. Pairs of modems are used at opposite ends of a POTS connection, each
with a transmitter and a receiver to achieve bidirectional (called full duplex) communi-
cation.

One of the strangest uses is to transmit digitally represented and encrypted voice sig-
nals. Here is a depiction:

modulator 
bit sequence 

telephone 
network 

demodulator 
bit sequence 

voice signal 
encoder 

bit sequence 
encryption 

voice signal 
decoder 

bit sequence 
decryption 

modem 

voice-like 
signal 

voice-like 
signal 

What is actually sent through the telephone network sounds like hiss, which by itself
provides a modicum of privacy. Casual eavesdroppers will be unable to understand
the encoded speech. However, this configuration also provides protection against
sophisticated listeners. A listener that is able to extract the bit sequence from this
sound will still not be able to reconstruct the voice signal because the bit sequence is
encrypted.

Lee & Varaiya, Signals and Systems 43

http://LeeVaraiya.org


1.3. SUMMARY

Controller Heater 
DesiredTemp

x

OnOff

u

Heat

v Room 
RoomTemp

z

Sensor
SensedTemp

w

OutsideTempy

z

ForcedHeat

Figure 1.18: The interconnected components of a forced air heating system.

x* + d2

x* + d1

x*

off
on

t

w

Figure 1.19: With a thermostatic controller the room temperature will fluctuate
around the desired temperature setting, x∗.

44 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


1. SIGNALS AND SYSTEMS

Exercises

Each problem is annotated with the letter E, T, C which stands for exercise, requires some
thought, requires some conceptualization. Problems labeled E are usually mechanical,
those labeled T require a plan of attack, those labeled C usually have more than one
defensible answer.

1. E The function x : R→ R given by

∀t ∈ R x(t) = sin(2π×440t)

is a mathematical example of a signal in the signal space [R→ R]. Give a mathe-
matical example of a signal x in each of the following signal spaces.

(a) [Z→ R]

(b) [R→ R2]

(c) [{0,1, · · · ,600}×{0,1, · · · ,400}→ {0,1, · · · ,255}]
(d) Describe a practical application for the signal space [{0,1, · · · ,600}×{0,1, · · · ,400}→
{0,1, · · · ,255}]. That is, what might a function in this space represent?

2. C For each of the continuous-time signals below, represent the signal in the form of
f : X → Y and as a sketch like Figure 1.1. Carefully identify the range and domain
in each case.

(a) The voltage across the terminals of a car battery.

(b) The closing prices on each day of a share of a company.

(c) The position of a moving vehicle on a straight one-lane road of length L.

(d) The simultaneous position of two moving vehicles on the same straight one-
lane road of length L.

(e) The sound heard in both of your ears.

3. E In digital telephony, voice is sampled at a rate of 8,000 samples/second, so the
sampling period is 1/8000 = 125 µs (microseconds). What is the sampling period
and the sampling frequency of sound in a compact disc (CD)?

Lee & Varaiya, Signals and Systems 45

http://LeeVaraiya.org


EXERCISES

4. E Figure 1.4 displays the plots of two sinusoidal signals and their sum. Sketch
by hand the plots of the four functions, Step,Triangle,Sum,Diff , all with domain
[−1,1] and range R, where the four functions are defined by: ∀t ∈ [−1,1],

Triangle(t) = 1−|t|,
Step(t) = 0 if t < 0, = 1 if t ≥ 0,

Sum(t) = Triangle(t)+Step(t),

Diff (t) = Triangle(t)−Step(t).

5. C The following examples of spatial information can be represented as a signal in
the form of f : X → Y . Specify a reasonable choice for the range and domain in
each case.

(a) An image impressed on photographic paper.

(b) An image stored in computer memory.

(c) The height of points on the surface of the earth.

(d) The location of the chairs in a room.

(e) The household voltage in Europe, which has frequency 50 Hz and is 210 volts
RMS.

6. C The image called Albers consists of an eight-inch yellow square in the center of
a white twelve-inch square background. Express Albers as a function, by choosing
the domain, range, and function assignment.

7. E How many bits are there in a 1024× 768 pixel image in which each pixel is
represented as a 16-bit word? How long would it take to download this image over
a 28 Kbps voice-band modem, a 384 Kbps DSL modem, a 10 Mbps Ethernet local
area network?

8. C Represent these examples as data or event sequences. Specify reasonable choices
for the range and domain in each case.

(a) The result of 100 tosses of a coin,

(b) The sequence of button presses inside an elevator,

(c) The sequence of main events in a soda vending machine,

(d) Your response to a motorist who is asking directions,

(e) A play-by-play account of a game of chess.

46 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


1. SIGNALS AND SYSTEMS

9. C Formulate the following items of information as functions. Specify reasonable
choices for the domain and range in each case.

(a) The population of U.S. cities,

(b) The white pages in a phone book (careful: the white pages may list two iden-
tical names, and may list the same phone number under two different names),

(c) The birth dates of students in class,

(d) The broadcast frequencies of AM radio stations,

(e) The broadcast frequencies of FM radio stations, (look at your radio dial, or at
the web page:

http://www.eecs.berkeley.edu/˜eal/eecs20
/sidebars/radio/index.html.

10. E Use Matlab to plot the graph of the following continuous-time functions de-
fined over [−1,1], and on the same plot display 11 uniformly spaced samples (0.2
seconds apart) of these functions. Are these samples good representations of the
waveforms?

(a) f : [−1,1]→ R, where for all x ∈ [−1,1], f (x) = e−x sin(10πx).

(b) Chirp : [−1,1]→ R, where for all t ∈ [−1,1], Chirp(t) = cos(10πt2).

11. E Suppose the pendulum of Figure 1.10 is rotating counter-clockwise at a speed
of one revolution per second over the five-second interval [0,5]. Sketch a plot of
the resulting function: θ : [0,5]→ [−π,π). Assume θ(0) = 0. Also specify this
function mathematically. Your plot is discontinuous, but the pendulum’s motion is
continuous. Explain this apparent inconsistency.

12. T There is a large difference between the sets X , Y , and [X → Y ]. This exercise
explores some of that difference.

(a) Suppose X = {a,b,c} and Y = {0,1}. List all the functions from X to Y , i.e.
all the elements of [X→Y ]. Note that part of the problem here is to figure out
how to list all the functions.

(b) If X has m elements and Y has n elements, how many elements does [X → Y ]
have?

Lee & Varaiya, Signals and Systems 47

http://LeeVaraiya.org


EXERCISES

(c) Suppose

ColormapImages =

[DiscreteVerticalSpace×DiscreteHorizontalSpace

→ ColorMapIndexes].

Suppose the domain of each image in this set has 6,000 pixels and the range
has 256 values. How many distinct images are there? Give an approximate
answer in the form of 10n. Hint: ab = 10b log10(a).

48 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


2
Defining Signals and Systems

Contents
2.1 Defining functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.1.1 Declarative assignment . . . . . . . . . . . . . . . . . . . . . 52
2.1.2 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Probing Further: Relations . . . . . . . . . . . . . . . . . . . . . . . 56
2.1.3 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.1.4 Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.1.5 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.1.6 Declarative vs. imperative . . . . . . . . . . . . . . . . . . . 62
Probing Further: Declarative and imperative . . . . . . . . . . . . . 63

2.2 Defining signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.2.1 Declarative definitions . . . . . . . . . . . . . . . . . . . . . 66
2.2.2 Imperative definitions . . . . . . . . . . . . . . . . . . . . . 66
2.2.3 Physical modeling . . . . . . . . . . . . . . . . . . . . . . . 68

2.3 Defining systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Probing Further: Physics of a Tuning Fork . . . . . . . . . . . . . . 70
2.3.1 Memoryless systems and systems with memory . . . . . . . . 71
2.3.2 Differential equations . . . . . . . . . . . . . . . . . . . . . . 72
2.3.3 Difference equations . . . . . . . . . . . . . . . . . . . . . . 74
Basics: Trigonometric Identities . . . . . . . . . . . . . . . . . . . . 76
Basics: Summations . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.3.4 Composing systems using block diagrams . . . . . . . . . . . 78
Probing Further: Composition of graphs . . . . . . . . . . . . . . . . 80

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

49



2.1. DEFINING FUNCTIONS

The previous chapter describes the representation of signals and systems as functions,
concentrating on how to select the domain and range. This chapter is concerned with how
to give more complete definitions of these functions. In particular, we need an assignment
rule, which specifies how to assign an element in the range to each element in the domain.

There are many ways to give an assignment rule. A theme of this chapter is that these dif-
ferent ways have complementary uses. Procedural descriptions of the assignment rule, for
example, are more convenient for synthesizing signals or constructing implementations of
a system in software or hardware. Mathematical descriptions are more convenient for an-
alyzing signals and systems and determining their properties.

In practice it is often necessary to use several descriptions of assignment rules in combi-
nation, because of their complementary uses. In designing systems, a practicing engineer
is often reconciling these diverse views to ensure, for instance, that a particular hardware
device or piece of software indeed implements a system that is specified mathematically.
We begin with a discussion of functions in general, and then specialize to signals and
systems.

2.1 Defining functions

A function f : X → Y assigns to each element in X a single element in Y , as illustrated in
Figure 2.1. This assignment can be defined by declaring the mathematical relationship
between the value in X and the value in Y , by graphing or enumerating the possible
assignments, by giving a procedure for determining the value in Y given a value in X , or
by composing simpler functions. We go over each of these in more detail in this section.

Example 2.1: In Section 1.1.5 we mentioned that sequences are a special kind
of function. An infinite sequence s is a function that maps the natural numbers
into some set Y , as illustrated in Figure 2.2. This function fully defines any infinite
sequence of elements in Y .

50 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


2. DEFINING SIGNALS AND SYSTEMS

X

x1

x2

x3

x4

Y

y1

y2

y3

y4

f : X →  Y

Figure 2.1: A function f : X → Y assigns to each element in X a single element in
Y .

Naturals

1

2

3

4

Y

y1

y2

y3

y4

s : Naturals →  Y

...

Figure 2.2: An infinite sequence s is a function s : N→ Y that assigns to each
element in N a single element in Y .

Lee & Varaiya, Signals and Systems 51

http://LeeVaraiya.org


2.1. DEFINING FUNCTIONS

2.1.1 Declarative assignment

Consider the function Square : R→ R given by

∀ x ∈ R, Square(x) = x2. (2.1)

In (2.1), we have used the universal quantifier symbol ‘∀’, which means ‘for all’ or ‘for
every’ to declare the relationship between values in the domain of the function and values
in the range. Statement (2.1) is read: “for every value of x in R, the function Square
evaluated at x is assigned the value x2.” The expression “Square(x) = x2” in (2.1) is an
assignment.1

Expression (2.1) is an instance of the following prototype for defining functions. Define
f : X → Y by

∀ x ∈ X , f (x) = expression in x. (2.2)

In this prototype, f is the name of the function to be defined, such as Square, X is the
domain of f , Y is the range of f , and ‘expression in x’ specifies the value in Y assigned to
f (x).

The prototype (2.2) does not say how the ‘expression in x’ is to be evaluated. In the
Square example above, it was specified by the algebraic expression Square(x) = x2. Such
a definition of a function is said to be declarative, because it declares properties of the
function without directly explaining how to construct the function.

Example 2.2: Here are some examples of functions of complex variables. (See
Appendix B for a review of complex variables.)

The magnitude of a complex number is given by abs : C→R+, where C is the set
of complex numbers and R+ is the set of set of non-negative real numbers, and

∀ z = x+ iy ∈ C, abs(z) =
√
(x2 + y2).

The complex conjugate of a number, conjugate : C→ C, is given by

∀ z = x+ iy ∈ C, conjugate(z) = x− iy.

1See Appendix A for a discussion of the use of “=” as an assignment, vs. its use as an assertion.

52 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


2. DEFINING SIGNALS AND SYSTEMS

The exponential of a complex number, exp : C→ C, is given by

∀ z ∈ C, exp(z) =
∞

∑
n=0

zn

n!
.

If this notation is unfamiliar, see box on page 77.) It is worth emphasizing that
the last definition is declarative: it does not give a procedure for calculating the
exponential function, since the sum is infinite. Such a calculation would never
terminate.

Example 2.3: The signum function gives the sign of a real number, signum : R→
{−1,0,1},

∀ x ∈ R, signum(x) =


−1 if x < 0
0 if x = 0
1 if x > 0

(2.3)

The right side of this assignment tabulates three expressions for three different sub-
sets of the domain. Below we will consider a more extreme case of this where every
value in the domain is tabulated with a value in the range.

Example 2.4: The size of a matrix, size : Matrices→ N×N, is given by

∀M ∈Matrices, size(M) = (m,n),

where m is the number of rows of the matrix M, n is the number of columns of M,
and Matrices is the set of all matrices.

This definition relies not only on formal mathematics, but also on the English sen-
tence that defines m and n. Without that sentence, the assignment would be mean-
ingless.

Lee & Varaiya, Signals and Systems 53

http://LeeVaraiya.org


2.1. DEFINING FUNCTIONS

2.1.2 Graphs

Consider a function f : X → Y . To each x ∈ X , f assigns the value f (x) in Y . The pair
(x, f (x)) is an element of the product set X ×Y . The set of all such pairs is called the
graph of f , written graph( f ). Using the syntax of sets, graph( f ) is the subset of X ×Y
defined by

graph( f ) = {(x,y) | x ∈ X and y = f (x)}, (2.4)

or slightly more simply,

graph( f ) = {(x, f (x)) | x ∈ X}.

The vertical bar | is read “such that,” and the expression after it is a predicate that defines
the set.2

When X ⊂ R and Y ⊂ R, we can plot graph( f ) on a page.

Example 2.5: Consider the graph of the function Square,

graph(Square) = {(x,x2) | x ∈ R},

which is plotted in Figure 2.3. In that figure, the horizontal and vertical axes repre-
sent the domain and the range, respectively (more precisely, a subset of the domain
and the range). The rectangular region enclosed by these axes represents the prod-
uct of the domain and the range (every point in that region is a member of (R×R)).
The graph is visually rendered by placing a black dot at every point in that region
that is a member of graph(Square). The resulting picture is the familiar plot of the
Square function.

While the graph of f : X → Y is a subset of X ×Y , it is a very particular sort of subset.
For each element x ∈ X , there is exactly one element y ∈Y such that (x,y) ∈ graph( f ). In
particular, there cannot be more than one such y ∈ Y , and there cannot be no such y ∈ Y .
This is, in fact, what we mean when we say that f is a function.

2See appendix A for a review of this notation.

54 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


2. DEFINING SIGNALS AND SYSTEMS

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.3: Graph of Square

Example 2.6: Let X = {1,2} and Y = {a,b}. Then

{(1,a),(2,a)}

is the graph of a function, but

{(1,a),(1,b)}

is not, because two points a and b are assigned to the same point, 1, in the domain.
Neither is

{(1,a)},
because no point in the range is assigned to the point 2 in the domain.

The graph of Square, graph(Square), is given by the algebraic expression (x,x2). In other
cases, no such algebraic expression exists. For example, Voice is specified through its
graph in Figure 1.1, not through an algebraic expression. Thus, graphs can be used to
define functions that cannot be conveniently given by declarative assignments.

Lee & Varaiya, Signals and Systems 55

http://LeeVaraiya.org


2.1. DEFINING FUNCTIONS

X

x1

x2

x3

x4

Y

y1

y2

y3

y4

Relation ⊂ X ×  Y

Figure 2.4: Any subset of X×Y is a relation.

Consider again the prototype in (2.2),

∀ x ∈ X , f (x) = expression in x

The graph of f is

graph( f ) = {(x,y) ∈ X×Y | y = expression in x}.

The expression ‘y = expression in x’ is a predicate in the variable (x,y) and so this proto-
type definition conforms to the prototype new set constructor given in (A.4) of Appendix
A:

NewSet = {z ∈ Set | Pred(z)}.

Probing Further: Relations

The graph of a function f : X → Y is a subset of X×Y , as defined in (2.4). An arbitrary
subset of X×Y is called a relation. A relation is a set of tuples (x,y) that pair an element
x ∈ X with an element y ∈ Y , as suggested in Figure 2.4. For relations, it is common to
call X the domain and Y the codomain. A function is a special kind of relation in which
for every x ∈ X there is exactly one y ∈ Y such that (x,y) is an element of the relation.
So a particular relation R⊂ X ×Y is a function if for every x ∈ X there is a y1 ∈ Y such
that (x,y1) ∈ R, and if in addition (x,y2) ∈ R, then y1 = y2.

56 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


2. DEFINING SIGNALS AND SYSTEMS

Name Marks
John Brown 90.0

Jane Doe 91.2
· · · · · ·

Table 2.1: Tabular representation of Score.

Since the graph of f is a set, we can define the function f via its graph using the same
techniques we use to define sets.

2.1.3 Tables

If f : X→Y has finite domain, then graph( f )⊂ X×Y is a finite set, so it can be specified
simply by a list of all its elements. This list can be put in the form of a table. This table
defines the function.

Example 2.7: Suppose the function

Score : Students→ [0,100]

gives the outcome of the first midterm exam for each student in the class. Obvi-
ously, this function cannot be given by an algebraic declarative assignment. But it
can certainly be given as a table, as shown in table 2.1.

Example 2.8: The command nslookup on a networked computer is a function that
maps hostnames into their IP (Internet) address. For example, if you type:

nslookup cory.eecs.berkeley.edu

you get the IP address 128.32.134.240. The domain name server attached to your
machine stores the nslookup function as a table.

Lee & Varaiya, Signals and Systems 57

http://LeeVaraiya.org


2.1. DEFINING FUNCTIONS

2.1.4 Procedures

Sometimes the value f (x) that a function f assigns to an element x ∈ domain( f ) is ob-
tained by executing a procedure.

Example 2.9: Here is a Matlab procedure to compute the factorial function

fact : {1, · · · ,10}→ N,

where N is the set of natural numbers:

fact(1) = 1;
for n = 2:10

fact(n) = n * fact(n-1);
end

Unlike previous mechanisms for defining a function, this one gives a constructive method
to determine an element in the range given an element in the domain. This style is called
imperative to distinguish it from declarative. The relationship between these two styles
is interesting, and quite subtle. It is explored further in Section 2.1.6.

2.1.5 Composition

Functions can be combined to define new functions. The simplest mechanism is to con-
nect the output of one function to the input of another. We have been doing this informally
to define systems by connecting components in block diagrams.

If the first function is f1 and the second is f2, then we write the function composition as
f2 ◦ f1. That is, for every x in the domain of f1,

( f2 ◦ f1)(x) = f2( f1(x)).

A fundamental requirement for such a composition to be valid is that the range of f1
must be a subset of the domain of f2. In other words, any output from the first function

58 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


2. DEFINING SIGNALS AND SYSTEMS

x

X

f 1(x)

Y

X’ 

Y’ 
f 1 f 2

f 3

f 2 (f 1(x)) = f 3 (x)

Figure 2.5: Function composition: f3 = f2 ◦ f1.

must be in the set of possible inputs for the second. Without this input-output connection
restriction, the interconnection would be meaningless.3

It is worth pausing to study the notation f2 ◦ f1. Assume f1 : X → Y and f2 : X ′ → Y ′.
Then if Y ⊂ X ′, we can define

f3 = f2 ◦ f1,

where f3 : X → Y ′ such that

∀ x ∈ X , f3(x) = f2( f1(x)) (2.5)

Notice that f1 is applied first, and then f2. Why is f1 listed second in f2 ◦ f1? This
convention simply mirrors the ordering of f2( f1(x)) in (2.5). We can visualize f3 as in
Figure 2.5.

Example 2.10: Consider the representation of a color image using a colormap.
The decoding of the image is depicted in Figure 1.7. The image itself might be
given by the function

ColormapImage : DiscVerticalSpace×DiscHorizontalSpace

→ ColorMapIndexes.

3We just called an element in the domain of a function its input and the corresponding value of the function
its output. This interpretation of domain as inputs and range as outputs is natural, and it is the reason that
systems are described by functions.

Lee & Varaiya, Signals and Systems 59

http://LeeVaraiya.org


2.1. DEFINING FUNCTIONS

The function
Display : ColorMapIndexes→ Intensity3

decodes the colormap indexes. If ColorMapIndexes has 256 values, it could be
identified with the set Integers8 of all 8-bit words, as we have seen. If we compose
these functions

ColorComputerImage = Display◦ColormapImage

then we get the decoded representation of the image

ColorComputerImage : DiscVerticalSpace×DiscHorizontalSpace

→ Intensity3.

ColorComputerImage describes how an image looks when it is displayed, whereas
ColormapImage describes how it is stored in the computer.

If f : X → X , i.e. the domain and range of f are the same, we can form the function

f 2 = f ◦ f .

We can compose f 2 with f to form f 3, and so on.

Example 2.11: Consider the function S : R2 → R2, where the assignment
(y1,y2) = S(x1,x2) is defined by matrix multiplication,[

y1
y2

]
=

[
1 2
3 4

][
x1
x2

]
. (2.6)

The function S2 = S◦S : R2→ R2 is also defined by matrix multiplication, and the
corresponding matrix is the square of the matrix in (2.6).

60 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


2. DEFINING SIGNALS AND SYSTEMS

To see this, let (y1,y2) = S(x1,x2) and (z1,z2) = S(y1,y2) = (S ◦ S)(x1,x2). Then
we see that[

z1
z2

]
=

[
1 2
3 4

]
︸ ︷︷ ︸

A

[
y1
y2

]
=

[
1 2
3 4

] ([
1 2
3 4

] [
x1
x2

])

=

[
1 2
3 4

]2 [ x1
x2

]
=

[
7 10
15 22

]
︸ ︷︷ ︸

A2

[
x1
x2

]

= A2
[

x1
x2

]
.

Example 2.12: Consider another example in the context of the telephone system.
Let Voices be the set of possible voice input signals of the form

Voice : Time→ Pressure.

Voices is a function space,

Voices = [Time→ Pressure].

A telephone converts a Voice signal into a signal in the set

LineSignals = [Time→ Voltages].

Thus, we could define

Mouthpiece : Voices→ LineSignals.

The twisted wire pair may distort this signal, so we define a function

LocalLoop : LineSignals→ LineSignals.

The input to the line card therefore is

(LocalLoop◦Mouthpiece)(Voice).

Lee & Varaiya, Signals and Systems 61

http://LeeVaraiya.org


2.1. DEFINING FUNCTIONS

Similarly let BitStreams be the set of possible bitstreams of the form:

BitStream : DiscreteTime→ Binary

where DiscreteTime = {0,1/64,000,2/64,000, · · ·}, since there are 64,000 bit-
s/sec. So,

BitStreams = [DiscreteTime→ Binary].

The encoder in a line card can be mathematically described as a function

Encoder : LineSignals→ BitStreams

or, with more detail, as a function

Encoder : [Time→ Voltages]→ [DiscreteTime→ Binary].

The digital telephone network itself might be modeled as a function

Network : BitStreams→ BitStreams.

We can continue in this fashion until we model the entire path of a voice signal
through the telephone network as the function composition

Earpiece◦LocalLoop2 ◦Decoder ◦Network ◦Encoder

◦LocalLoop1 ◦Mouthpiece. (2.7)

Given a complete definition of each of these functions, we would be well equipped
to understand the degradations experienced by a voice signal in the telephone net-
work.

2.1.6 Declarative vs. imperative

Declarative definitions of functions assert a relationship between elements in the domain
and elements in the range. Imperative definitions give a procedure for finding an element
in the range given one in the domain. Often, both types of specifications can be given for
the same function. However sometimes the specifications are subtly different.

62 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


2. DEFINING SIGNALS AND SYSTEMS

Consider the function

SquareRoot : R+→ R+

defined by the statement “SquareRoot(x) is the unique value of y ∈ R+ such that y2 = x.”
This declarative definition of SquareRoot does not tell us how to calculate its value at
any point in its domain. Nevertheless, it defines SquareRoot perfectly well. By contrast,
an imperative definition of SquareRoot would give us a procedure, or algorithm, for cal-
culating SquareRoot(x) for a given x. Call the result of such an algorithm ŷ. Since the
algorithm would yield an approximation in most cases, ŷ2 would not be exactly equal to
x. So the declarative and imperative definitions are not always the same.

Any definition of a function following the prototype (2.2) is a declarative definition. It
does not give a procedure for evaluating ‘expression in x’.

Probing Further: Declarative and imperative

The declarative approach establishes a relation between the domain and the range of a
function. For example, the equation

y = sin(x)/x

can be viewed as defining a subset of R×R. This subset is the graph of the function
Sinc : R→ R.

The imperative approach also establishes a function, but it is a function that maps the
program state before the statement is executed into a program state after the statement is
executed. Consider for example the Java statement

y = Math.sin(x)/x;

Considering only this statement (rather than a larger program), the program state is the
value of the two variables, x and y. Suppose that these have been declared to be of type
double, which in Java represents double-precision floating-point numbers encoding
according to an IEEE standard. Let the set Doubles be the set of all numbers so encoded,
and note that NaN ∈ Doubles, not a number, the result of division by zero. The set of
possible program states is therefore Doubles×Doubles. The Java statement therefore
defines a function

Statement : (Doubles×Doubles)→ (Doubles×Doubles).

Lee & Varaiya, Signals and Systems 63

http://LeeVaraiya.org


2.1. DEFINING FUNCTIONS

Example 2.13: As another example where declarative and imperative definitions
differ in subtle ways, consider the following mathematical equation:

y =
sin(x)

x
. (2.8)

Consider the following Java statement:

y = Math.sin(x)/x;

or an equivalent Matlab statement

y = sin(x)/x

Superficially, these look very similar to (2.8). There are minor differences in syntax
in the Java statement, but otherwise, it is hard to tell the difference. But there are
differences. For one, the mathematical equation (2.8) has meaning if y is known and
x is not. It declares a relationship between x and y. The Java and Matlab statements
define a procedure for computing y given x. Those statements have no meaning if
y is known and x is not.

The mathematical equation (2.8) can be interpreted as a predicate that defines a
function, for example the function Sinc : R→ R, where

graph(Sinc) = {(x,y) | x ∈ R,y = sin(x)/x}. (2.9)

The Java and Matlab statements can be interpreted as imperative definitions of a
function. Confusingly, many programming languages, including Matlab, use the
term “function” to mean something a bit different from a mathematical function.
They use it to mean a procedure that can compute an element in the range of
a function given an element in its domain. Under certain restrictions (avoiding
global variables for example), Matlab functions do in fact compute mathematical
functions. But in general, they do not. .

To interpret the Java and Matlab statements as imperative definitions of a function,
note that given an element in the domain, they specify how to compute an element
in the range. However, these two statements do not define the same function as

64 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


2. DEFINING SIGNALS AND SYSTEMS

in (2.9). To see this, consider the value of y when x = 0. Given the mathematical
equation, it is not entirely trivial to determine the value of y. You can verify that
y = 1 when x = 0 using l’Hôpital’s rule, which states that if f (a) = g(a) = 0, then

lim
x→a

f (x)
g(x)

= lim
x→a

f ′(x)
g′(x)

, (2.10)

if the limit exists, where f ′(x) is the derivative of f with respect to x, and g′(x) is
the derivative of g with respect to x.

In contrast, the meaning of the Java and Matlab statements is that y = 0/0 when
x = 0, which Java and Matlab (and most modern languages) define to be NaN, not
a number. Thus, given x = 0, the procedures yield different values for y than the
mathematical expression. (An exception is symbolic algebra programs, such as
Mathematica or Maple, which will evaluate sin(x)/x to 1 when x = 0. These pro-
grams use sophisticated, rule-based solution techniques, and, in effect, recognize
the need and apply l’Hôpital’s rule.)

We can see from the above example some of the strengths and weaknesses of imperative
and declarative approaches. Given only a declarative definition, it is difficult for a com-
puter to determine the value of y. Symbolic mathematical software, such as Maple and
Mathematica, is designed to deal with such situations, but these are very sophisticated
programs. In general, using declarative definitions in computers requires quite a bit more
sophistication than using imperative definitions.

Imperative definitions are easier for computers to work with. But the Java and Matlab
statements illustrate one weakness of the imperative approach: it is arguable that y = NaN
is the wrong answer, so the Java and Matlab statements have a bug. This bug is unlikely
to be detected unless, in testing, these statements happen to be executed with the value
x = 0. A correct Java program might look like this:

if (x == 0.0) y = 1.0;
else y = Math.sin(x)/x;

Thus, the imperative approach has the weakness that ensuring correctness is more dif-
ficult. Humans have developed a huge arsenal of techniques and skills for thoroughly

Lee & Varaiya, Signals and Systems 65

http://LeeVaraiya.org


2.2. DEFINING SIGNALS

understanding declarative definitions (thus lending confidence in their correctness), but
we are only beginning to learn how to ensure correctness in imperative definitions.

2.2 Defining signals

Signals are functions. Thus, both declarative and imperative approaches can be used to
define them.

2.2.1 Declarative definitions

Consider for example an audio signal s, a pure tone at 440 Hz (middle A on the piano
keyboard). Recall that audio signals are functions Sound : Time→ Pressure, where the
set Time⊂ R represents a range of time and the set Pressure represents air pressure.4 To
define this function, we might give the declarative description

∀ t ∈ Time, s(t) = sin(440×2πt). (2.11)

In many texts, you will see the shorthand

s(t) = sin(440×2πt)

used as the definition of the function s. Using the shorthand is only acceptable when
the domain of the function is well understood from the context. This shorthand can be
particularly misleading when considering systems, and so we will only use it sparingly.
A portion of the graph of the function (2.11) is shown in Figure 1.3.

2.2.2 Imperative definitions

We can also give an imperative description of such a signal. When thinking of signals
rather than more abstractly of functions, there is a subtle question that arises when we
attempt to construct an imperative definition. Do you give the value of s(t) for a particular
t? Or for all t in the domain? Suppose we want the latter, which seems like a more

4Recall further that we normalize Pressure so that zero represents the ambient air pressure. We also use
arbitrary units, rather than a physical unit such as millibars.

66 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


2. DEFINING SIGNALS AND SYSTEMS

complete definition of the function. Then we have a problem. The domain of this function
may be any time interval, or all time! Suppose we just want one second of sound. Define
t = 0 to be the start of that one second. Then the domain is [0,1]. But there are an
(uncountably) infinite number of values for t in this range! No Java or Matlab program
could provide the value of s(t) for all these values of t.

Since a signal is function, we give an imperative description of the signal exactly as we
did for functions. We give a procedure that has the potential of providing values for s(t),
given any t.

Example 2.14: We could define a Java method as follows:

double s(double t) {
return (Math.sin(440*2*Math.PI*t));

}

Calling this method with a value for t as an argument yields a value for s(t). Java
(and most object-oriented languages) use the term “method” for most procedures.

Another alternative is to provide a set of samples of the signal.

Example 2.15: In Matlab, we could define a vector t that gives the values of time
that we are interested in:

t = [0:1/8000:1];

In the vector t there are 8001 values evenly spaced between 0 and 1, so our sam-
pling rate is 8000 samples per second. Then we can compute values of s for these
values of t and listen to the resulting sound:

s = cos(2*pi*440*t);
sound(s,8000)

The vector s also has 8001 elements, representing evenly spaced samples of one
second of A-440.

Lee & Varaiya, Signals and Systems 67

http://LeeVaraiya.org


2.3. DEFINING SYSTEMS

2.2.3 Physical modeling

An alternative way to define a signal is to construct a model for a physical system that
produces that signal.

Example 2.16: A pure tone might be defined as a solution to a differential equation
that describes the physics of a tuning fork.

A tuning fork consists of a metal finger (called a tine) that is displaced by striking
it with a hammer. After being displaced, it vibrates. If the tine has no friction, it
will vibrate forever. We can denote the displacement of the tine after being struck
at time zero as a function y : R+→ R. If we assume that the initial displacement
introduced by the hammer is one unit, then using our knowledge of physics we can
determine that for all t ∈ R+, the displacement satisfies the differential equation

ÿ(t) =−ω
2
0y(t) (2.12)

where ω0 is constant that depends on the mass and stiffness of the tine, and and
where ÿ(t) denotes the second derivative with respect to time of y (see box).

It is easy to verify that y given by

∀ y ∈ R+, y(t) = cos(ω0t) (2.13)

is a solution to this differential equation (just take its second derivative). Thus,
the displacement of the tuning fork is sinusoidal. This displacement will couple
directly with air around the tuning fork, creating vibrations in the air (sound). If
we choose materials for the tuning fork so that ω0 = 2π×440, then the tuning fork
will produce the tone of A-440 on the musical scale.

2.3 Defining systems

All of the methods that we have discussed for defining functions can be used, in princi-
ple, to define systems. However, in practice, the situation is much more complicated for
systems than for signals. Recall from Section 1.2.1 that a system is a function where the
domain and range are sets of signals called signal spaces. Elements of these domains and

68 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


2. DEFINING SIGNALS AND SYSTEMS

displacement restorative force

tine

Figure 2.6: A tuning fork.

ranges are considerably more difficult to specify than, say, an element of R or Z. For this
reason, it is almost never reasonable to use a graph or a table to define a system. Much
of the rest of this book is devoted to giving precise ways to define systems where some
analysis is possible. Here we consider some simple techniques that can be immediately
motivated. Then we show how more complicated systems can be constructed from sim-
pler ones using block diagrams. We give a rigorous meaning to these block diagrams so
that we can use them without resorting to perilous intuition to interpret them.

Consider a system S where

S : [D→ R]→ [D′→ R′]. (2.14)

Suppose that x ∈ [D→ R] and y = S(x). Then we call the pair (x,y) a behavior of the
system. A behavior is an input, output pair. The set of all behaviors is

Behaviors(S) = {(x,y) | x ∈ [D→ R] and y = S(x)}.

Giving the set of behaviors is one way to define a system. Explicitly giving the set
Behaviors, however, is usually impractical, because it is a huge set, typically infinite (see
boxes on pages 681 and 683). Thus, we seek other ways of talking about the relationship
between a signal x and a signal y when y = S(x).

Lee & Varaiya, Signals and Systems 69

http://LeeVaraiya.org


2.3. DEFINING SYSTEMS

To describe a system, one must specify its domain (the space of input signals), its range
(the space of output signals), and the rule by which the system assigns an output signal
to each input signal. This assignment rule is more difficult to describe and analyze than
the input and output signals themselves. A table is almost never adequate, for example.
Indeed for most systems we do not have effective mathematical tools for describing or

Probing Further: Physics of a Tuning Fork

A tuning fork consists of two fingers called tines, as shown in Figure 2.6. If you displace
one of these tines by hitting it with a hammer, it will vibrate with a nearly perfect sinu-
soidal characteristic. As it vibrates, it pushes the air, creating a nearly perfect sinusoidal
variation in air pressure that propogates as sound. Why does it vibrate this way?

Suppose the displacement of the tine (relative to its position at rest) at time t is given
by x(t), where x : R→ R. There is a force on the tine pushing it towards its at-rest
position. This is the restorative force of the elastic material used to make the tine. The
force is proportional to the displacement (the greater the displacement, the greater the
force), so

F(t) =−kx(t),

where k is the proportionality constant that depends on the material and geometry of the
tine. In addition, Newton’s second law of motion tells us the relationship between force
and acceleration,

F(t) = ma(t),

where m is the mass and a(t) is the acceleration at time t. Of course,

a(t) =
d2

dt
x(t) = ẍ(t),

so
mẍ(t) =−kx(t)

or
ẍ(t) =−(k/m)x(t).

Comparing with (2.12), we see that ω2
0 = k/m.

A solution to this equation needs to be some signal that is proportional to its own
second derivative. A sinusoid as in (2.13) has exactly this property. The sinusoidal
behavior of the tine is called simple harmonic motion.

70 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


2. DEFINING SIGNALS AND SYSTEMS

Reals

t

Y

x(t)

y(t)

f

x

F(x)

y(t) = (F(x))(t) = f(x(t))

Figure 2.7: A memoryless system F has an associated function f that can be
used to determine its output y(t) given only the current input x(t) at time t. In
particular, it does not depend on values of the function x for other values of time.

understanding their behavior. Thus, it is useful to restrict our system designs to those we
can understand. We first consider some simple examples.

2.3.1 Memoryless systems and systems with memory

Memoryless systems are characterized by the property that previous input values are not
remembered when determining the current output value. More precisely, a system F :
[R→ Y ]→ [R→ Y ] is memoryless if there is a function f : Y → Y such that

∀ t ∈ R and ∀ x ∈ [R→ Y ], (F(x))(t) = f (x(t)).

This is illustrated in Figure 2.7. In other words, at any time t, the output (F(x))(t) depends
only on the input x(t) at that same time t; in particular, it does not depend on t nor on
previous or future values of x.

Specification of a memoryless system reduces to specification of the function f . If Y is
finite, then a table may be adequate.

Lee & Varaiya, Signals and Systems 71

http://LeeVaraiya.org


2.3. DEFINING SYSTEMS

Example 2.17: Consider a continuous-time system with input x and output y,
where for all t ∈ R,

y(t) = x2(t).

This example defines a simple system, where the value of the output signal at each
time depends only on the value of the input signal at that time. Such systems are
said to be memoryless because you do not have to remember previous values of the
input in order to determine the current value of the output.

By contrast, here is an example of a system with memory.

Example 2.18: Consider a continuous-time system with input x and output y =
F(x) such that ∀ t ∈ R,

y(t) =
1
M

∫ t

t−M
x(τ)dτ.

By a change of variables this can also be written

y(t) =
1
M

∫ M

0
x(t− τ)dτ.

This system is clearly not memoryless. It has the effect of smoothing the input
signal. We will study it and many related systems in detail in later chapters.

2.3.2 Differential equations

Consider a class of systems given by functions S : ContSignals → ContSignals where
ContSignals is a set of continuous-time signals. Depending on the scenario, we could
have ContSignals= [Time→R] or ContSignals= [Time→C], where Time=R or Time=
R+. These are often called continuous-time systems because they operate on continuous-
time signals. Frequently, such systems can be defined by differential equations that relate
the input signal to the output signal.

72 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


2. DEFINING SIGNALS AND SYSTEMS

Example 2.19: Consider a particle constrained to move forward or backwards
along a straight line with an externally imposed force. We will consider this particle
to be a system where the output is its position and the externally imposed force is
the input.

Denote the position of the particle by x : Time→ R, where Time = R+. By con-
sidering only the non-negative reals, we are assuming that the model has a starting
time. We denote the acceleration by a : Time→R. By Newton’s law, which relates
force, mass, and acceleration,

f (t) = ma(t),

where f (t) is the force at time t, and m is the mass. By the definition of acceleration,

∀ t ∈ R+, ẍ(t) = a(t) = f (t)/m,

where ẍ(t) denotes the second derivative with respect to time of x. If we know the
initial position x(0) and initial speed ẋ(0) of the particle at time 0, and if we are
given the input force f , we can evaluate the position at any t by integrating this
differential equation

x(t) = x(0)+ ẋ(0)t +
∫ t

0
[
∫ s

0
( f (τ)/m)dτ]ds. (2.15)

We can regard the initial position and velocity as inputs, together with force, in
which case the system is a function

Particle : R×R× [R+→ R]→ [R+→ R],

where for any inputs (x(0), ẋ(0), f ), x = Particle(x(0), ẋ(0), f ) must satisfy (2.15).

Suppose for example that the input is (1,−1, f ) where m= 1 and ∀ t ∈R+, f (t)= 1.
We can calculate the position by carrying out the integration in (2.15) to find that

∀ t ∈ R+, x(t) = 1− t +0.5t2.

Suppose instead that x(0) = ẋ(0) = 0 and ∀ t ∈ R+, f (t) = cos(ω0t), where ω0 is
some fixed number. Again, we can carry out the integration to get∫ t

0

∫ s

0
cos(ω0u)du ds =−cos(ω0t)−1

ω2
0

.

Lee & Varaiya, Signals and Systems 73

http://LeeVaraiya.org


2.3. DEFINING SYSTEMS

Notice that the position of the particle is sinusoidal. Notice further that the ampli-
tude of this sinusoid decreases as ω0 increases. Intuitively, this has to be the case.
If the externally imposed force is varying more rapidly back and forth, the particle
has less time to respond to each direction of force, and hence its excursion is less.
In subsequent chapters, we will study how the response of certain kinds of systems
varies with the frequency of the input.

2.3.3 Difference equations

Consider a class of systems given by functions S : DiscSignals → DiscSignals where
DiscSignals is a set of discrete-time signals. Depending on the scenario, we could have
DiscSignals = [Z→ R] or DiscSignals = [Z→ C], or even DiscSignals = [N0→ R], or
DiscSignals = [N0→ C]. These are often called discrete-time systems because they op-
erate on discrete-time signals. Frequently, such systems can be defined by difference
equations that relate the input signal to the output signal.

Example 2.20: Consider a system

S : [N0→ R]→ [N0→ R]

where for all x ∈ [N0→ R], S(x) = y is given by

∀ n ∈ Z, y(n) = (x(n)+ x(n−1))/2.

The output at each index is the average of two of the inputs. This is a simple
example of a moving average system, where typically more than two input values
get averaged to produce an output value.

Suppose that x = u, the unit step function, defined by

∀ n ∈ Z, u(n) =
{

1 if n≥ 0
0 otherwise

(2.16)

We can easily calculate the output y,

∀ n ∈ Z, y(n) =


1 if n≥ 1
1/2 if n = 0
0 otherwise

74 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


2. DEFINING SIGNALS AND SYSTEMS

The system smoothes the transition of the unit step a bit.

A slightly more interesting input is a sinusoidal signal given by

∀ n ∈ Z, x(n) = cos(2π f n).

The output is given by

∀ n ∈ Z, y(n) = (cos(2π f n)+ cos(2π f (n−1)))/2.

Using the trigonometric identities in the box on page 76 this can be written as

y(n) = Rcos(2π f n+θ)

where

θ = arctan(
sin(−2π f )

1+ cos(−2π f )
)/2,

R =
√

2+2cos(2π f )

As in the previous example, a sinusoidal input stimulates a sinusoidal output with
the same frequency. In this case, the amplitude of the output varies (in a fairly
complicated way) as a function of the input frequency. We will examine this phe-
nomenon in more detail in subsequent chapters by studying the frequency response
of such systems.

Example 2.21: The general form for a moving average is given by

∀ n ∈ Integers, y(n) =
1
M

M−1

∑
k=0

x(n− k),

where x is the input and y is the output. (If this notation is unfamiliar, see box on
page 77.)

This system is called an M-point moving average, since at any n it gives the average
of the M most recent values of the input. It computes an average, just like example
2.18 but the integral has been replaced by its discrete counterpart, the sum.

Lee & Varaiya, Signals and Systems 75

http://LeeVaraiya.org


2.3. DEFINING SYSTEMS

Moving averages are widely used on Wall Street to smooth out momentary fluctuations in
stock prices to try to determine general trends. We will study the smoothing properties of
this system. We will also study more general forms of difference equations of which the
moving average is a special case.

The examples above give declarative definitions of systems. Imperative definitions re-
quire giving a procedure for computing the output signal given the input signal. It is clear
how to do that with the memoryless system, assuming that an imperative definition of the
function f is available, and with the moving average. The integral equation, however, is
harder to define imperatively. An imperative description of such systems that is suitable
for computation on a computer requires approximation via solvers for differential equa-
tions. Simulink, for example, which is part of the Matlab package, provides such solvers.
Alternatively, an imperative description can be given in terms of analog circuits or other
physical systems that operate directly on the pertinent continuous domain. Discrete-time
systems often have reasonable imperative definitions as state machines, considered in
detail in the next chapter.

Basics: Trigonometric Identities

The following trigonometric identities will prove useful repeatedly:

Acos(θ+α)+Bcos(θ+β) =C cosθ−S sinθ = Rcos(θ+φ)

where
C = Acosα+Bcosβ

S = Asinα+Bsinβ

R =
√

C2 +S2

φ = arctan(S/C)

76 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


2. DEFINING SIGNALS AND SYSTEMS

Basics: Summations

In example 2.21, a discrete-time moving average system is defined by

∀ n ∈ Integers, y(n) =
1
M

M−1

∑
k=0

x(n− k),

where x is the input and y is the output. The notation
M−1
∑

k=0
indicates a sum of M terms.

The terms are x(n− k), where k takes on values from 0 to M−1. Thus,

M−1

∑
k=0

x(n− k) = x(n)+ x(n−1)+ · · ·+ x(n−M+1).

Such summations are related to integrals. Example 2.18 describes a continuous-time
system with input x and output y where

∀ t ∈ R, y(t) =
1
M

∫ t

t−M
x(τ)dτ.

This is similar to the discrete-time moving average in that it sums values of x, but it
sums over a continuum of values of the dummy variable τ. In the discrete-time version,
the sum is over discrete values of the dummy variable k, which takes only integer val-
ues. The summation notation has an ambiguity that it does not share with the integral
notation. In particular, it is not clear how to interpret an expression like

M−1

∑
k=0

1+2.

There are two possibilities, depending on whether the 2 is included in the summation
or is interpreted as being outside the summation. One possibility gives a sum of 3M,
while the other gives M+2. In integration, this ambiguity does not occur because of the
explicit reference to the dummy variable as dτ. In particular, it is clear that∫ T

0
1+2dτ 6=

∫ T

0
1dτ+2.

The left integral is equal to 3T , while the right integral is T +2.

Lee & Varaiya, Signals and Systems 77

http://LeeVaraiya.org


2.3. DEFINING SYSTEMS

2.3.4 Composing systems using block diagrams

We have been using block diagrams informally to describe systems. But it turns out that
block diagrams can have as rigorous and formal a meaning as mathematical notations.
We begin the exploration of this concept here, and pursue it much further in Chapter 4.

A block diagram is a visual syntax for describing a system as an interconnection of other
(component) systems, each of which emphasizes one particular input-to-output transfor-
mation of a signal. A block diagram is a collection of blocks interconnected by arrows.
Arrows are labeled by signals. Each block represents an individual system that transforms
an incoming or input signal into an outgoing or output signal.

A block diagram, which is a composition of systems, is itself a system. We can use
function composition, as discussed in Section 2.1.5, to give a precise meaning to this
larger system. A block represents a function, and the connection of an output from one
block to the input of another represents the composition of their two functions. The only
requirement for interconnecting two blocks is that the output of the first block must be an
acceptable input for the second.

Block diagrams can be much more readable than symbolic function composition, particu-
larly for complicated interconnections. They also offer a natural hierarchy, where we can
combine blocks to hide certain signals and component systems and to emphasize others.

For certain sorts of blocks, composing them in a block diagram results in a new system
whose properties are easy to determine. In chapter 4 we will show how to combine state
machine blocks to define a new state machine. In Chapter 8 we will show how to combine
filter blocks to define new filter blocks. Here, we consider the composition of blocks
when all we know about the blocks is that they represent functions with a given domain
and range. No further structure is available.

The simplest block diagram has a single block, as in Figure 2.8. The block represents a
system with input signal x and output signal y. Here, x denotes a variable over the set X ,
and y denotes a variable over the set Y . The system is described by the function S : X→Y .
Both X and Y are sets of functions or signals. Therefore the variables x and y themselves
denote functions.

In general, a system obtained by a cascade composition of two blocks is given by the
composition of the functions describing those blocks. In figure 2.9 the function S de-
scribes the system obtained by connecting the systems S1 and S2, with S = S2 ◦S1, i.e.

∀ x ∈ X , S(x) = S2(S1(x)).

78 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


2. DEFINING SIGNALS AND SYSTEMS

S : X → Y
x ∈ X y ∈Y

Y = [DY → RY]X = [DX → RX]

Figure 2.8: The simplest block diagram represents a function S that maps an input
signal x ∈ X to an output signal y ∈ Y . The domain and range of the input are DX

and RX , repectively, and of the output, DY and RY .

S1 : X → 
x ∈  y X ∈Y

X = [D → R] Y = [D' → R']
S2 : Y → Z

z ∈Z

Z = [D'' → R'']

S : X → Z

Y 

Figure 2.9: The cascade composition of the two systems is described by S =
S2 ◦S1.

The combined system has input signal x, output signal z, and internal signal y. (The
internal signal is not visible in the input or output of the combined system.) Of course,
the range of the first system must be contained by the domain of the second for this
composition to make sense. In the figure, the typical case is shown where this range and
domain are the same. The voice path in (2.7) is an example of cascade composition.

Consider two more block diagrams with slightly more complicated structure. Figure 2.10
is similar to Figure 2.9. The system described by S1 is the same as before, but the system
described by S2 has a pair of input signals (w,y) ∈W ×Y . The combined system has
the pair (x,w) ∈ X ×W as input signal, z as output signal, y as internal signal, and it is
described by the function S : X×W → Z, where

∀(x,w) ∈ X×W, S(x,w) = S2(w,S1(x)). (2.17)

Lee & Varaiya, Signals and Systems 79

http://LeeVaraiya.org


2.3. DEFINING SYSTEMS

Probing Further: Composition of graphs

We suggest a general method for writing down a declarative specification of the intercon-
nected system S in Figure 2.9 in terms of the subsystems S1 and S2 and the connection
restriction that the output of S1 be acceptable as an input of S2.

We describe S1 and S2 by their graphs,

graph(S1) = {(x,y1) ∈ X×Y | y1 = S1(x)},

graph(S2) = {(y2,z) ∈ Y ×Z | z = S2(y2)},
and we specify the connection restriction as the predicate

y1 = y2.

We use different dummy variables y1 and y2 to distinguish between the two systems and
the connection restriction.

The graph of the combined system S is then given by

graph(S) = {(x,z) ∈ X×Z | ∃y1,∃y2

(x,y1) ∈ graph(S1)∧ (y2,z) ∈ graph(S2)∧ y1 = y2}.

Here, ∧ denotes logical conjunction, “and.” It is now straightforward to show that
graph(S) = graph(S2 ◦S1) so that S = S2 ◦S1.

In the case of the cascade composition of Figure 2.9 this elaborate method is unnec-
essary, since we can write down S = S2 ◦ S1 simply by inspecting the figure. But for
feedback connections, we may not be able to write down the combined system directly.

There are three other reasons to understand this method. First, we use it later to
obtain a description of interconnected state machines from their component machines.
Second, this method is used to describe electronic circuits. Third, if we want a computer
to figure out the description of the interconnected system from a description of the
subsystems and the connection restrictions, we have to design an algorithm that the
computer must follow. Such an algorithm can be based on this general method.

80 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


2. DEFINING SIGNALS AND SYSTEMS

S1 : X → 
x ∈ X y ∈Y

S2 : W × Y → 
z ∈Z

Y = [DY → RY]X = [DX → RX]

Z = [DZ → RZ]

w ∈ 

W = [DW → RW]

S : W × X → 

Y 

Z 

Z 

W 

Figure 2.10: The combined system with input signals x,w and output signal z is
described by the function S, where ∀ (x,w), S(x,w) = S2(w,S1(x)).

Notice that it is now much harder to define this system using the function composition
notation, ◦, yet the block diagram makes its definition evident. In fact, the block diagram
notation is much more flexible.

The system of Figure 2.11 is obtained from that of figure 2.10 by connecting the output
signal z to the input signal w. As a result the new system has input signal x, output signal
z, internal signals y and w, and it is described by the function S′ : X → Z, where

∀ x ∈ X , S′(x) = S2(S′(x),S1(x)). (2.18)

The connection of z to w is called a feedback connection because the output z is fed back
as input w. Of course, such a connection has meaning only if Z, the range of S2, is a subset
of W . The system in Figure 2.11 is again difficult to define using function composition
notation, ◦, yet again the block diagram definition is clear.

There is one enormous difference between (2.17) and (2.18). Expression (2.17) serves as
a definition of the function S: to every (x,w) in its domain S assigns the value given by
the right-hand side which is uniquely determined by the given functions S1 and S2. But in
expression (2.18) the value S′(x) assigned to x may not be determined by the right-hand
side of (2.18), since the right-hand side itself depends on S′(x). In other words, (2.18) is
an equation that must be solved to determine the value of S′(x) for a given x; i.e. S′(x) = y
where y is a solution of

y = S2(y,S1(x)). (2.19)

Lee & Varaiya, Signals and Systems 81

http://LeeVaraiya.org


2.4. SUMMARY

S1 : X → 
x ∈ X y ∈Y

S2 : W × Y → 
z ∈Z

Y = [DY → RY]X = [DX → RX]

Z = [DZ → RZ]

z ∈ 

Z ⊂ W

S' : X → Z 

Z 

Y 

W 

Figure 2.11: The combined system is described by the function S′, where S′(x) =
S2(S′(x),S1(x)).

Such a solution, if it exists, is called a fixed point. We now face the difficulty that this
equation may have no solution, exactly one solution, or several solutions. Another diffi-
culty is that the value y that solves (2.19) is not a number but a function. So it will not
be easy to solve such an equation. Since feedback connections always arise in control
systems, we will study how to solve them. We will first solve them in the context of state
machines, which are introduced in the next chapter.

All of these block diagrams follow the same principles. They use component systems
to define composite systems. To be useful, of course, it is necessary to be able to infer
properties of the composite systems. Fortunately, this is often the case, although feedback
connections will prove subtle. This idea is explored further in chapters 4 and 8.

2.4 Summary

Signals and systems both are modeled as functions. It is often straightforward to figure
out the domain and range of a particular signal and system. It is more difficult to specify
the function’s assignment rule. Since the domain and range of a system are themselves
signal spaces, the assignment rule for a system is more complex than for a signal. The
domain and range signal spaces of a system can be quite different: a modem converts bit
sequences into sounds, an encoder converts sounds into bit sequences.

82 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


2. DEFINING SIGNALS AND SYSTEMS

The assignment rule of a function takes a declarative or imperative form. The declarative
form is usually mathematical, as in: define Chirp : [−1,1]→ R by

∀t ∈ [−1,1], Chirp(t) = cos(20πt2).

The imperative form is a procedure to evaluate the function at an arbitrary point in its
domain. The procedure may involve a table lookup (if the domain is finite) or a computer
program. If the domain is infinite, the evaluation procedure may only yield an approxi-
mation of the declarative form of the “same” function.

A physical system is often described using differential or difference equations that em-
body its “law of motion.” A mechanical system’s law of motion is derived from Newton’s
laws. An electrical circuit’s law of motion is derived from Kirchhoff’s laws and the laws
of the circuit’s constitutive elements: resistors, capacitors, inductors, transistors.

Most systems are built by composing smaller subsystems. The composition may be ex-
pressed in the visual syntax of block diagrams or, mathematically, using function compo-
sition. Feedback is the most complex form of system composition: a feedback specifica-
tion requires the solution of a fixed point equation.

Lee & Varaiya, Signals and Systems 83

http://LeeVaraiya.org


EXERCISES

Exercises

Each problem is annotated with the letter E, T, C which stands for exercise, requires some
thought, and requires some conceptualization. Problems labeled E are usually mechani-
cal, those labeled T require a plan of attack, those labeled C usually have more than one
defensible answer.

1. E The broadcast signal of an AM radio station located at 110 on your dial has a
carrier frequency of 110 kHz. An AM signal that includes the carrier has the form

∀ t ∈ Time, AMSignal(t) = (1+m(t))sin(2π×110,000t),

where m is an audio signal like Voice in figure 1.1, except that ∀ t ∈ Time, |m(t)|< 1.
Since you cannot easily plot such a high frequency signal, give an expression for
and plot AMSignal (using Matlab) for the case where Time = [0,1], m(t) = cos(πt),
and the carrier frequency is 20 Hz.

2. T This problem studies the relationship between the notion of delay and the graph
of a function.

(a) Consider two functions f and g from R into R where ∀ t ∈ R, f (t) = t and
g(t) = f (t− t0), where t0 is a fixed number. Sketch a plot of f and g for t0 = 1
and t0 = −1. Observe that if t0 > 0 then graph(g) is obtained by moving
graph( f ) to the right, and if t0 < 0 by moving it to the left.

(b) Show that if f : R→ R is any function whatsoever, and ∀ t, g(t) = f (t− t0),
then if (t,y) ∈ graph( f ), then (t + t0,y) ∈ graph(g). This is another way of
saying that if t0 > 0 then the graph is moved to the right, and if t0 < 0 then the
graph is moved to the left.

(c) If t represents time, and if t0 > 0, we say that g is obtained by delaying f .
Why is it reasonable to say this?

3. E Indicate whether the following statements are true or false.

(a) [{1,2,3}→ {a,b}]⊂ [N→{a,b}]
(b) {g | g = graph( f )∧ f : X → Y} ⊂ X×Y
(c) F : [R→ R]→ [R→ R], such that ∀ t ∈ R, and ∀ x ∈ [R→ R],

(F(x))(t) = sin(2π ·440t)

is a memoryless system.

84 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


2. DEFINING SIGNALS AND SYSTEMS

-1 0 1 

1 

-1 0 1 

1 

-0.5 

graph(f ) 
graph(g) 

Figure 2.12: Graphs of two functions. The bold line is the graph.

(d) Let f : R→ R and g : R→ R, where g is obtained by delaying f by τ ∈ R.
That is,

∀ t ∈ R, g(t) = f (t− τ).

Then graph(g)⊂ graph( f ).

4. E Figure 2.12 shows graphs of two functions f : [−1,1]→ [−1,1] and g : [−1,1]→
[−1,1]. For each case, define the function by giving an algebraic expression for its
value at each point in its domain. This expression will have several parts, similar to
the definition of the signum function in (2.3). Note that g(0) = 0 for the graph on
the right. Plot graph( f ◦g) and graph(g◦ f ).

5. T Let X = {a,b,c}, Y = {1,2}. For each of the following subsets G ⊂ X ×Y ,
determine whether G is the graph of a function from X to Y , and if it is, describe
the function as a table.

(a) G = {(a,1),(b,1),(c,2)}
(b) G = {(a,1),(a,2),(b,1),(c,2)}
(c) G = {(a,1),(b,2)}

6. C A router in the Internet is a switch with several input ports and several output
ports. A packet containing data arrives at an input port at an arbitrary time, and
the switch forwards the packet to one of the outgoing ports. The ports of different
routers are connected by transmission links. When a packet arrives at an input port,

Lee & Varaiya, Signals and Systems 85

http://LeeVaraiya.org


EXERCISES

the switch examines the packet, extracting from it a destination address d. The
switch then looks up the output port in its routing table, which contains entries of
the form (d,outputPort). It then forwards the packet to the specified output port.
The Internet works by setting up the routing tables in the routers.

Consider a simplified router with one input port and and two output ports, named
O1, O2. Let D be the set of destination addresses.

(a) Explain why the routing table can be described as a subset T ⊂D×{O1,O2}.
(b) Is it reasonable to constrain T to be the graph of a function from D→{O1,O2}?

Why?

(c) Assume the signal at the input port is a sequence of packets. How would you
describe the space of input signals to the router and output signals from the
router?

(d) How would you describe the switch as a function from the space of input
signals to the space of output signals?

7. C For each of the following expressions, state whether it can be interpreted as an
assignment, an assertion, or a predicate. More than one choice may be valid because
the full context is not supplied.

(a) x = 5,

(b) A = {5},
(c) x > 5,

(d) 3 > 5,

(e) x > 5∧ x < 3.

8. T A logic circuit with m binary inputs and n binary outputs is shown in Figure 2.13.
It is described by a function F : X → Y where X = Binarym and Y = Binaryn. (In
a circuit, the signal values 1 and 0 in Binary correspond to voltage High and Low,
respectively.) How many such distinct logic functions F are there?

9. E The function H : [R+→ R]→ [N0→ R] given by: ∀x ∈ [R+→ R],

∀n ∈ N0, H(x)(n) = x(10n),

is a mathematical example of a system with input signal space [R+→R] and output
signal space [N0→ R]. Give a mathematical example of a system H whose

86 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


2. DEFINING SIGNALS AND SYSTEMS

F : Binm → Binn

x1 ∈ Binary 

xm ∈ Binary 

...

y1 ∈ Binary

yn ∈ Binary 

...

Figure 2.13: The logic circuit has m binary inputs (x1, · · · ,xm) and n binary outputs
(y1, · · · ,yn).

(a) input and output signal spaces both are [N0→ Binary].

(b) input signal space is [N0→ R] and output signal space is [N0→{0,1}].
(c) input signal space is [Z→ R] and output signal space is [R→ R].

10. E Consider the functions

g : Y → R and f : N→ Y.

where Y is a set.

(a) Draw a block diagram for (g ◦ f ), with one block for each of g and f , and
label the inputs and output of the blocks with the domain and range of g and
f .

(b) Suppose Y is given by

Y = [{1, · · · ,100}→ R]

(Thus, the function f takes a natural number and returns a sequence of length
100, while the function g takes a sequence of length 100 and returns a real
number.)
Suppose further that g is given by: for all y ∈ Y ,

g(y) =
100

∑
i=1

y(i) = y(1)+ y(2)+ · · ·+ y(100),

and f by: for all x ∈ N and z ∈ {1, · · · ,100},

( f (x))(z) = cos(2πz/x).

Lee & Varaiya, Signals and Systems 87

http://LeeVaraiya.org


EXERCISES

(Thus, x gives the period of a cosine waveform, and f gives 100 samples of
that waveform.) Give a one-line Matlab expression that evaluates (g ◦ f )(x)
for any x ∈ N. Assume the value of x is already in a Matlab variable called x.

(c) Find (g◦ f )(1).

11. T The following system S takes a discrete-time signal x ∈ X and transforms it into
a discrete-time signal y ∈ Y whose value at index n is the average of the previous 4
values of x. Such a system is called a moving average. Suppose that X =Y = [N→
R], where N is the set of natural numbers. More precisely, the system is described
by the function S such that for any x ∈ X , y = S(x) is given by

y(n) =
{

[x(1)+ · · ·+ x(n)]/4 for 1≤ n < 4
[x(n−3)+ x(n−2)+ x(n−1)+ x(n)]/4 for n≥ 4

Notice that the first three samples are averages only if we assume that samples prior
to those that are available have value zero. Thus, there is an initial transient while
the system collects enough data to begin computing meaningful averages.

Write a Matlab program to calculate and plot the output signal y for time 1≤ n≤ 20
for the following input signals:

(a) x is a unit step delayed by 10, i.e. x(n) = 0 for n≤ 9 and x(n) = 1 for n≥ 10.

(b) x is a unit step delayed by 15.

(c) x alternates between +1 and -1, i.e. x(n) = 1 for n odd, and x(n) = −1 for n
even. Hint: Try computing cos(πn) for n ∈ N.

(d) Comment on what this system does. Qualitatively, how is the output signal
different from the input signal?

12. T The following system is similar to problem 11, but time is continuous. Now
X = Y = [R→ R] and the system F : X → Y is defined as follows. For all x ∈ X
and t ∈ R

(F(x))(t) =
1
10

∫ t

t−10
x(s)ds.

Show that if x is the sinusoidal signal

∀ t ∈ R x(t) = sin(ωt),

then y is also sinusoidal

∀ t ∈ R, y(t) = Asin(ωt +φ).

88 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


2. DEFINING SIGNALS AND SYSTEMS

You do not need to give precise expressions for A and φ, but just show that the
result has this form. Also, show that as ω gets large, the amplitude of the output
gets small. Higher frequencies, which represent more abrupt changes in the input,
are more attenuated by the system than lower frequencies.

Hint: The following fact from calculus may be useful:∫ b

a
sin(ωs)ds =

1
ω
(cos(ωa)− cos(ωb)).

Also, the identity in the footnote on page 76 might be useful to show that the output
is sinusoidal with the appropriate frequency.

13. E Suppose that f : R→ R and g : R→ Z such that for all x ∈ R,

g(x) =


1 if x > 0
0 if x = 0
−1 if x < 0

and
f (x) = 1+ x.

(a) Define h = g◦ f .
(b) Suppose that

F : [R→ R] → [R→ R]
G : [R→ R] → [R→ Z]

such that for all s ∈ [R→ R] and x ∈ R,

(F(s))(x) = f (s(x))

(G(s))(x) = g(s(x))

where f and g are as given above. Sketch a block diagram for H = G ◦F ,
where you have one block for each of G and F . Label the inputs and outputs
of your blocks with the domain and range of the functions in the blocks.

(c) Let s ∈ [R→ R] be such that for all x ∈ R,

s(x) = cos(πx).

Define u where
u = (G◦F)(s).

Give the domain, range, and assignment rule for u.

Lee & Varaiya, Signals and Systems 89

http://LeeVaraiya.org


EXERCISES

14. T Let D = DiscSignals = [Z→ R] and let

G : D×D→ D

such that for all x,y ∈ D and for all n ∈ Z,

(G(x,y))(n) = x(n)− y(n−1).

Now suppose we construct a new system H as follows:

G

H
x
y

Define H (as much as you can).

15. T Consider a similar system H to that in the previous problem,

G

H
x
y

but where now x ∈ R+ and y ∈ R+. The inputs and outputs are no longer signals,
but rather just non-negative real numbers. So G : R+×R+→R+. Block diagrams,
of course, work just as well for such simpler functions.

In this problem, we explore fixed points by considering a classic algorithm for
calculating the square root of a non-negative real number. Let the function G above
be given by

∀ x,y ∈ R+, G(x,y) = 0.5(y+ x/y). (2.20)

(a) Show that for a given x ∈ R+, if the fixed point exists, then H : R+→ R+ is
given by

∀ x ∈ R+, H(x) =
√

x.

90 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


2. DEFINING SIGNALS AND SYSTEMS

(b) To use the system above to calculate a square root, we simply start with a
guess for y, say 1, and calculate G(x,y) repeatedly until it converges to a
stable value for y. That stable value is the fixed point. Do this calculation for
x = 4 and for x = 12, repeating the evaluation of G until you obtain a close
approximation to the true square root. You may want to use Matlab for this.

Lee & Varaiya, Signals and Systems 91

http://LeeVaraiya.org


EXERCISES

92 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


3
State Machines

Contents
3.1 Structure of state machines . . . . . . . . . . . . . . . . . . . . . . 94

3.1.1 Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.1.2 Stuttering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.2 Finite state machines . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.2.1 State transition diagrams . . . . . . . . . . . . . . . . . . . . 99
3.2.2 Update table . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.3 Nondeterministic state machines . . . . . . . . . . . . . . . . . . . 107
3.3.1 State transition diagram . . . . . . . . . . . . . . . . . . . . 107
3.3.2 Sets and functions model . . . . . . . . . . . . . . . . . . . . 110

3.4 Simulation relations . . . . . . . . . . . . . . . . . . . . . . . . . . 112
3.4.1 Relating behaviors . . . . . . . . . . . . . . . . . . . . . . . 119

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Systems are functions that transform signals. The domain and the range of these functions
are both signal spaces, which significantly complicates specification of the functions. A
broad class of systems can be characterized using the concept of state and the idea that
a system evolves through a sequence of changes in state, or state transitions. Such
characterizations are called state-space models.

A state-space model describes a system procedurally, giving a sequence of step-by-step
operations for the evolution of a system. It shows how the input signal drives changes in

93



3.1. STRUCTURE OF STATE MACHINES

state, and how the output signal is produced. It is thus an imperative description. Imple-
menting a system described by a state-space model in software or hardware is straight-
forward. The hardware or software simply needs to sequentially carry out the steps given
by the model. Conversely, given a piece of software or hardware, it is often useful to
describe it using a state-space model, which yields better to analysis than more informal
descriptions.

In this chapter, we introduce state-space models by discussing systems with a finite (and
relatively small) number of states. Such systems typically operate on event streams, of-
ten implementing control logic. For example, the decision logic of modem negotiation
described in Chapter 1 can be modeled using a finite state model. Such a model is much
more precise than the English-language descriptions that are commonly used for such
systems.

3.1 Structure of state machines

A description of a system as a function involves three entities: the set of input signals, the
set of output signals, and the function itself,

F : InputSignals→ OutputSignals.

For a state machine, the input and output signals have the form

EventStream : N0→ Symbols,

where N0 = {0,1,2, · · ·}, and Symbols is an arbitrary set. The domain of these signals
represents ordering but not necessarily time (neither discrete nor continuous time). The
ordering of the domain means that we can say that one event occurs before or after another
event. But we cannot say how much time elapsed between these events. In Chapter 5 we
will study how state-space models can be used with functions of time.

A state machine constructs the output signal one symbol at a time by observing the input
signal one symbol at a time. Specifically, a state machine StateMachine is a 5-tuple,

StateMachine = (States, Inputs,Outputs,update, initialState) (3.1)

where States, Inputs,Outputs are sets, update is a function, and initialState ∈ States. The
meaning of these names is:

94 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


3. STATE MACHINES

States is the state space,
Inputs is the input alphabet,
Outputs is the output alphabet,
initialState ∈ States is the initial state, and
update : States× Inputs→ States×Outputs is the update function.

This five-tuple is called the sets and functions model of a state machine.

Inputs and Outputs are the sets of possible input and output symbols. The set of input
signals consists of all infinite sequences of input symbols,

InputSignals = [N0→ Inputs].

The set of output signals consists of all infinite sequences of output symbols,

OutputSignals = [N0→ Outputs].

Let x ∈ InputSignals be an input signal. A particular symbol in the signal can be written
x(n) for any n ∈ N0. We write the entire input signal as a sequence

(x(0),x(1), · · · ,x(n), · · ·).

This sequence defines the function x in terms of symbols x(n) ∈ Inputs, which represent
particular input symbols.

We reiterate that the index n in x(n) does not refer to time, but rather to the step number.
This is an ordering constraint only: step n occurs after step n−1 and before step n+1.
The state machine evolves (i.e. moves from one state to the next) in steps.1

3.1.1 Updates

The interpretation of update is this. If s(n) ∈ States is the current state at step n, and
x(n) ∈ Inputs is the current input symbol, then the current output symbol and the next
state are given by

(s(n+1),y(n)) = update(s(n),x(n)).

1Of course the steps could last a fixed duration of time, in which case there would be a simple relation-
ship between step number and time. The relationship may be a mixed one, where some input symbols are
separated by a fixed amount of time and some are not.

Lee & Varaiya, Signals and Systems 95

http://LeeVaraiya.org


3.1. STRUCTURE OF STATE MACHINES

Thus the update function makes it possible for the state machine to construct the output
signal step by step by observing the input signal step by step.

The state machine StateMachine of (3.1) defines a function

F : InputSignals→ OutputSignals (3.2)

such that for any input signal x∈ InputSignals the corresponding output signal is y=F(x).
However, it does much more than just define this function. It also gives us a procedure for
evaluating this function on a particular input signal. The state response (s(0),s(1), · · ·)
and output signal y are constructed as follows:

s(0) = initialState, (3.3)

∀n≥ 0, (s(n+1),y(n)) = update(s(n),x(n)), (3.4)

Observe that if the initial state is changed, the function F will change, so the initial state
is an essential part of the definition of a state machine.

Each evaluation of (3.4) is called a reaction because it defines how the state machine
reacts to a particular input symbol. Note that exactly one output symbol is produced for
each input symbol. Thus, it is not necessary to have access to the entire input sequence
to start producing output symbols. This feature proves extremely useful in practice, since
it is usually impractical to have access to the entire input sequence (it is infinite in size!).
The procedure summarized by (3.3)–(3.4) is causal, in that the next state s(n+ 1) and
current output symbol y(n) depend only on the initial state s(0) and current and past input
symbols x(0),x(1), · · · ,x(n).
It is sometimes convenient to decompose update into two functions:

nextState : States× Inputs→ States is the next state function,
output : States× Inputs→ Outputs is the output function.

The interpretation is this. If s(n) is the current state, and x(n) is the current input symbol
at step n, the next state is

s(n+1) = nextState(s(n),x(n)),

and the current output symbol is

y(n) = output(s(n),x(n)).

Evidently, for all s(n) ∈ States and x(n) ∈ Inputs,

(s(n+1),y(n)) = update(s(n),x(n)) = (nextState(s(n),x(n)),output(s(n),x(n)).

96 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


3. STATE MACHINES

3.1.2 Stuttering

A state machine produces exactly one output symbol for each input symbol. For each
input symbol, it may also change state (of course, it could also remain in the same state
by changing back to the same state). This means that with no input symbol, there is
neither an output symbol nor a change of state.

Later, when we compose simpler state machines to construct more complicated ones, it
will prove convenient to be explicit in the model about the fact that no input triggers no
output and no state change. We do that by insisting that the input and output symbol sets
include a stuttering symbol, typically denoted absent. That is,

absent ∈ Inputs, and absent ∈ Outputs.

Moreover, we require that for any s ∈ States,

update(s,absent) = (s,absent). (3.5)

This is called a stuttering reaction because no progress is made. An absent input symbol
triggers an absent output symbol and no state change. Now any number of absent sym-
bols may be inserted into the input sequence, anywhere, without changing the non-absent
output symbols. Stuttering reactions will prove essential for hybrid systems models, con-
sidered in Chapter 6.

Example 3.1: Consider a 60-minute parking meter. There are three (non-
stuttering) input symbols: in5 and in25 which represent feeding the meter 5 and
25 cents respectively, and tick which represents the passage of one minute. The
meter displays the time in minutes remaining before the meter expires. When in5
occurs, this time is incremented by 5, and when in25 occurs it is incremented by
25, up to a maximum of 60 minutes. When tick occurs, the time is decremented
by 1, down to a minimum of 0. When the remaining time is 0, the display reads
expired.

We can construct a finite state machine model for this parking meter. The set of
states is

States = {0,1,2, ...,60}.
The input and output alphabets are

Inputs = {in5, in25, tick,absent},

Lee & Varaiya, Signals and Systems 97

http://LeeVaraiya.org


3.2. FINITE STATE MACHINES

Outputs = {expired,1,2, ...,60,absent}.
The initial state is

initialState = 0.

The update function

update : States× Inputs→ States×Outputs

is given by, ∀ s(n) ∈ States, x(n) ∈ Inputs,

update(s(n),x(n)) =



(0,expired)
if x(n) = tick∧ (s(n) = 0∨ s(n) = 1)

(s(n)−1,s(n)−1)
if x(n) = tick∧ s(n)> 1

(min(s(n)+5,60),min(s(n)+5,60))
if x(n) = in5

(min(s(n)+25,60),min(s(n)+25,60))
if x(n) = in25

(s(n),absent)
if x(n) = absent

where min is a function that returns the minimum of its arguments.

If the input sequence is (in25, tick20, in5, tick10, · · ·), for example, then the output
sequence is

(expired,25,24, ...,6,5,10,9,8, · · · ,2,1,expired, · · ·).

Here, we are using the common notation tick10 to mean a sequence of 10 consecu-
tive ticks.

3.2 Finite state machines

Often, States is a finite set. In this case, the state machine is called a finite state machine,
abbreviated FSM. FSMs yield to powerful analytical techniques because, in principle, it
is possible to explore all possible sequences of states. The parking meter above is a finite

98 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


3. STATE MACHINES

state machine. The remainder of this chapter and the next chapter will focus on finite state
machines. We will return to infinite state systems in Chapter 5.

When the number of states is small, and the input and output alphabets are finite (and
small), we can describe the state machine using a very readable and intuitive diagram
called a state transition diagram.

Example 3.2: A verbal description of an automatic telephone answering service
or voice-mail service might go like this.

When a call arrives, the phone rings. If the phone is not picked up, then
on the third ring, the service answers. It plays a pre-recorded greeting
requesting that the caller leave a message (“Hello, sorry I can’t answer
your call right now ... Please leave a message after the beep”), then
records the caller’s message, and then automatically hangs up. If the
phone is answered before the third ring, the service does nothing.

Figure 3.1 shows a state transition diagram for the state machine model of this
answering service.

You can probably read the diagram in Figure 3.1 without any further explanation. It is
sufficiently intuitive. Nonetheless, we will explain it precisely.

3.2.1 State transition diagrams

Figure 3.1 consists of bubbles linked by arcs. (The arcs are also called arrows.) In this
bubbles-and-arcs syntax each bubble represents one state of the answering service, and
each arc represents a transition from one state to another. The bubbles and arcs are
annotated, i.e. they are labeled with some text. The execution of the state machine consists
of a sequence reactions, where each reaction involves a transition from one state to another
(or back to the same state) along one of the arcs. The tables at the bottom of the figure are
not part of the state transition diagram, but they improve our understanding of the diagram
by giving the meanings of the names of the states, input symbols, and output symbols.

The notation for state transition diagrams is summarized in Figure 3.2. Each bubble is
labeled with the name of the state it represents. The state names can be anything, but they

Lee & Varaiya, Signals and Systems 99

http://LeeVaraiya.org


3.2. FINITE STATE MACHINES

must be distinct. The state machine of Figure 3.1 has five states. The state names define
the state space,

States = {idle,count1,count2,play greeting,recording}.

Each arc is labeled by a guard and (optionally) an output. If an output symbol is given,
it is separated from the guard by a forward slash, as in the example {ring}/answer going
from state count2 to play greeting. A guard specifies which input symbols might trigger
the associated transition. It is a subset of the Inputs, the input alphabet, which for the
answering service is

Inputs = {ring,offhook,end greeting,end message,absent}.

In Figure 3.1, some guards are labeled “else.” This special notation designates an arc that
is taken when there is no match on any other guard emerging from a given state. The arc
with the guard else is called the else arc. Thus, else is the set of all input symbols not
included in any other guard emerging from the state. More precisely, for a given state,
else is the complement with respect to Inputs of the union of the guards on emerging arcs.
For example in Figure 3.1, for state recording,

else = {ring,end greeting}.

For the example in Figure 3.2, else is defined by

else = {i ∈ Inputs | i /∈ (guard1∪guard2)}.

If no else arc is specified, and the set else is not empty, then the else arc is implicitly a self
loop, as shown by the dashed arc in figure 3.2. A self loop is an arc that transitions back
to the same state. When the else arc is a self loop, then the stuttering symbol may be a
member of the set else.

Initially, the system of Figure 3.1 is in the idle state. The initial state is indicated by
the bold arc on the left that leads into the state idle. Each time an input symbol arrives,
the state machine reacts. It checks the guards on arcs going out of the current state and
determines which of them contains the input symbol. It then takes that transition.

Two problems might occur.

• The input symbol may not be contained in the guard of any outgoing arc. In our
state machine models, for every state, there is at least one outgoing transition that

100 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


3. STATE MACHINES

matches the input symbol (because of the else arc). This property is called recep-
tiveness; it means that the machine can always react to an input symbol. That is,
there is always a transition out of the current state that is enabled by the current
input symbol. (The transition may lead back to current state if it is a self loop.) Our
state machines are said to be receptive.

• More than one guard going out from the current state may contain the input symbol.
A state machine that has such a structure is said to be nondeterministic. The
machine is free to choose any arc whose guard contains the input symbol, so more
than one behavior is possible for the machine. Nondeterministic state machines
will be discussed further below. Until then, we assume that the guards are always
defined to give deterministic state machines. Specifically, the guards on outgoing
arcs from any state are mutually exclusive. In other words, the intersection of any
two guards on outgoing arcs of a state is empty, as indicated in Figure 3.2. Of
course, by the definition of the else set, for any guard that is not else, it is true that
guard∩ else = /0.

A sequence of input symbols thus triggers a sequence of state transitions. The resulting
sequence of states is called the state response.

Example 3.3: In Figure 3.1, if the input sequence is

(ring,ring,offhook, · · ·)

then the state response is

(idle,count1,count2, idle, · · ·).

The ellipsis (“· · ·”) are there because the answering service generally responds to
an infinite input sequence, and we are showing only the beginning of that response.
This behavior can be compactly represented by a trace,

idle
ring−→ count1

ring−→ count2
offhook−→ idle · · ·

A trace represents the state response together with the input sequence that triggers
it. This trace describes the behavior of the answering service when someone picks
up a telephone extension after two rings.

Lee & Varaiya, Signals and Systems 101

http://LeeVaraiya.org


3.2. FINITE STATE MACHINES

A more elaborate trace illustrates the behavior of the answering service when it
takes a message:

idle
ring−→ count1

ring−→ count2
ring−→ play greeting (3.6)

end greeting−→ recording
end message−→ idle · · ·

A state machine also produces outputs. In Figure 3.1, the output alphabet is

Outputs = {answer,record,recorded,absent}.

An output symbol is produced as part of a reaction. The output symbol that is produced
is indicated after a slash on an arc. If the arc annotation shows no output symbol, then the
output symbol is absent.

Example 3.4: The output sequence for the trace (3.6) is

(absent,absent,answer,record,recorded, · · ·).

There is an output symbol for every input symbol, and some of the output symbols
are absent.

It should be clear how to obtain the state response and output sequence for any input
sequence. We begin in the initial state and then follow the state transition diagram to
determine the successive state transitions for successive input symbols. Knowing the
sequence of transitions, we also know the sequence of output symbols.

Shorthand

State transition diagrams can get very verbose, with many arcs with complicated labels.
A number of shorthand options can make a diagram clearer by reducing the clutter.

• If no guard is specified on an arc, then that transition is always taken when the state
machine reacts and is in the state from which arc emerges, as long as the input is

102 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


3. STATE MACHINES

not the stuttering symbol. That is, giving no guard is equivalent to giving the entire
set Inputs as a guard, minus the stuttering symbol. The stuttering symbol, recall,
always triggers a transition back to the same state, and always produces a stuttering
symbol on the output.

• Any clear notation for specifying subsets can be used to specify guards. For ex-
ample, if Inputs = {a,b,c}, then the guard {b,c} can be given by ¬a (read “not
a”).

• An else transition for a state need not be given explicitly. It is an implied self-loop
if it is not given. This is why it is shown with a dashed line in Figure 3.2.

• The output symbol is the stuttering symbol of Outputs if it is not given.

These shorthand notations are not always a good idea. For example, the else transitions
often correspond to exceptional (unexpected) input sequences, and staying in the same
state might not be the right behavior. For instance, in Figure 3.1, all else transitions are
shown explicitly, and all exceptional input sequences result in the machine ending up in
state idle. This is probably reasonable behavior, allowing the machine to recover. Had
we left the else transitions implicit, we would likely have ended up with less reasonable
behavior. Use your judgment in deciding whether or not to explicitly include else transi-
tions.

3.2.2 Update table

An alternative way to describe a finite state machine is by an update table. This is simply
a tabular representation of the state transition diagram.

For the diagram of Figure 3.1, the table is shown in Figure 3.3. The first column lists the
current state. The remaining columns list the next state and the output symbol for each of
the possible input symbols.

The first row, for example, corresponds to the current state idle. If the input symbol is
ring, the next state is count1 and the output symbol is absent. Under any of the other
input symbols, the state remains idle and the output symbol remains absent.

Lee & Varaiya, Signals and Systems 103

http://LeeVaraiya.org


3.2. FINITE STATE MACHINES

Types of State Machines

The type of state machines introduced in this section are known as Mealy machines,
after G. H. Mealy, who studied them in 1955. Their distinguishing feature is that output
symbols are associated with state transitions. That is, when a transition is taken, an output
symbol is produced. Alternatively, we could have associated output symbols with states,
resulting in a model known as Moore machines, after F. Moore, who studied them in
1956. In a Moore machine, an output symbol is produced while the machine is in a
particular state. Mealy machines turn out to be more useful when they are composed
synchronously, as we will do in the next chapter. This is the reason that we choose this
variant of the model.

It is important to realize that state machine models, like most models, are not unique. A
great deal of engineering judgment goes into a picture like Figure 3.1, and two engineers
might come up with very different pictures for what they believe to be the same system.
Often, the differences are in the amount of detail shown. One picture may show the
operation of a system in more detail than another. The less detailed picture is called an
abstraction of the more detailed picture. Also likely are differences in the names chosen
for states, input symbols and output symbols, and even in the meaning of the input and
output symbols. There may be differences in how the machine responds to exceptional
circumstances (input sequences that are not expected). For example, what should the
answering service do if it gets the input sequence (ring,end greeting,end message)? This
probably reflects a malfunction in the system. In figure 3.1, the reaction to this sequence
is easy to see: the machine ends up in the idle state.

Given these likely differences, it becomes important to be able to talk about abstraction
relations and equivalence relations between state machine models. This turns out to be
a fairly sophisticated topic, one that we touch upon below in Section 3.3.

The meaning of state

We have three equivalent ways of describing a state machine: sets and functions, the state
transition diagram, and the update table. These descriptions have complementary uses.
The table makes obvious the sparsity of output symbols in the answering service example.
The table and the diagrams are both useful for a human studying the system to follow its
behavior in different circumstances. The sets and functions and the table are useful for

104 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


3. STATE MACHINES

building the state machine in hardware or software. The sets and functions description is
also useful for mathematical analysis.

Of course, the tables and the transition diagram can be used only if there are finitely
many states and finitely many input and output symbols, i.e. if the sets States, Inputs, and
Outputs are finite. The sets and functions description is often equally comfortable with
finite and infinite state spaces. We will discuss infinite-state systems in Chapter 5.

Like any state machine, a telephone answering service is a state-determined system.
Once we know its current state, we can tell what its future behavior is for any future input
symbols. We do not need to know what input symbols in the past led to the current state
in order to predict how the system will behave in the future. In this sense we can say the
current state of the system summarizes the past history of the system. This is, in fact, the
key intuitive notion of state.

The number of states equals the number of patterns we need to summarize the past his-
tory. If this is intrinsically finite, then a finite-state model exists for the system. If it is
intrinsically infinite, then no finite-state model exists. We can often determine which of
these two situations applies using simple intuition. We can also show that a system has
a finite-state model by finding one. Showing that a system does not have a finite-state
model is a bit more challenging.

Example 3.5: Consider the example of a system called CodeRecognizer whose
input and output signals are sequences of 0 and 1 (with arbitrarily inserted stuttering
symbols, which have no effect). The system outputs recognize at the end of every
subsequence 1100 in the input, and otherwise it outputs absent. If the input x is
given by a sequence

(x(0),x(1), · · ·),
and the output y is given by the sequence

(y(0),y(1), · · ·),
then, if none of the input symbols is absent,

y(n) =
{

recognize if (x(n−3),x(n−2),x(n−1),x(n)) = (1,1,0,0)
absent otherwise

(3.7)

Intuitively, in order to determine y(n), it is enough to know whether the previous
pattern of (non-absent) inputs is 0, 1, 11, or 110. If this intuition is correct, we

Lee & Varaiya, Signals and Systems 105

http://LeeVaraiya.org


3.2. FINITE STATE MACHINES

can implement CodeRecognizer by a state machine with four states that remember
the patterns 0, 1, 11, 110. The machine of Figure 3.4 does the job. The fact that
we have a finite-state machine model of this system shows that this is a finite-state
system.

The relationship in this example between the number of states and the number of input
patterns that need to be stored suggests how to construct functions mapping input se-
quences to output sequences that cannot be realized by finite state machines. Here is a
particularly simple example of such a function called Equal.

Example 3.6: An input signal of Equal is a sequence of 0 and 1 (again with
stuttering symbols arbitrarily inserted). At each step, Equal outputs equal if the
previous inputs contain an equal number of 0’s and 1’s; otherwise Equal outputs
notEqual. In other words, if the input sequence x is the sequence (x(0),x(1), · · ·),
with no stuttering symbols, then the output sequence y = F(x) is given by

∀ n ∈ N0, y(n) =


equal

if if number of 1’s is the same as 0’s
in x(0), · · · ,x(n)

notEqual
if otherwise

(3.8)

Intuitively, in order to realize Equal, the machine must remember the difference
between the number of 1’s and 0’s that have occurred in the past. Since these
numbers can be arbitrarily large, the machine must have infinite memory, and so
Equal cannot be realized by a finite-state machine.

We give a mathematical argument to show that Equal cannot be realized by any
finite-state machine. The argument uses contradiction.

Suppose that a machine with N states realizes Equal. Consider an input sequence
that begins with N 1’s, (1, · · · ,1,x(N), · · ·). Let the state response be

(s(0),s(1), · · · ,s(N), · · ·).

Since there are only N distinct states, and the state response is of length at least N+
1, the state response must visit at least one state twice. Call that state α. Suppose

106 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


3. STATE MACHINES

s(m) = s(n) = α, with m < n ≤ N. Then the two sequences 1m0m and 1n0m must
lead to the same state, hence yield the same last output symbol on entering state
α. Recall that 1m means a sequence of m consecutive 1’s, similarly for 0m. But the
last output symbol for 1m0m should be equal, and the last output symbol for 1n0m

should be notEqual, which is a contradiction. So our hypothesis that a finite-state
machine realizes Equal must be wrong! Exercise 6 asks you to construct an infinite
state machine that realizes Equal.

3.3 Nondeterministic state machines

There are situations in which it is sufficient to give an incomplete model of a system. Such
models are more compact than complete models because they hide inessential details.
This compactness will often make them easier to understand.

A useful form of incomplete model is a nondeterministic state machine. A nondetermin-
istic state machine often has fewer states and transitions than would be required by a
complete model. The state machines we have studied so far are deterministic.

3.3.1 State transition diagram

The state transition diagram for a state machine has one bubble for each state and one arc
for each state transition. Nondeterministic machines are no different. Each arc is labeled
with by “guard/output,” where

guard ⊂ Inputs and output ∈ Outputs.

In a deterministic machine, the guards on arcs emerging from any given state are mutually
exclusive. That is, they have no common symbols. This is precisely what makes the
machine deterministic. For nondeterministic machines, we relax this constraint. Guards
can overlap. Thus, a given input symbol may appear in the guard of more than one
transition, which means that more than one transition can be taken when that input symbol
arrives. This is precisely what makes the machine nondeterministic.

Lee & Varaiya, Signals and Systems 107

http://LeeVaraiya.org


3.3. NONDETERMINISTIC STATE MACHINES

Example 3.7: Consider the state machine shown in Figure 3.5. It begins in state
a and transitions to state b the first time it encounters a 1 on the input. It then stays
in state b arbitrarily long. If it receives a 1 at the input, it must stay in state b. If it
receives a 0, then it can either stay in b or transition to a. Given the input sequence

(0,1,0,1,0,1, · · ·)

then the following are all possible state responses and output sequences:

(a,a,b,a,b,a,b, · · ·)
(0,1,0,1,0,1, · · ·)

(a,a,b,b,b,a,b, · · ·)
(0,1,1,1,0,1, · · ·)

(a,a,b,b,b,b,b, · · ·)
(0,1,1,1,1,1, · · ·)

(a,a,b,a,b,b,b, · · ·)
(0,1,0,1,1,1, · · ·)

Nondeterminism can be used to construct an abstraction of a complicated machine,
which is a simpler machine that has all the behaviors of the more complicated machine.

Example 3.8: Consider again the 60-minute parking meter. Its input alphabet is

Inputs = {coin5,coin25, tick,absent}.

Upon arrival of coin5, the parking meter increments its count by five, up to a maxi-
mum of 60 minutes. Upon arrival of coin25, it increments its count by 25, again up

108 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


3. STATE MACHINES

to a maximum of 60. Upon arrival of tick, it decrements its count by one, down to
a minimum of zero.

A deterministic state machine model is illustrated schematically in Figure 3.6(a).
The state space is

States = {0,1, · · · ,60},
which is too many states to draw conveniently. Thus, patterns in the state space are
suggested with ellipsis “· · ·”.

Suppose that we are interested in modeling the interaction between this parking
meter and a police officer. The police officer does not care what state the parking
meter is in, except to determine whether the meter has expired or not. Thus, we
need only two nonstuttering output symbols, so

Outputs = {safe,expired,absent}.

The symbol expired is produced whenever the machine enters state 0.

The model has enough states that a full state transition diagram is tedious and com-
plex enough that it might not be useful for generating insight about the design.
Moreover, the detail that is modeled may not add insight about the interaction with
a police officer.

Figure 3.6(b) is a nondeterministic model of the same parking meter. It has three
states,

States = {0,1,more}.
The input symbols coin5 and coin25 in state 0 or 1 cause a transition to state more.
The input symbol tick in state more nondeterministically moves the state to 1 or
leaves it in more.

The top state machine has more detail than the bottom machine. Shortly, we will
give a precise meaning to the phrase ‘has more detail’ using the concept of sim-
ulation. For the moment, note that the bottom machine can generate any output
sequence that the top machine generates, for the same input sequence. But the bot-
tom machine can also generate output sequences that the top machine cannot. For
example, the sequence

(expired,safe,safe,expired, · · ·),

in which there are two safe output symbols between two expired output symbols
is not a possible output sequence of the top machine, but it is a possible output

Lee & Varaiya, Signals and Systems 109

http://LeeVaraiya.org


3.3. NONDETERMINISTIC STATE MACHINES

sequence of the bottom machine. In the top machine, successive expired output
symbols must be separated by 0 or at least five safe output symbols. This detail is
not captured by the bottom machine. But in modeling the interaction with a police
officer, this detail may not be important, so omitting it may be entirely appropriate.

The machines that we design and build, including parking meters, are usually determin-
istic. However, the state space of these machines is often very large, much larger than in
this example, and it can be difficult to understand their behavior. We use simpler nonde-
terministic machine models that hide inessential details of the deterministic machine. The
analysis of the simpler model reveals some properties, but not all properties, of the more
complex machine. The art, of course, is in choosing the model that reveals the properties
of interest.

3.3.2 Sets and functions model

The state machines we have been studying, with definitions of the form (3.1), are de-
terministic. If we know the initial state and the input sequence, then the entire state
trajectory and output sequence can be determined. This is because any current state
s(n) and current input symbol x(n) uniquely determine the next state and output sym-
bol (s(n+1),y(n)) = update(s(n),x(n)).

In a nondeterministic state machine, the next state is not completely determined by the
current state and input symbol. For a given current state s(n) and input symbol x(n), there
may be more than one next state. So we cannot characterize the machine by the function
update(s(n),x(n)) because there is no single next state. Instead, we define a function
possibleUpdates so that possibleUpdates(s(n),x(n)) is the set of possible next states and
output symbols. Whereas a deterministic machine has update function

update : States× Inputs→ States×Outputs,

a nondeterministic machine has a (nondeterministic) state transition function

possibleUpdates : States× Inputs→℘(States×Outputs), (3.9)

where ℘(State×Outputs) is the powerset of States×Outputs.

In order for a nondeterministic machine to be receptive, it is necessary that

∀ s(n) ∈ States,x(n) ∈ Inputs possibleUpdates(s(n),x(n)) 6= /0.

110 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


3. STATE MACHINES

Recall that a receptive machine accepts any input symbol in any state, makes a state
transition (possibly back to the same state), and produces an output symbol. That is, there
is no situation where the reaction to an input symbol is not defined.

Operationally, a nondeterministic machine arbitrarily selects the next state and current
output symbol from possibleUpdates given the current state and current input symbol.
The model says nothing about how the selection is made.

Similar to deterministic machines, we can collect the specification of a nondeterministic
state machine into a 5-tuple

StateMachine = (States, Inputs,Outputs,possibleUpdates, initialState). (3.10)

The possibleUpdates function is different from the update function of a deterministic
machine.

Deterministic state machines of the form (3.1) are a special case of nondeterministic ma-
chines in which possibleUpdates(s(n),x(n)) consists of a single element, namely update(s(n),x(n)).
In other words,

possibleUpdates(s(n),x(n)) = {update(s(n),x(n))}.

Thus, any deterministic machine, as well as any nondeterministic machine, can be given
by (3.10).

In the nondeterministic machine of (3.10), an input sequence may give rise to many
state responses and output sequences. If (x(0),x(1),x(2), · · ·) is an input sequence, then
(s(0),s(1),s(2), · · ·) is a (possible) state trajectory and (y(0),y(1),y(2), · · ·) is a (possible)
output sequence provided that

s(0) = initialState

∀n≥ 0, (s(n+1),y(n)) ∈ possibleUpdates(s(n),x(n)).

A deterministic machine defines a function from an input sequence to an output sequence,

F : InputSignals→ OutputSignals,

where
InputSignals = [N0→ Inputs],

and
OutputSignals = [N0→ Outputs].

Lee & Varaiya, Signals and Systems 111

http://LeeVaraiya.org


3.4. SIMULATION RELATIONS

We define a behavior of the machine to be a pair (x,y) such that y = F(x), i.e., a be-
havior is a possible input, output pair. A deterministic machine is such that for each
x ∈ InputSignals, there is exactly one y ∈ OutputSignals such that (x,y) is a behavior.

We define the set
Behaviors⊂ InputSignals×OutputSignals, (3.11)

where

Behaviors = {(x,y) ∈ InputSignals×OutputSignals
| y is a possible output sequence for input sequence x}.

For a deterministic state machine, the set Behaviors is the graph of the function F .

For a nondeterministic machine, for a given x∈ InputSignals, there may be more than one
y ∈OutputSignals such that (x,y) is a behavior. The set Behaviors, therefore, is no longer
the graph of a function. Instead, it defines a relation—a generalization of a function where
there can be two or more distinct elements in the range corresponding to the same element
in the domain. The interpretation is still straightforward, however: if (x,y) ∈ Behaviors,
then input sequence x may produce output sequence y.

3.4 Simulation relations

Two different state machines with the same input and output alphabets may be equivalent
in the sense that for the same input sequence, they produce the same output sequence. We
explore this concept of equivalence in this section.

Example 3.9: The three state machines in Figure 3.7, have the same input and
output alphabets:

Inputs = {1,absent} and Outputs = {0,1,absent}.

Machine (a) has the most states. However, its behavior is identical to that of (b).
Both machines produce an alternating sequence of two 1’s and one 0 as they receive
a sequence of 1’s at the input. The machine in (c) is non-deterministic. It has more
behaviors than (a) or (b): it can produce any sequence that has at least one 1 between
any two zero’s. Thus (c) is more general, or more abstract than the machines (a) or
(b).

112 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


3. STATE MACHINES

To study the relationships between the machines in Figure 3.7 we introduce the concept of
simulation. The machine in (c) is said to simulate (b) and (a). Simulation can be viewed
as a form of abstraction of state machines.

Example 3.10: In Figure 3.6, the bottom machine can generate any output se-
quence that the top machine generates, for the same input sequence. The reverse is
not true; there are output sequences that the bottom machine can generate that the
top machine cannot. The bottom machine is an abstraction of the top one. We will
see that the bottom machine simulates the top machine (but not vice versa).

To understand simulation, it is easiest to consider a matching game between one machine
X and another Y . We wish to determine whether Y simulates X . If it does, Y may be
equivalent to X , or it may be an abstraction of X .

The game starts with both machines in their initial states. The first machine X is allowed
to react to an input symbol. If this machine is nondeterministic, it may have more than
one possible reaction; it is permitted to choose any one of these reactions. The second
machine Y must react to the same input symbol such that it produces the same output
symbol. If it is non-deterministic, it is free to pick, from among the possible reactions,
any one that matches the output symbol of machine X that will permit it to continue
to match the output symbols of machine X in future reactions. Machine Y “wins” this
matching game (it simulates X) if it can always match the output symbol of machine X .
We then say that machine Y simulates X . If X can produce an output symbol that Y cannot
match, then Y does not simulate X .

Example 3.11: We wish to determine whether (c) simulates (b) in figure 3.7. The
game starts with the two machines in their initial states, which we jointly denote by
the pair

s0 = (0and3,0) ∈ Statesb×Statesc.

Machine (b) (the one being simulated) moves first. Given an input symbol, it reacts.
If it is nondeterministic, then it is free to react in any way possible, although in this
case, (b) is deterministic, so it will have only one possible reaction. Machine (c)
then has to match the move taken by (b); given the same input symbol, it must
react such that it produces the same output symbol.

Lee & Varaiya, Signals and Systems 113

http://LeeVaraiya.org


3.4. SIMULATION RELATIONS

There are two possible input symbols to machine (b), 1 and absent. If the input
symbol is absent, the machine reacts by stuttering. Machine (c) can match this by
stuttering as well. For this example, it will always do to match stuttering moves by
stuttering, so we will not consider them further.

Excluding the stuttering input symbol, there is only one possible input symbol to
machine (b), 1. The machine reacts by producing the output symbol 1 and changing
to state 1and4. Machine (c) can match this by taking the only possible transition
out of its current state, which also produces output symbol 1. The resulting states
of the two machines are denoted

s1 = (1and4,1to5) ∈ Statesb×Statesc.

From here, again there is only one non-stuttering input symbol possible, so (b) re-
acts by moving to 2and5 and producing the output symbol 1. Now (c) has two
choices, but in order to match (b), it chooses the (self-loop) transition, which pro-
duces 1. The resulting states are

s2 = (2and5,1to5) ∈ Statesb×Statesc.

From here, (b) reacts to the non-stuttering input symbol by moving to 0and3 and
producing output symbol 0. To match this move, (c) selects the transition that
moves the state to 0, producing 0. The resulting states are s0, back to where we
started. So we know that (c) can always match (b).

The “winning” strategy of the second machine can be summarized by the set

Sb,c = {s0,s1,s2} ⊂ Statesb×Statesc.

The set Sb,c in this example is called a simulation relation; it shows how (c) simulates (b).
A simulation relation associates states of the two machines. Suppose we have two state
machines, X and Y , which may be deterministic or nondeterministic. Let

X = (StatesX , Inputs,Outputs,possibleUpdatesX , initialStateX),

and

Y = (StatesY , Inputs,Outputs,possibleUpdatesY , initialStateY ).

114 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


3. STATE MACHINES

The two machines have the same input and output alphabets. If either machine is deter-
ministic, then its possibleUpdates function always returns a set with only one element in
it.

If Y simulates X , the simulation relation is given as a subset of StatesX × StatesY . Note
the ordering here; the machine that moves first in the game, X , the one being simulated,
is first in StatesX ×StatesY .

To consider the reverse scenario, if X simulates Y , then the relation is given as a subset of
StatesY ×StatesX . In this version of the game Y must move first.

We can state the “winning” strategy mathematically. We say that Y simulates X if there
is a subset S⊂ StatesX ×StatesY such that

1. (initialStateX , initialStateY ) ∈ S, and

2. If (sX(n),sY (n)) ∈ S, then ∀ x(n) ∈ Inputs, and
∀ (sX(n+1),yX(n)) ∈ possibleUpdatesX(sX(n),x(n)),
there is a (sY (n+1),yY (n)) ∈ possibleUpdatesY (sY (n),x(n)) such that:

(a) (sX(n+1),sY (n+1)) ∈ S, and
(b) yX(n) = yY (n).

This set S, if it exists, is called the simulation relation. It establishes a correspondence
between states in the two machines.

Example 3.12: Consider again the state machines in Figure 3.7. The machine in
(b) simulates the one in (a). The simulation relation is a subset

Sa,b ⊂ {0,1,2,3,4,5}×{0and3,1and4,2and5}.

The names of the states in (b) (which are arbitrary) are suggestive of the appropriate
simulation relation. Specifically,

Sa,b = {(0,0and3),(1,1and4),(2,2and5),

(3,0and3),(4,1and4),(5,2and5)}.

The first condition of a simulation relation, that the initial states match, is satisfied
because (0,0and3)∈ Sa,b. The second condition can be tested by playing the game,
starting in each pair of states in Sa,b.

Lee & Varaiya, Signals and Systems 115

http://LeeVaraiya.org


3.4. SIMULATION RELATIONS

Start with the two machines in one pair of states in Sa,b, such as the initial states
(0,0and3). Then consider the moves that machine (a) can make in a reaction.
Ignoring stuttering, if we start with (0,0and3), (a) must move to state 1 (given
input 1). Given the same input symbol, can (b) match the move? To match the
move, it must react to the same input symbol, produce the same output symbol, and
move to a state so that the new state of (a) paired with the new state of (b) is in Sa,b.
Indeed, given input symbol 1, (b) produces output symbol 1, and moves to state
1and4 which is matched to state 1 of (a).

It is easy (albeit somewhat tedious to do by hand) to check that this matching can
be done from any starting point in Sa,b.

This example shows how to use the game to check that a particular subset of StatesX ×
StatesY is a simulation relation. Thus, the game can be used either to construct a simula-
tion relation or to check whether a particular set is a simulation relation.

For the machines in Figure 3.7, we have shown that (c) simulates (b) and that (b) sim-
ulates (a). Simulation is transitive, meaning that we can immediately conclude that (c)
simulates (a). In particular, if we are given simulation relations Sa,b ⊂ Statesa× Statesb
((b) simulates (a)) and Sb,c ⊂ Statesb×Statesc ((c) simulates (b)), then

Sa,c = {(sa,sc) ∈ Statesa×Statesc | there exists sb ∈ Sb where
(sa,sb) ∈ Sa,b and (sb,sc) ∈ Sb,c} (3.12)

is a simulation relation showing that (c) simulates (a).

Example 3.13: For the examples in Figure 3.7, we have already determined that

Sa,b = {(0,0and3),(1,1and4),(2,2and5),

(3,0and3),(4,1and4),(5,2and5)}.
and

Sb,c = {(0and3,0),(1and4,1to5),(2and5,1to5)}.
From (3.12) we can conclude that

Sa,c = {(0,0),(1,1to5),(2,1to5),(3,0),(4,1to5),(5,1to5)},
which further supports the suggestive choices of state names.

116 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


3. STATE MACHINES

Simulation relations are not (necessarily) symmetric.

Example 3.14: For the examples in Figure 3.7, (b) does not simulate (c). To see
this, we can attempt to construct a simulation relation by playing the game. Starting
in the initial states,

s0 = (0and3,0),

we allow (c) to move first. Presented with a nonstuttering input symbol, 1, it pro-
duces 1 and moves to 1to5. Machine (b) can match this by producing 1 and moving
to 1and4. But from state 1to5, (c) can now produce 0 with input symbol 1, which
(b) cannot match. Thus, the game gets stuck, and we fail to construct a simulation
relation.

Consider another example, one that illustrates that there may be more than one simulation
relation between two machines.

Example 3.15: In Figure 3.8, it is easy to check that (c) simulates (a) and (b). We
now verify that (b) simulates (a) and also (a) simulates (b) by determining that not
only can (b) match any move (a) makes, but (a) can also match any move (b) makes.
Note that (a) is nondeterministic, and in two of its states it has two distinct ways of
matching the moves of (b). It can arbitrarily choose from among these possibilities
to match the moves of (b).

If from state 1 it always chooses to return to state 0, then the simulation relation is

Sb,a = {(0and2,0),(1and3,1)}.

Otherwise, if from state 2 it always chooses to return to state 1, then the simulation
relation is

Sb,a = {(0and2,0),(1and3,1),(0and2,2)}.
Otherwise, the simulation relation is

Sb,a = {(0and2,0),(1and3,1),(0and2,2),(1and3,3)}.

All three are valid simulation relations. Thus, the simulation relation is not unique.

Lee & Varaiya, Signals and Systems 117

http://LeeVaraiya.org


3.4. SIMULATION RELATIONS

A common use of simulation is to establish a relationship between a more abstract model
and a more detailed model. In the example above, (c) is a more abstract model of either
(b) or (a). It is more abstract in the sense that it loses detail. For example, it has lost the
property that 0’s and 1’s alternate in the output sequence. We now give a more compelling
example of such abstraction, where the abstraction dramatically reduces the number of
states while still preserving some properties of interest.

Example 3.16: In the case of the parking meter, the bottom machine in Figure
3.6 simulates the top machine. Let A denote the top machine, and let B denote the
bottom machine. We will now identify the simulation relation.

The simulation relation is a subset S⊂ {0,1, · · · ,60}×{0,1,more}. It is intuitively
clear that 0 and 1 of the bottom machine correspond to 0 and 1, respectively, of the
top machine. Thus, (0,0) ∈ S and (1,1) ∈ S. It is also intuitive that more corre-
sponds to all of the remaining states 2, · · ·60 of the top machine. So we propose to
define the simulation relation as

S = {(0,0),(1,1)}∪{(sA,more) | 2≤ sA ≤ 60} (3.13)

We now check that S is indeed a simulation relation, as defined above.

The first condition of a simulation relation, that the initial states match, is satisfied
because (0,0) ∈ S. The second condition is more tedious to verify. It says that for
each pair of states in S, and for each input symbol, the two machines can transition
to a pair of new states that is also in S, and that these two transitions produce the
same output symbol. Since machine A is deterministic, there is no choice about
which transition it takes and which output symbol it produces. In machine B, there
are choices, but all we require is that one of the choices match.

The only state of machine B that actually offers choices is more. Upon receiving
tick, the machine can transition back to more or down to 1. In either case, the output
symbol is safe. It is easy to see that these two choices are sufficient for state more
to match states 2,3, ...60 of machine A.

Thus the bottom machine indeed simulates the top machine with the simulation
relation (3.13).

118 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


3. STATE MACHINES

3.4.1 Relating behaviors

A simulation relation establishes a correspondence between two state machines, one of
which is typically much simpler than the other. The relation lends confidence that analyz-
ing the simpler machine indeed reveals properties of the more complicated machine.

This confidence rests on a theorem and corollary that we will develop in this section.
These results relate the input/output behaviors of state machines that are related by simu-
lation.

Given an input sequence x = (x(0),x(1),x(2), · · ·), if a state machine can produce the
output sequence y = (y(0),y(1),y(2), · · ·), then (x,y) is said to be a behavior of the state
machine. The set of all behaviors of a state machine obviously satisfies

Behaviors⊂ InputSignals×OutputSignals.

Theorem Let B simulate A. Then

BehaviorsA ⊂ BehaviorsB.

This theorem is easy to prove. Consider a behavior (x,y) ∈ BehaviorsA. We need to show
that (x,y) ∈ BehaviorsB.

Let the simulation relation be S. Find all possible state responses for A

sA = (sA(0),sA(1), · · ·)

that result in behavior (x,y). (If A is deterministic, then there will be only one.) The
simulation relation assures us that we can find a state response for B

sB = (sB(0),sB(1), · · ·)

where (sA(i),sB(i)) ∈ S, such that given input symbol x, B produces y. Thus, (x,y) ∈
BehaviorsB.

Intuitively, the theorem simply states that B can match every move of A and produce
the same output sequence. It also implies that if B cannot produce a particular output
sequence, then neither can A. This is stated formally in the following corollary.

Corollary Let B simulate A. Then if

(x,y) /∈ BehaviorsB

Lee & Varaiya, Signals and Systems 119

http://LeeVaraiya.org


3.4. SIMULATION RELATIONS

then
(x,y) /∈ BehaviorsA.

The theorem and corollary are useful for analysis. The general approach is as follows.
We have a state machine A. We wish to show that its input-output function satisfies
some property. That is, every behavior satisfies some condition. We construct a simpler
machine B whose input-output relation satisfies the same property, and where B simulates
A. Then the theorem guarantees that A will satisfy this property, too. That is, since all
behaviors of B satisfy the property, all behaviors of A must also. This technique is useful
since it is often easier to understand a simple state machine than a complex state machine
with many states.

Conversely, if there is some property that we must assure that no behavior of A has, it is
sufficient to find a simpler machine B which simulates A and does not have this property.
This scenario is typical of a safety problem, where we must show that dangerous outputs
from our system are not possible.

Example 3.17: For the parking meter of Figure 3.6, for example, we can use the
nondeterministic machine to show that if a coin is inserted at step n, the output
symbol at steps n and n+1 is safe. By the corollary, this is sufficient to show that
the deterministic machine cannot do any differently. We do not have to directly
consider the deterministic machine.

It is important to understand what the theorem says, and what it does not say. It does
not say, for example, that if BehaviorsA ⊂ BehaviorsB then B simulates A. In fact, this
statement is not true. Consider the two machines in Figure 3.9, where

Inputs = {1,absent},

Outputs = {0,1,absent}.

These two machines have the same behaviors. The non-stuttering output symbols are
(1,0) or (1,1), selected nondeterministically, assuming the input sequence has at least
two non-stuttering symbols. However, (b) does not simulate (a). The two machines are
not equivalent despite the fact that their input/output behaviors are the same.

120 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


3. STATE MACHINES

To see this, we play the matching game. Machine (a) is allowed to move first. Ignoring
stuttering, it has no choice but to move from a to b and produce output symbol 1. Machine
(b) can match this two ways; it has no basis upon which to prefer one way to match it over
another, so it picks one, say moving to state f . Now it is the turn of machine (a), which
has two choices. If it choses to move to d, then machine (b) cannot match its move. (A
similar argument works if (b) picks state h.) Thus, machine (b) does not simulate machine
(a), despite the fact that BehaviorsA ⊂ BehaviorsB.2

3.5 Summary

State machines are models of systems whose input and output signal spaces consist of se-
quences of symbols. There are three ways of defining state machines: sets and functions,
state transition diagram, and the update table. The state machine model gives a step-by-
step procedure for evaluating the output signal. This is a state-determined system: once
we know the current state, we can tell the future behavior for any future input symbols.

A state machine can be non-deterministic: given the current state and current input sym-
bol, it may have more than one possible next state and current output symbol. Non-
determistic machines typically arise through abstraction of deterministic machines. Two
state machines, with the same input and output alphabets, may be related through simula-
tion. Simulation is used to understand properties of the behavior of one machine in terms
of the behaviors of another (presumably simpler) machine.

2Recall that in our notation ⊂ allows the two sets to be equal.

Lee & Varaiya, Signals and Systems 121

http://LeeVaraiya.org


3.5. SUMMARY

inputs

ring - incoming ringing signal
offhook - a telephone extension is picked up
end greeting - greeting message is finished playing
end message - end of message detected (e.g. dialtone)
absent - no input of interest.

outputs

answer - answer the phone and start the greeting message
record - start recording the incoming message
recorded- recorded an incoming message
absent - default output when there is nothing interesting to say

idle

count1 count2{ring }

{ring }

{ring } /answer

else

else

play
greeting

{end greeting } /recordrecord
ing

{end message, offhook } /recorded

else

else

else

states

idle: nothing is happening
count1: one ring has arrived
count2: two rings have arrived
play greeting: playing the greeting message
recording : recording the message

{absent}

{absent}

{absent}

{absent}

Figure 3.1: State transition diagram for a telephone answering service.

122 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


3. STATE MACHINES

state

guard1/output1

guard2/output2

else

initial state indicator

-0.2in

-0.2in

state machine:
(States, Inputs,Outputs,update, initialState)
update : States× Inputs→ States×Outputs
initialState ∈ States

elements:
state ∈ States
output1,output2 ∈ Outputs
guard1,guard2⊂ Inputs
else = {i ∈ Inputs | i /∈ (guard1∪guard2)}
determinacy: (There is at most one possible reaction to an input symbol)
guard1∩guard2 = /0

-0.2in

Figure 3.2: Summary of notation in state transition diagrams, shown for a single
state with two outgoing arcs and one self loop.

Lee & Varaiya, Signals and Systems 123

http://LeeVaraiya.org


3.5. SUMMARY

current (next state, output symbol) under specified input symbol
state ring offhook end greeting end message absent
idle (count1, (idle, (idle, (idle, (idle,

absent) absent) absent) absent) absent)
count1 (count2, (idle, (idle, (idle, (count1,

absent) absent) absent) absent) absent)
count2 (play greeting, (idle, (idle, (idle, (count2,

answer) absent) absent) absent) absent)
play greeting (idle, (idle, (recording, (idle, (play greeting,

absent) absent) record) absent) absent)
recording (idle, (idle, (idle, (idle, (recording,

absent) recorded) absent) recorded) absent)

Figure 3.3: Update table for the telephone answering service specifies next state
and current output symbol as a function of current state and current input symbol.

start 1 11

{1} {1}

{0}
{0}

110
{0}/recognize

{1}

{0}

{1}

Figure 3.4: A machine that implements CodeRecognizer . It outputs recognize at
the end of every input subsequence 1100, otherwise it outputs absent .

124 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


3. STATE MACHINES

a b 

{1}/1 

{0}/0 

{0,1}/1 
{0}/0 

Figure 3.5: A simple nondeterministic state machine.

0 1

{coin5}/safe

{tick}/expired

5

{tick}/
expired

{tick}/safe

...

{coin5}/safe

... 25

{tick}/safe

{coin25}/safe {coin25}/safe

60

{tick}/safe

...

{coin5,
coin25}/

safe
{coin5}/

safe

{coin25}
/safe

{coin5}
/safe

0

{tick}/
expired

1

{tick}/expired

more

{tick}/safe

{coin5, coin25} / safe

{coin5, coin25} /
safe

{coin5, coin25, tick} /
safe

(a)

(b)

Figure 3.6: Deterministic and nondeterministic models for a 60 minute parking
meter.

Lee & Varaiya, Signals and Systems 125

http://LeeVaraiya.org


3.5. SUMMARY

{1}/1

{1}/1

{1}/0

{1}/1

{1}/1

{1}/0

0

1

2

3

45

0and3

1and4

2and5
{1}/0

{1}/1

{1}/1

{1}/1

{1}/0

{1}/10 1to5

(a)

(b)
(c)

Figure 3.7: Three state machines where (a) and (b) simulate one another and (c)
simulates (a) and (b).

126 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


3. STATE MACHINES

0 1

{1}/0

{1}/1

2

{1}/1

{1}/0

3

{1}/0

{1}/1

0and2 1and3

{1}/0

{1}/1

(a)

(b)

0to3

(c)

{1}/0

{1}/1

Figure 3.8: Three state machines where (a) and (b) simulate each other and (c)
simulates (a) and (b)

Lee & Varaiya, Signals and Systems 127

http://LeeVaraiya.org


3.5. SUMMARY

a b

c

d

{1} / 1

{1} / 1

{1} / 0

(a)

g

e

f

h

{1} / 1

{1} / 1

(b)

{1} / 1

i
{1} / 0

Figure 3.9: Two state machines with the same behaviors where (b) does not
simulate (a).

128 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


3. STATE MACHINES

Exercises

In some of the following exercises you are asked to design state machines that carry
out a given task. The design is simple and elegant if the state space is properly chosen.
Although the state space is not unique, there often is a natural choice. As usual, each
problem is annotated with the letter E, T, C which stands for exercise, requires some
thought, requires some conceptualization. Problems labeled E are usually mechanical,
those labeled T require a plan of attack, those labeled C usually have more than one
defensible answer.

1. E A state machine with

Inputs = {a,b,c,d,absent},
has a state s with two emerging arcs with guards

guard1 = {a}
and

guard2 = {a,b,d}.

(a) Is this state machine deterministic?
(b) Define the set else for state s and specify the source and destination state for

the else arc.

2. E For the answering service example of figure 3.1, assume the input sequence is

(offhook,offhook,ring,offhook,ring,ring,ring,offhook, · · ·).
This corresponds to a user of the answering service making two phone calls, an-
swering a third after the first ring, and answering a second after the third ring.

(a) Give the state response of the answering service.
(b) Give the trace of the answering service.
(c) Give the output sequence.

3. E Consider the alphabets

Inputs = Outputs = Binary = {0,1}.
Note that there is no stuttering input or output symbols here. This simplifies the
notation in the problem somewhat.

Lee & Varaiya, Signals and Systems 129

http://LeeVaraiya.org


EXERCISES

(a) Construct a state machine that uses these alphabets such that given any input
sequence (x(0),x(1), · · ·) without stuttering symbols, the output sequence is
given by, ∀ n ∈ N0,

y(n) =
{

1 if n≥ 2∧ (x(n−2),x(n−1),x(n)) = (1,1,1)
0 otherwise

In words, the machine outputs 1 if the current input symbol and the two pre-
vious input symbols are all 1’s, otherwise it outputs 0. (Had we included a
stuttering symbol, the above equation would be a bit more complicated.)

(b) For the same input and output alphabet, construct a state machine that out-
puts 1 if the current input symbol and two previous input symbols are either
(1,1,1) or (1,0,1), and otherwise it outputs 0.

4. E A modulo N counter is a device that can output any integer between 0 and
N−1. The device has three input symbols, increment, decrement, and reset, plus,
as always, a stuttering symbol absent; increment increases the output integer by 1;
decrement decreases this integer by 1; and reset sets the output symbol to 0. Here
increment and decrement are modulo N operations. Unless otherwise stated, you
may assume that the counter begins at 0.

Note: Modulo N numbers work as follows. For any integer m, m mod N = k where
0≤ k≤N−1 is the unique integer such that N divides (m−k). Thus there are only
N distinct modulo-N numbers, namely, 0, · · · ,N−1.

(a) Give the state transition diagram of this counter for N = 4.
(b) Give the update table of this counter for N = 4.
(c) Give a description of the state machine by specifying the five entities that

appear in (3.1); again assume N = 4.
(d) Take N = 3. Calculate the state response for the input sequence

(increment4,decrement3, · · ·)
starting with initial state 1, where sn means s repeated n times. You may give
the state response for the first seven reactions only.

5. T The state machine UnitDelay is defined to behave as follows. On the first non-
stuttering reaction (when the first non-stuttering input symbol arrives), the output
symbol a is produced. On subsequent reactions (when subsequent input symbols
arrive), the input symbol that arrived at the previous non-stuttering reaction is pro-
duced as an output symbol.

130 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


3. STATE MACHINES

(a) Assume the input and output alphabets are

Inputs = Outputs = {a,b,c,absent}.
Give a finite state machine that implements UnitDelay for this input set. Give
both a state transition diagram and a definition of each of the components in
(3.1).

(b) Assume the input and output sets are

Inputs = Outputs = N0∪{absent},
and that on the first non-stuttering reaction, the machine produces 0 instead
of a. Give an (informal) argument that no finite state machine can implement
UnitDelay for this input set. Give an infinite state machine by defining each
of the components in (3.1).

6. T Construct an infinite state machine that realizes Equal.

7. C An elevator connects two floors, 1 and 2. It can go up (if it is on floor 1), down
(if it is on floor 2) and stop on either floor. Passengers at any floor may press a
button requesting service. Design a controller for the elevator so that (1) every
request is served, and (2) if there is no pending request, the elevator is stopped.
For simplicity, do not be concerned about responding to requests from passengers
inside the elevator.

8. T The state machine in Figure 3.10 has the property that it outputs at least one
1 between any two 0’s. Construct a two-state nondeterministic state machine that
simulates this one and preserves that property.

0 1 

{1}/ 0 

{0}/ 1 

2 

{1}/ 1 

{0}/ 1 

3 

{1}/ 1 

{0}/ 1 

{1}/ 1 
{0}/ 1 

Figure 3.10: Machine that outputs at least one 1 between any two 0’s.

Lee & Varaiya, Signals and Systems 131

http://LeeVaraiya.org


EXERCISES

9. T For the nondeterministic state machine in Figure 3.11 the input and output al-
phabets are

Inputs = Outputs = {0,1,absent}.

(a) Define the possibleUpdates function (3.9) for this state machine.

(b) Define the relation Behaviors in (3.11) for this state machine. Part of the chal-
lenge here is to find a way to describe this relation compactly. For simplicity,
ignore stuttering; i.e. assume the input symbol is never absent.

10. E The state machine in Figure 3.12 implements CodeRecognizer, but has more
states than the one in Figure 3.4. Show that the two machines simulate each other
by giving simulation relations.

11. E The state machine in Figure 3.13 has input and output alphabets

Inputs = {1,a},

Outputs = {0,1,a},
where a (short for absent) is the stuttering symbol. State whether each of the fol-
lowing is in the set Behaviors for this machine. In each of the following, the ellipsis

A 

B 
{1}/1 

{1}/0 

{0,1}/1

C

{0,1}/0

{0}/0 

 

Figure 3.11: Nondeterministic state machine for Exercise 9.

132 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


3. STATE MACHINES

“· · ·” means that the last symbol is repeated forever. Also, in each case, the input
and output signals are given as sequences.

(a) ((1,1,1,1,1, · · ·),(0,1,1,0,0, · · ·))

start 1 11

{1} {1}

{0}
{0}

110

{0}/recognize

1100

{0}

{1}

{1}

{0}

{1}

Figure 3.12: A machine that implements CodeRecognizer , but has more states
than the one in Figure 3.4.

a b
{1} / 0

c
{1} / 0

{1} /  1

Figure 3.13: State machine for problem 11.

Lee & Varaiya, Signals and Systems 133

http://LeeVaraiya.org


EXERCISES

(b) ((1,1,1,1,1, · · ·),(0,1,1,0,a, · · ·))
(c) ((a,1,a,1,a, · · ·),(a,1,a,0,a, · · ·))
(d) ((1,1,1,1,1, · · ·),(0,0,a,a,a, · · ·))
(e) ((1,1,1,1,1, · · ·),(0,a,0,a,a, · · ·))

12. E The state machine in Figure 3.14 has

Inputs = {1,absent},

Outputs = {0,1,absent}.

Find a state machine with only two states that simulates the one in Figure 3.14 and
that is simulated by the one in Figure 3.14, and give the simulation relations.

13. E You are told that state machine A has

Inputs = {1,2,absent},

Outputs = {1,2,absent},

States = {a,b,c,d}.

but you are told nothing further. Do you have enough information to construct a
state machine B that simulates A? If so, give such a state machine, and the simula-
tion relation.

a

b

d

{1} / 1

c

{1} / 0

{1} / 1{1} / 0

Figure 3.14: A machine that has more states than it needs.

134 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


3. STATE MACHINES

14. E Construct a state machine with Inputs = {0,1,absent}, Outputs = {r,absent},
that outputs r whenever the input signal (without stuttering symbols) contains the
sequence (0,0,0), otherwise it outputs absent. More precisely, if x=(x(0),x(1), · · ·)
is the input sequence then y = (y(0),y(1), · · ·) is the output sequence, where

y(n) =
{

r, if (x(n−2),x(n−1),x(n)) = (0,0,0)
absent otherwise

15. T Consider a state machine where

Inputs = {1,absent},

Outputs = {0,1,absent},
States = {a,b,c,d,e, f},

initialState = a,

and the update function is given by the following table (ignoring stuttering):

(currentState, inputSymbol) (nextState,outputSymbol)
(a,1) (b,1)
(b,1) (c,0)
(c,1) (d,0)
(d,1) (e,1)
(e,1) ( f ,0)
( f ,1) (a,0)

(a) Draw the state transition diagram for this machine.

(b) Ignoring stuttering, give the Behaviors relation for this machine.

(c) Find a state machine with three states that simulates this one and that is simu-
lated by this one. Draw that state machine, and give the simulation relations.

Lee & Varaiya, Signals and Systems 135

http://LeeVaraiya.org


EXERCISES

136 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


4
Composing State Machines

Contents
4.1 Synchrony . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.2 Side-by-side composition . . . . . . . . . . . . . . . . . . . . . . . 139
4.3 Cascade composition . . . . . . . . . . . . . . . . . . . . . . . . . 143
4.4 Product-form inputs and outputs . . . . . . . . . . . . . . . . . . . 148
4.5 General feedforward composition . . . . . . . . . . . . . . . . . . 151
4.6 Hierarchical composition . . . . . . . . . . . . . . . . . . . . . . . 154
4.7 Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.7.1 Feedback composition with no inputs . . . . . . . . . . . . . 157
4.7.2 State-determined output . . . . . . . . . . . . . . . . . . . . 163
4.7.3 Feedback composition with inputs . . . . . . . . . . . . . . . 167
4.7.4 Constructive procedure for feedback composition . . . . . . . 171
4.7.5 Exhaustive search . . . . . . . . . . . . . . . . . . . . . . . . 175
4.7.6 Nondeterministic machines . . . . . . . . . . . . . . . . . . . 175
Probing Further: Constructive Semantics . . . . . . . . . . . . . . . 176

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

We design interesting systems by composing simpler components. Since systems are
functions, their composition is function composition, as discussed in Section 2.1.5. State
machines, however, are not given directly as functions that map input sequences into
output sequences. Instead, they are given procedurally, where the update function defines

137



4.1. SYNCHRONY

how to progress from one state to the next. This chapter explains how to define a new
state machine that describes a composition of multiple state machines.

In Section 2.3.4 we used a block diagram syntax to define compositions of systems. We
will use the same syntax here, and we will similarly build up an understanding of compo-
sition by first considering easy cases. The hardest cases are those where there is feedback,
because the input of one state machine may depend on its own output. It is challenging
in this case to come up with a procedure for updating the state of the composite machine.
For some compositions, in fact, it isn’t even possible. Such compositions are said to be
ill-formed.

4.1 Synchrony

We consider a set of interconnected components, where each component is a state ma-
chine. By “interconnected” we mean that the outputs of one component may be inputs
of another. We wish to construct a state machine model for the composition of compo-
nents. Composition has two aspects. The first aspect is straightforward: it specifies which
outputs of one component are the inputs of another component. These input-output con-
nections are specified using block diagrams.

The second aspect of composition concerns the timing relationships between inputs and
outputs. We choose a particular style of composition called synchrony. This style dictates
that each state machine in the composition reacts simultaneously and instantaneously. So
a reaction of the composite machine consists of a set of simultaneous reactions of each of
the component machines.

A reaction of the composite machine is triggered by inputs from the environment. Thus,
when a reaction occurs is externally determined. This is the same as for a single machine.
As with a single state machine, a composite machine may stutter. This simply means that
each component machine stutters.

A system that reacts only in response to external stimulus is said to be reactive. Because
our compositions are synchronous, they are often called synchronous/reactive systems.

The reactions of the component machines and of the composite machine are viewed as
being instantaneous. That is, a reaction does not take time. In particular, the output sym-
bol from a state machine is viewed as being simultaneous with the input symbol, without
delay. This creates some interesting subtleties, especially for feedback composition when

138 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


4. COMPOSING STATE MACHINES

the input of a state machine is connected to its own output. We will discuss the ramifica-
tions of the synchronous/reactive interpretation below.

Synchrony is a very useful model of the behavior of physical systems. Digital circuits,
for example, are almost always designed using this model. Circuit elements are viewed
as taking no time to calculate their outputs given their inputs, and time overall is viewed
as progressing in a sequence of discrete time steps according to ticks of a clock. Of
course, the time that it takes for a circuit element to produce an output cannot ultimately
be ignored, but the model is useful because for most circuit elements in a complex design,
this time can be ignored. Only the time delay of the circuit elements along a critical path
affects the overall performance of the circuit.

More recently than for circuits, synchrony has come to be used in software as well. Con-
current software modules interact according to the synchronous model. Languages built
on this principle are called synchronous languages. They are used primarily in real-time
embedded system1 design.

4.2 Side-by-side composition

A simple form of composition of two state machines is shown in figure 4.1. We call this
side-by-side composition. Side-by-side composition in itself is not useful, but it is useful
in combination with other types of composition. The two state machines in Figure 4.1
do not interact with one another. Nonetheless we wish to define a single state machine
representing the synchronous operation of the two component state machines.

The state space of the composite state machine is simply

States = StatesA×StatesB.

We could take the cross product in the opposite order, resulting in a different but bisimilar
composite state machine. The initial state is

initialState = (initialStateA, initialStateB).

1An embedded system is a computing system (a computer and its software) that is embedded in a larger
system that is not first and foremost a computer. A digital cellular telephone, for example, contains computers
that realize the radio modem and the speech codec. Recent cars contain computers for ignition control, anti-
lock brakes, and traction control. Aircraft contain computers for navigation and flight control. In fact, most
modern electronic controllers of physical systems are realized as embedded systems.

Lee & Varaiya, Signals and Systems 139

http://LeeVaraiya.org


4.2. SIDE-BY-SIDE COMPOSITION

The input and output alphabets are

Inputs = InputsA× InputsB, (4.1)

Outputs = OutputsA×OutputsB. (4.2)

The update function of the composite machine, update, consists of the update functions
of the component machines, side-by-side:

((sA(n+1),sB(n+1)),(yA(n),yB(n))) = update((sA(n),sB(n)),(xA(n),xB(n))),

(StatesB, InputsB, OutputsB, updateB, initialStateB )

(StatesA, InputsA, OutputsA, updateA, initialStateA )

(States, Inputs, Outputs, update, initialState )

-0.2in

-0.2in

Definition of the side-by-side composite machine:
States = StatesA×StatesB

Inputs = InputsA× InputsB
Outputs = OutputsA×OutputsB
initialState = (initialStateA, initialStateB)
((sA(n+1),sB(n+1)),(yA(n),yB(n)))
= update((sA(n),sB(n)),(xA(n),xB(n))),

where

(sA(n+1),yA(n)) = updateA(sA(n),xA(n)) and
(sB(n+1),yB(n)) = updateB(sB(n),xB(n))

-0.2in

Figure 4.1: Summary of side-by-side composition of state machines.

140 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


4. COMPOSING STATE MACHINES

where
(sA(n+1),yA(n)) = updateA(sA(n),xA(n)),

and
(sB(n+1),yB(n)) = updateB(sB(n),xB(n)).

Recall that InputsA and InputsB include a stuttering element. This is convenient because it
allows a reaction of the composite when we really want only one of the machines to react.
Suppose the stuttering elements are absentA and absentB. Then if the second component
of the input symbol is absentB, the reaction of the composite consists only of the reaction
of the first machine. The stuttering element of the composite is the pair of stuttering
elements of the component machines, (absentA,absentB).

Example 4.1: The side-by-side composition in the top of Figure 4.2 has the com-
posite machine with state space

States = StatesA×StatesB = {(1,1),(2,1)},

and alphabets

Inputs = {(0,0),(1,0),(absentA,0),(0,absentB),(1,absentB),
(absentA,absentB)},

Outputs = {(a,c),(b,c),(absentA,c),(a,absentB),(b,absentB),
(absentA,absentB)}.

The initial state is
initialState = (1,1).

The update function can be given as a table, only a part of which is displayed below.
The state transition diagram in the lower part of Figure 4.2 gives the same part of
the update function.

current (next state, output) for input
state (0,0) (1,0) (absentA,0) · · ·
(1,1) ((1,1),(a,c)) ((2,1),(b,c)) ((1,1)((absentA,c)) · · ·
(2,1) ((2,1),(b,c)) ((1,1),(a,c)) ((2,1), ((absentA,c)) · · ·

Lee & Varaiya, Signals and Systems 141

http://LeeVaraiya.org


4.2. SIDE-BY-SIDE COMPOSITION

Notice that if the second component of the input sequence is always absentB, then
the side-by-side composition behaves essentially as machine A, and if the first com-

A

1 2

{1}/b {0}/ b{0}/ a

{1}/a

B

1

{0}/ c

{0, 1, absentA}

{0, absentB} {c, absentB}

A

(1,1) (2,1)
{(1,0)}/(b, c)

{(0,0)}/
(b, c)

{(0,0)}/
(a, c)

{(1,0)}/(a, c)

{(absentA, 0)}/
(absentA, c)

{(absentA, 0)}/
(absentA, c)

{(1,absentB)}/
(b, absentB)

{(1,absentB)}/
(a, absentB)

{0, 1, absentA}

{0, absentB}

{a, b, absentA}

{c, absentB}

{a, b, absentA}

Figure 4.2: Example of a side-by-side composition.

142 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


4. COMPOSING STATE MACHINES

ponent is always absentA, then it behaves as machine B. The stuttering element of
the composite is of course the pair (absentA,absentB).

4.3 Cascade composition

We now interconnect two state machines as shown in Figure 4.3, where the output of one
is the input of the other. This is called a cascade composition or a series connection. We
define the composition so that the component machines react together, synchronously, as
one state machine.

Suppose the two state machines are given by

StateMachineA = (StatesA, InputsA,OutputsA,updateA, initialStateA)

and
StateMachineB = (StatesB, InputsB,OutputsB,updateB, initialStateB).

Let the composition be given by

StateMachine = (States, Inputs,Outputs,update, initialState).

Clearly, for a composition like that in Figure 4.3 to be possible we must have

OutputsA ⊂ InputsB.

Then any output sequence produced by machine A can be an input sequence for machine
B. As a result,

OutputSignalsA ⊂ InputSignalsB.

This is analogous to a type constraint in programming languages, where in order for two
pieces of code to interact, they must use compatible data types. We encountered a similar
constraint in discussing function composition, Section 2.1.5.

We are ready to construct a state machine model for this series connection. As noted in
the figure, the input alphabet of the composite is

Inputs = InputsA.

Lee & Varaiya, Signals and Systems 143

http://LeeVaraiya.org


4.3. CASCADE COMPOSITION

The stuttering element of Inputs, of course, is just the stuttering element of InputsA. The
output alphabet of the composite is

Outputs = OutputsB.

(StatesB, InputsB, OutputsB, updateB, initialStateB )

(StatesA, InputsA, OutputsA, updateA, initialStateA )

(States, Inputs, Outputs, update, initialState )

-0.2in

-0.2in

Assumptions about the component machines:
OutputsA ⊂ InputsB

Definition of the cascade composite machine:
States = StatesA×StatesB

Inputs = InputsA
Outputs = OutputsB
initialState = (initialStateA, initialStateB)
((sA(n+1),sB(n+1)),yB(n)) = update((sA(n),sB(n)),x(n)),

where

(sA(n+1),yA(n)) = updateA(sA(n),x(n)) and
(sB(n+1),yB(n)) = updateB(sB(n),yA(n)).

-0.2in

Figure 4.3: Summary of cascade composition of state machines.

144 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


4. COMPOSING STATE MACHINES

The state space of the composite state machine is the product set

States = StatesA×StatesB. (4.3)

This asserts that the composite state machine is in state (sA(n),sB(n)) when the StateMachineA

is in state sA(n) and StateMachineB is in state sB(n). The initial state is

initialState = (initialStateA, initialStateB).

We could equally well have defined the states of the composite state machine in the op-
posite order,

States = StatesB×StatesA.

This would result in a different but bisimilar state machine description (either one simu-
lates the other). Intuitively, it does not matter which of these two choices we make, and
we choose (4.3).

To complete the description of the composite machine, we need to define its update func-
tion in terms of the component machines. Here, a slight subtlety arises. Since we are
using synchronous composition, the output symbol of machine A is simultaneous with
its input symbol. Thus, in a reaction, the output symbol of machine A in that reaction
must be available to machine B in the same reaction. This seems intuitive, but it has some
counterintuitive consequences. Although the reactions of machine A and B are simulta-
neous, we must determine the reaction of A before we can determine the reaction of B.
This apparent paradox is an intrinsic feature of synchronous composition. We will have to
deal with it carefully in feedback composition, where it is not immediately evident which
reactions need to be determined first.

In the cascade composition, it is intuitively clear what we need to do to define the update
function. We first determine the reaction of machine A. Suppose that at the n-th reaction
the input symbol is x(n) and the state is s(n) = (sA(n),sB(n)), where sA(n) is the state of
machine A and sB(n) is the state of machine B. Machine A reacts by updating its state to
sA(n+1) and producing output symbol yA(n),

(sA(n+1),yA(n)) = updateA(sA(n),x(n)). (4.4)

Its output symbol yA(n) becomes the input symbol to machine B. Machine B reacts by
updating its state to sB(n+1) and producing output symbol yB(n),

(sB(n+1),yB(n)) = updateB(sB(n),yA(n)). (4.5)

Lee & Varaiya, Signals and Systems 145

http://LeeVaraiya.org


4.3. CASCADE COMPOSITION

The output of the composite machine, of course, is just the output of machine B, and
the next state of the composite machine is just (sA(n+ 1),sB(n+ 1)), so the composite
machine’s update is

((sA(n+1),sB(n+1)),yB(n)) = update((sA(n),sB(n)),x(n)),

where sA(n+ 1), sB(n+ 1), and yB(n) are given by (4.4) and (4.5). The definition of the
composite machine is summarized in Figure 4.3.

Example 4.2: The cascade composition in Figure 4.4 has the composite machine
with state space

States = StatesA×StatesB = {(0,0),(0,1),(1,0),(1,1))}

A

0 1

{1}/1

{1}/0

{0}/0

{0,1,absent}

Inputs =
{0,1,absent}

Outputs={0,1,absent}

{0}/1

B

0 1

{1}/1

{0}/1

{0}/0 {1}/0

{0,0}

{1,1}

{1}/1

{1}/1

{0}/0

Inputs =
{0,1,absent}

{0}/0

Outputs={0,1,absent}

{1,0}
{1}/0

{0}/1
{0}/1

{1}/0
{0,1}

Figure 4.4: Example of a cascade composition. The composed state machine is
on the right.

146 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


4. COMPOSING STATE MACHINES

and alphabets
Inputs = Outputs = {0,1,absent}.

The initial state is
initialState = (0,0).

The update function is given by the table:

current (next state, output) for input
state 0 1 absent
(0,0) ((0,0),0) ((1,1),1) ((0,0), absent)
(0,1) ((0,0),1) ((1,1),0) ((0,1), absent)
(1,0) ((1,1),1) ((0,0),0) ((1,0), absent)
(1,1) ((1,1),0) ((0,0),1) ((1,1), absent)

The update function is also presented in the state transition diagram of Figure 4.4.
The self-loops corresponding to the stuttering input symbol absent are not shown
in the diagram.

Observe from the table or the diagram that states (0,1) and (1,0) are not reachable
from the initial state. A state s is said to be reachable if some sequence of input
symbols can take the state machine from the initial state to s. This suggests that a
simpler machine with fewer states would exhibit the same input/output behaviors.
In fact, notice from the table that the input is always equal to the output! A trivial
one-state machine can exhibit the same input/output behaviors. (Exercise 8 gives a
procedure for calculating the reachable states of an arbitrary state machine.)

The simple behavior of the composite machine is not immediately apparent from
Figure 4.4. We have to systematically construct the composite machine to derive
this simple behavior. In fact, this composite machine can be viewed as an encoder
and decoder, because the input bit sequence is encoded by a distinctly different
bit sequence (the intermediate signal in Figure 4.4), and then the second machine,
given the intermediate signal, reconstructs the original.

This particular encoder is known as a differential precoder. It is “differential” in
that when the input symbol is 0, the intermediate signal sample is unchanged from
the previous sample (whether it was 0 or 1), and when the input symbol is 1, the
sample is changed. Thus, the input symbol indicates change in the input with a 1,
and no change with a 0. Differential precoders are used when it is important that

Lee & Varaiya, Signals and Systems 147

http://LeeVaraiya.org


4.4. PRODUCT-FORM INPUTS AND OUTPUTS

the average number of 1’s and 0’s is the same, regardless of the input sequence that
is encoded.

4.4 Product-form inputs and outputs

In the state machine model of (3.1), at each step the environment selects one input symbol
to which the machine reacts and produces one output symbol. Sometimes we wish to
model the fact that some input values are selected by one part of the environment, while
other input values are simultaneously selected by another part. Also, some output values
are sent to one part of the environment, while other output values are simultaneously sent
to another part. The product-form composition permits these models.

The machine in Figure 4.5 is shown as a block with two distinct input and output arrows.
The figure suggests that the machine receives inputs from two sources and sends outputs
to two destinations. In the answering machine example of Chapter 3, for instance, the
end greeting input value might originate in a physically different piece of hardware in the
machine than the offhook value.

The distinct arrows into and out of a block are called ports. Each port has a set of values
called the port alphabet associated with it, as shown in figure 4.5. Each port alphabet
must include a stuttering element. The set Inputs of input values to the state machine
is the product of the input sets associated with the ports. Of course, the product can be
constructed in any order; each ordering results in a distinct (but bisimilar) state machine
model.

InputsB

InputsA
(States, Inputs, Outputs, update, initialState )

OutputsA

OutputsBInputs = InputsA × InputsB

Outputs = OutputsA × OutputsB

Figure 4.5: State machine with product-form inputs and outputs.

148 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


4. COMPOSING STATE MACHINES

In Figure 4.5 there are two input ports and two output ports. The upper input port can
present to the state machine any value in the alphabet InputsA, which includes absent, its
stuttering element. The lower port can present any value in the set InputsB, which also
includes absent. The input value actually presented to the state machine in a reaction is
taken from the set

Inputs = InputsA× InputsB.

The stuttering element for this alphabet is the pair (absent,absent). The output value
produced by a reaction is taken from the set

Outputs = OutputsA×OutputsB.

If the output of the n-th reaction is (yA(n),yB(n)), then the upper port shows yA(n) and the
lower port shows yB(n). These can now be separately presented as inputs to downstream
state machines. Again, the stuttering element is (absent,absent).

Example 4.3: The answering machine of Figure 3.1 has input alphabet

Inputs = {ring,offhook,end greeting,end message}.

In a typical realization of an answering machine, ring and offhook come from a sub-
system (often an ASIC, or application-specific integrated circuit) that interfaces
to the telephone line. The value end greeting comes from another subsystem, such
as a magnetic tape machine or digital audio storage device, that plays the answer
message. The value end message comes from a similar, but distinct, subsystem that
records incoming messages. So a more convenient model will show three separate
factors for the inputs, as in figure 4.6. That figure also shows the outputs in prod-
uct form, anticipating that the distinct output values will need to be sent to distinct
subsystems.

Several features distinguish the diagram in Figure 4.6 from that of Figure 3.1. Each
state except the idle state has acquired a self-loop labeled stutter, which is a name
for the guard

stutter = {(absent,absent,absent)}.
This self loop prevents the state machine from returning to the idle state (via the
else transition) when nothing interesting is happening on the inputs. Usually, there
will not be a reaction if nothing interesting is happening on the inputs, but because

Lee & Varaiya, Signals and Systems 149

http://LeeVaraiya.org


4.4. PRODUCT-FORM INPUTS AND OUTPUTS

of synchrony, this machine may be composed with others, and all machines have
to react at the same time. So if anything interesting is happening elsewhere in the
system, then this machine has to react even though nothing interesting is happening
here. Recall that such a reaction is called a stutter. The state does not change, and
the output symbol produced is the stuttering element of the output alphabet.

Each guard now consists of a set of triples, since the product-form input has three
components. The shorthand “(*, offhook, *)” on the arc from the record message

idle 

count1 

count2 

{( absent ,  ring ,  absent )} 
{( absent ,  ring ,  absent )} 

{( absent ,  ring ,  absent )}/ 
( answer ,  absent ,  absent ) 

else 

else 
play greeting 

{( end greeting , absent , absent )}/ 
( absent ,  absent ,  record ) 

record 
message 

else /( absent ,  recorded ,  absent ) 

else 

{(*, offhook ,*)} 

{ r
in

 g ,
  o

 ff h
 o o

 k ,
  a

 b s
 e n

 t }
 

{ e
 n d

   m
 e s

 s a
 g e

 ,  a
 b s

 e n
 t }

 

{ r
 e c

 o r
 d e

 d ,
  

a b
 s e

 n t
 } 

else 

{ e
 n d

   g
 r e

 e t
 i n

 g ,
  a

 b s
 e n

 t }
 

{ a
 n s

w
 e r

 ,  a
 b s

 e n
 t }

 
{ r

e c
 o r

 d ,
  a

 b s
 e n

 t }
 

stutter 

stutter 

stutter 

stutter 

NOTE :  stutter  = {( absent ,  absent ,  absent )} 

Figure 4.6: Answering machine with product-form inputs and outputs has three
input ports and three output ports.

150 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


4. COMPOSING STATE MACHINES

state to the idle state represents a set,

(∗,offhook,∗) = { (absent,offhook,absent),

(end greeting,offhook,absent),

(absent,offhook,end message),

(end greeting,offhook,end message)}.

The “*” is a don’t care or wildcard notation. Anything in its position will trigger
the guard.

Because there are three output ports, the output symbols are also triples, but most
of them are implicitly (absent,absent,absent).

4.5 General feedforward composition

Given that state machines can have product-form inputs and outputs, it is easy to construct
a composition of state machines that combines features of both the cascade composition
of Figure 4.3 and the side-by-side composition of Figure 4.1. An example is shown in

(StatesB, InputsB, OutputsB, updateB, initialStateB )

(StatesA, InputsA, OutputsA, updateA, initialStateA )

(States, Inputs, Outputs, update, initialState )

InputsA
OutputsA1

OutputsA2 ⊂ InputsB1

InputsB2
OutputsB

OutputsA2

Figure 4.7: More complex composition.

Lee & Varaiya, Signals and Systems 151

http://LeeVaraiya.org


4.5. GENERAL FEEDFORWARD COMPOSITION

Figure 4.7. In that figure,

OutputsA = OutputsA1×OutputsA2

InputsB = InputsB1× InputsB2.

Notice that the bottom port of machine A goes both to the output of the composite machine
and to the top port of machine B. Sending a value to multiple destinations like this is called
forking. In Exercise 1 at the end of this chapter you are asked to define the composite
machine for this example.

Example 4.4: We compose the answering machine of figure 4.6 with a playback
system, shown in Figure 4.8, which plays messages that have been recorded by
the answering machine. The playback system receives the recorded input symbol
from the answering machine whenever the answering machine is done recording
a message. Its task is to light an indicator that a message is pending, and to wait
for a user to press a play button on the answering machine to request that pending
messages be played back. When that button is pressed, all pending messages are
played back. When they are done being played back, then the indicator light is
turned off.

no
messages

message
pending

playing

{(recorded ,*,*)}/
(light on, absent)

{(*,play,*)}/
(absent, play messages)

{(*, *, done playing)}/
(light off, absent)

else

else

else

{recorded ,absent}

{play, absent}

{done playing, absent}

{light on, light off, absent}

{play messages, absent}

Figure 4.8: Playback system for composing with the answering machine.

152 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


4. COMPOSING STATE MACHINES

The composition is shown in Figure 4.9. The figure shows a number of other com-
ponents, not modeled as state machines, to help understand how everything works
in practice. These other components are shown as three-dimensional objects, to
emphasize their physicality. We have simplified the figure by omitting the absent
elements of all the sets. They are implicit.

A telephone line interface provides ring and offhook when these are detected. De-
tection of one of these can trigger a reaction of the composite machine. In fact, any
output symbol from any of the physical components can trigger a reaction of the
composite machine. When AnsweringMachine generates the answer output sym-

telephone
line

interface

greeting
playback device

light

play
button

message playback
device

{end greeting}

{ring, offhook}

{end message}

AnsweringMachine

{answer}

{recorded message}

Playback

{play}

{light on, light off}

{done  playing} {play messages}

recording device

{record}

Figure 4.9: Composition of an answering machine with a message playback ma-
chine. The three-dimensional boxes are physical components that are not mod-
eled as state machines. They are the sources of some inputs and the destinations
of some outputs.

Lee & Varaiya, Signals and Systems 153

http://LeeVaraiya.org


4.6. HIERARCHICAL COMPOSITION

bol, then the “greeting playback device” plays back the greeting. From the perspec-
tive of the state machine model, all that happens is that time passes (during which
some reactions may occur), and then an end greeting input symbol is received. The
recording device works similarly. When AnsweringMachine generates a recorded
output symbol, then the Playback machine will respond by lighting the indicator
light. When a user presses the play button the input symbol play is generated, the
composite machine reacts, and the Playback machine issues a play messages out-
put symbol to the “message playback device.” This device also allows time to pass,
then generates a done playing input symbol to the composite state machine.

If we wish to model the playback or recording subsystem in more detail using finite
state machines, then we need to be able to handle feedback compositions. These
are considered below.

4.6 Hierarchical composition

By using the compositions discussed above, we can now handle any interconnection of
state machines that does not have feedback. Consider for example the cascade of three
state machines shown in Figure 4.10. The composition techniques we have discussed so
far involved only two state machines. It is easy to generalize the composition in Figure
4.3 to handle three state machines (see Exercise 2), but a more systematic method might
be to apply the composition of Figure 4.3 to compose two of the state machines, and then
apply it again to compose the third state machine with the result of the first composition.
This is called hierarchical composition.

In general, given a collection of interconnected state machines, there are several ways
to hierarchically compose them. For example, in Figure 4.10, we could first compose
machines A and B to get, say, machine D, and then compose D with C. Alternatively, we
could first compose B and C to get, say, machine E, and then compose E and A. These
two procedures result in different but bisimilar state machine models (each simulates the
other).

154 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


4. COMPOSING STATE MACHINES

4.7 Feedback

In simple feedback systems, an output from a state machine is fed back as an input to the
same state machine. In more complicated feedback systems, several state machines might
be connected in a loop; the output of one eventually affects its own input through some
intervening state machines.

Feedback is a subtle form of composition in the synchronous model. In synchronous
composition, in a reaction, the output symbol of a state machine is simultaneous with the
input symbol. So the output symbol of a machine in feedback composition depends on an
input symbol that depends on its own output symbol!

We frequently encounter such situations in mathematics. A common problem is to find x
such that

x = f (x) (4.6)

(StatesB, InputsB, OutputsB, updateB, initialStateB )

(StatesA, InputsA, OutputsA, updateA, initialStateA )

(States, Inputs, Outputs, update, initialState )

(StatesC, InputsC, OutputsC, updateC, initialStateC )

Figure 4.10: Cascade composition of three state machines. They can be com-
posed in different ways into different, but bisimilar, state machines.

Lee & Varaiya, Signals and Systems 155

http://LeeVaraiya.org


4.7. FEEDBACK

f g
yx

Figure 4.11: Illustration of a fixed point problem.

for a given function f . A solution to this equation, if it exists, is called a fixed point in
mathematics. It is analogous to feedback because the ‘output’ f (x) of f is equal to its
‘input’ x, and vice versa. The top diagram in Figure 4.12 illustrates a similar relationship:
the state machine’s output symbol is the same as its (simultaneous) input symbol.

A more complicated problem, involving two equations, is to find x and y so that

x = f (y), and y = g(x).

The analogous feedback composition has two state machines in feedback, with the struc-
ture of Figure 4.11.2

A fixed-point equation like (4.6) may have no fixed point, a unique fixed point, or multiple
fixed points. Take for example the function f : R→ R where ∀x ∈ R, f (x) = 1+ x2. In
this case, (4.6) becomes x = 1+ x2, which has no fixed point in the reals. If f (x) = 1− x,
(4.6) becomes x = 1− x, which has a unique fixed point, x = 0.5. Lastly, if f (x) = x2,
(4.6) becomes x = x2, which has two fixed points, x = 0 and x = 1.

In the context of state machines, a feedback composition with no fixed point in some
reachable state is a defective design; we call such a composition ill-formed. We can not
evaluate an ill-formed composition. Usually, we also wish to exclude feedback composi-
tions that have more than one non-stuttering fixed point in some reachable state. So these
too are ill-formed. A feedback composition with a unique non-stuttering fixed point in all
reachable states is well-formed. Fortunately, it is easy to construct well-formed feedback
compositions, and they prove surprisingly useful. We explore this further, beginning with
a somewhat artificial case of feedback composition with no inputs.

2Figure 4.9 would be a feedback composition if any of the three recording or playback devices were
modeled as state machines. In the figure, however, these devices are part of the environment.

156 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


4. COMPOSING STATE MACHINES

4.7.1 Feedback composition with no inputs

The upper state machine in Figure 4.12 has an output port that feeds back to its input port.
We wish to construct a state machine model that hides the feedback, as suggested by the
figure. The result will be a state machine with no input. This does not fit our model, which
requires the environment to provide inputs to which the machine reacts. So we artificially
provide an input alphabet

Inputs = {react,absent},
as suggested in the lower machine in Figure 4.12. We interpret the input symbol react as
a command for the internal machine to react, and the input symbol absent as a command
for the internal machine to stutter. The output alphabet is

Outputs = OutputsA.

This is an odd example of a synchronous/reactive system because of the need for this
artificial input alphabet. Typically, however, such a system will be composed with others,
as suggested in Figure 4.13. That composition does have an external input. So the overall
composition, including the component with no external input, reacts whenever an external

(StatesA, InputsA, OutputsA, updateA, initialStateA )

(States, Inputs, Outputs, update, initialState )

OutputsA ⊂ InputsA

(StatesA, InputsA, OutputsA, updateA, initialStateA )

(States, Inputs, Outputs, update, initialState )

OutputsA ⊂ InputsA

{react, absent}

Figure 4.12: Feedback composition with no inputs.

Lee & Varaiya, Signals and Systems 157

http://LeeVaraiya.org


4.7. FEEDBACK

input symbol is presented, and there is no need for the artificial inputs. Of course when a
stuttering element is provided to the composite, all components stutter.

Although it is not typical, we first consider the example in Figure 4.12 because the for-
mulation of the composition is simplest. We will augment the model to allow inputs after
this.

In Figure 4.12, for the feedback connection to be possible, of course, we must have

OutputsA ⊂ InputsA.

Suppose the current state at the n-th reaction is s(n) ∈ StatesA. The problem is to find the
output symbol y(n) ∈ OutputsA. Since y(n) is also the input symbol, it must satisfy

(s(n+1),y(n)) = updateA(s(n),y(n)),

where s(n+ 1) is the next state. The difficulty here is that the “unknown” y(n) appears
on both sides. Once we find y(n), s(n+ 1) is immediately determined by the updateA
function. To simplify the discussion, we get rid of s(n+1) by working with the function

outputA : StatesA× InputsA→ OutputsA

This function gives the output symbol as a function of the current state and the current
input symbol, as we saw in Section 3.1.1. So our problem is: given the current state s(n)

(StatesA, InputsA, OutputsA, updateA, initialStateA )

(States, Inputs, Outputs, update, initialState )

OutputsA ⊂ InputsA

(StatesB, InputsB, OutputsB, updateB, initialStateB )

Figure 4.13: Feedback composition composed with another state machine.

158 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


4. COMPOSING STATE MACHINES

and the known function outputA, find y(n) such that

y(n) = outputA(s(n),y(n)). (4.7)

Here s(n) is a known constant, so the equation is of the form (4.6), and its solution, if it
exists, is a fixed point.

One solution that is always available is to stutter, i.e.,

y(n) = absent, (and then s(n+1) = s(n)),

since absent = outputA(s(n),absent), assuming that absent is the stuttering input symbol
for machine A. But this is not an interesting solution, since the state does not change. We
want to find a non-stuttering solution for y(n).

We say that the composition of Figure 4.12 is well-formed if for every reachable s(n) ∈
StatesA, there is a unique non-stuttering output symbol y(n) that solves (4.7); otherwise,
the composition is ill-formed. If the composition is well-formed, the composite machine
definition is:

States = StatesA

Inputs = {react,absent}
Outputs = OutputsA
initialState = initialStateA

update(s(n),x(n)) =



updateA(s(n),y(n)),
where y(n) 6= absent uniquely satisfies (4.7)
if x(n) = react

(s(n),x(n))
if x(n) = absent

Notice that the composite machine is defined only if the composition is well-formed, i.e.,
there is a unique y(n) that satisfies (4.7). If there is no such y(n), the composition is
ill-formed and the composite machine is not defined.

The next example illustrates the difference between well-formed and ill-formed compo-
sitions. It will suggest a procedure to solve (4.7) in the important special case of systems
with state-determined output.

Lee & Varaiya, Signals and Systems 159

http://LeeVaraiya.org


4.7. FEEDBACK

1 2

{false}/false

{true}/true

{true}/false {false}/true

(a)

(b)

(c)

1 2

{false}/false

{true}/false

{true}/false {false}/true

1 2

{false}/false

{true}/true

{true}/true {false}/false

Figure 4.14: Three examples of feedback composition. Examples (b) and (c)
are ill-formed. Composition (b) has no non-stuttering fixed point in state 2, while
composition (c) has two non-stuttering fixed points in either state.

160 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


4. COMPOSING STATE MACHINES

Example 4.5: Consider the three feedback compositions in Figure 4.14. In all
cases, the input and output alphabets of the component machines are

InputsA = OutputsA = {true, false,absent}.

The input alphabet to the composite machine is {react,absent}, as in Figure 4.12,
but we do not show this (to reduce clutter in the figure). We want to find a non-
stuttering solution y(n) of (4.7). Since the output symbol is also the input symbol,
we are looking for a non-stuttering input symbol.

Consider the top machine first. Suppose the current state is the initial state, s(n)= 1.
There are two outgoing arcs, and for a non-stuttering input symbol, both produce
y(n) = false, so we can conclude that the output symbol of the machine is false.
Since the output symbol is false, then the input symbol is also false, and the non-
stuttering fixed point of (4.7) is unique,

outputA(1, false) = false.

The state transition taken by the reaction goes from state 1 to state 2.

Suppose next that the current state is s(n) = 2. Again, there are two outgoing arcs.
Both arcs produce output symbol true for a non-stuttering input symbol, so we can

1 2

{react}/false

{react}/true

{react,
stutter}

{true,
false}

Figure 4.15: Composite machine for Figure 4.14(a).

Lee & Varaiya, Signals and Systems 161

http://LeeVaraiya.org


4.7. FEEDBACK

conclude that the output symbol is true. Since the output symbol is true, then the
input symbol is also true, there is a unique non-stuttering fixed point,

outputA(2, true) = true,

and the state transition taken goes from 2 to 1. Since there is a unique non-stuttering
fixed point in every reachable state, the feedback composition is well-formed.

The composite machine alternates states on each reaction, and produces the output
sequence

(false, true, false, true, false, true, · · ·)
for the input sequence

(react,react,react, · · ·).
The composite machine is shown in Figure 4.15.

Now consider the second machine in Figure 4.14. If the initial state is 1 the analysis
is the same as above. There is a unique non-stuttering fixed point, the output and
input symbols are both false, and the state transition goes from 1 to 2. But if the
initial state is 2 and the unknown input symbol is true, the output symbol is false;
and if the unknown input symbol is false, the output symbol is true. Thus there is
no non-stuttering fixed point y(n) that solves,

outputA(2,y(n)) = y(n).

The feedback composition is not well-formed.

Consider the third machine in Figure 4.14. This feedback composition is also ill-
formed but for a different reason. If the initial state is 1 and the unknown input
symbol is true, the output symbol is also true, so true is a fixed point, and the
output symbol can be true. However, the output symbol can also be false, since
if it is, then a transition will be taken that produces the input symbol false. So
false is also a fixed point. Thus, the problem here is that there is more than one
non-stuttering solution, not that there are none!

Our conclusion is that with machines like the second and third, you cannot connect
them in a feedback composition as shown. The second is rejected because it has
no solution and the third because it has more than one. We only accept feedback
compositions where there is exactly one non-stuttering solution in each reachable
state.

162 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


4. COMPOSING STATE MACHINES

4.7.2 State-determined output

In the first machine of Figure 4.14, in each state, all outgoing arcs produce the same output
symbol, independent of the input symbol. In other words, the output symbol y(n) depends
only on the state; in the example, y(n) = false if s(n) = 1, and y(n) = true if s(n) = 2.
The unique fixed point of (4.7) is this output symbol, and we can immediately conclude
that the feedback composition is well-formed.

We say that a machine A has state-determined output if in every reachable state s(n) ∈
StatesA, there is a unique output symbol y(n) = b (which depends on s(n)) independent
of the non-stuttering input symbol; i.e. for every x(n) 6= absent,

outputA(s(n),x(n)) = b.

In this special case of state-determined output, the composite machine is:

States = StatesA

Inputs = {react,absent}
Outputs = OutputsA
initialState = initialStateA

update(s(n),x(n)) =



updateA(s(n),b),
where b is the unique output symbol in
state s(n) if x(n) = react

(s(n),x(n))
if x(n) = absent

When a machine with state-determined output is combined with any other state machines
in a feedback composition, the resulting composition is also well-formed, as illustrated in
the next example.

Example 4.6:

In Figure 4.16 the machine A is combined with machine B in a feedback composi-
tion. A is the same as the first machine, and B is the same as the second machine
in Figure 4.14. (The output port of B is drawn on the left and the input port on the
right so that the block diagram looks neater.) A has state-determined output, but B
does not. The composition is well-formed.

Lee & Varaiya, Signals and Systems 163

http://LeeVaraiya.org


4.7. FEEDBACK

1 2

{false}/false

{true}/true

{true}/false {false}/true

1 2

{false}/false

{true}/false

{true}/false {false}/true

B

A{react,
absent} {true,

false}

(1,1) (2,2)

{react}/false

{react}/true

{react,
absent}

{true,
false}

(1,2) {react}/false

{react}/true

(2,1)

(a)

(b)

Figure 4.16: Machine A has state-determined output, but B does not. The feed-
back composition is well-formed, and the composite machine is shown on the
bottom. Note that state (1,2) is not reachable.

164 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


4. COMPOSING STATE MACHINES

To see this, suppose both machines are in their initial states 1. A produces output
symbol false, independent of its input symbol. This output is the input of B which
then produces output symbol false and makes the transition to state 2. The output
symbol false of B is the input to A which makes the transition to its state 2. (A
and B make their state transitions together in our synchronous/reactive model.) We
can determine the output symbol and transition in the same way for all other states.
The state diagram of the composite machine is shown in the figure on the right.
Note that state (1,2) is not reachable from the initial state (1,1), so we could have
ignored it in determining whether the composition is well-formed.

The input alphabet of the composite machine is {react,absent}, taking absent as
the stuttering input symbol. The output alphabet is the same as the output alphabet
of A, {true, false,absent}. The state space is StatesA×StatesB. The update function
is given by the table:

current (next state, output) for input
state react absent
(1,1) ((2,2),false) ((1,1),absent)
(2,2) ((2,1),true) ((2,2), absent)
(1,2) ((1,2),false) ((1,2), absent)
(2,1) ((2,1),true) ((2,1), absent)

It is possible for a machine without state-determined outputs to be placed in a well-formed
feedback composition as illustrated in the next example.

Example 4.7: Consider the example in Figure 4.17. For the component ma-
chine, the output alphabet is OutputsA = {true, false,maybe,absent}, and the input
alphabet is InputsA = {true, false,absent}. The stuttering element is absent. The
machine does not have state-determined output because, for instance, the outgoing
arcs from state 1 can produce both maybe and false. Nevertheless, equation (4.7)
has a unique non-stuttering fixed point in each state:

outputA(1, false) = false, and outputA(2, true) = true.

So the feedback composition is well-formed. The composite machine is shown on
the bottom.

Lee & Varaiya, Signals and Systems 165

http://LeeVaraiya.org


4.7. FEEDBACK

{react,
absent}

{true,
false}

1 2

{false}/false

{true}/true

{true}/
maybe

{false}/
maybe

1 2

{react}/false

{react}/true

{react,
absent}

{true,
false}

A

(a)

(b)

Figure 4.17: Machine A does not have state-determined outputs, but the feed-
back composition is well-formed. The machine on the bottom is the composite
machine.

166 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


4. COMPOSING STATE MACHINES

It can be considerably harder to find the behavior of a feedback composition without state-
determined outputs, even if the composition is well-formed. Below, in Section 4.7.4,
we give a constructive procedure that often works to quickly find a fixed point, and to
determine whether it is unique. However, even that procedure does not always work
(and in fact, will fail on example 4.7). If the input alphabet is finite, the only strategy
that always works is to try all possible output values y(n) is (4.7) for each reachable
state s(n). Before discussing this procedure, we generalize to more interesting feedback
compositions.

4.7.3 Feedback composition with inputs

Now consider the state machine in Figure 4.18. It has two input and output ports. The
second output port feeds back to the second input port. We wish to construct a state
machine model that hides the feedback, as suggested by the figure, and becomes a simple
input/output state machine. This is similar to the example in Figure 4.12, but now there
is an additional input and an additional output. The procedure for finding the composite
machine is similar, but the notation is more cumbersome. Given the current state and the
current external input symbol, we must determine the “unknown” output symbol.

The inputs and outputs of machine A are in product form:

InputsA = InputsA1× InputsA2,

OutputsA = OutputsA1×OutputsA2.

For the feedback composition to be possible we must have

OutputsA2 ⊂ InputsA1.

(StatesA, InputsA, OutputsA, updateA, initialStateA )

(States, Inputs, Outputs, update, initialState )
InputsA1 OutputsA1

OutputsA2 ⊂ InputsA2

A

 InputsA2 OutputsA2

Figure 4.18: Feedback composition of a state machine.

Lee & Varaiya, Signals and Systems 167

http://LeeVaraiya.org


4.7. FEEDBACK

The output function of A is

outputA : StatesA× InputsA→ OutputsA.

It is convenient to write it in product form as,

outputA = (outputA1,outputA2),

where
outputA1 : StatesA× InputsA→ OutputsA1,

gives the output symbol at the first output port and

outputA2 : StatesA× InputsA→ OutputsA2,

gives the output symbol at the second output port.

Suppose we are given that at the n-th reaction, the current state of A is s(n) and the current
external input symbol is x1(n) ∈ InputsA1. Then the problem is to find the “unknown”
output symbol (y1(n),y2(n)) ∈ OutputsA such that

outputA(s(n),(x1(n),y2(n))) = (y1(n),y2(n)). (4.8)

The symbol y2(n) appears on both sides because the second input x2(n) to machine A is
equal to y2(n). In terms of the product form, (4.8) is equivalent to two equations:

outputA1(s(n),(x1(n),y2(n))) = y1(n), (4.9)

outputA2(s(n),(x1(n),y2(n))) = y2(n). (4.10)

In these equations, s(n) and x1(n) are known, while y1(n) and y2(n) are unknown. Ob-
serve that if (4.10) has a unique solution y2(n), then the input symbol to A is (x1(n),y2(n))
and the next state s(n+ 1) and output symbol y1(n) are determined. So the fixed point
equation (4.10) plays the same role as (4.7).

We say that the composition of Figure 4.18 is well-formed if for every reachable state
s(n) ∈ StatesA and for every external input symbol x1(n) ∈ InputsA1, there is a unique
non-stuttering output symbol y2(n) ∈ OutputsA2 that solves (4.10). If the composition is
well-formed, the composite machine definition is:

States = StatesA

Inputs = InputsA1

168 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


4. COMPOSING STATE MACHINES

x
y

A

s(n+1) = 0.5s(n) + x1(n) + x2(n
y(n) = s(n)

s(n+1) = 1.5s(n) + x(n
y(n) = s(n)

x1

x2
)

)x y

Figure 4.19: Machine A has two input ports and one output port. The output
port is connected to the second input port. The composition is well-formed. The
composite machine is shown at the bottom.

Outputs = OutputsA1
initialState = initialStateA

update(s(n),x(n)) = (nextState(s(n),x(n)),output(s(n),x(n))):
nextState(s(n),x(n)) = nextStateA(s(n),(x(n),y2(n))) and
output(s(n),x(n)) = outputA(s(n),(x(n),y2(n))), where y2(n) is the unique

solution of (4.10).

(The nextState function is defined in Section 3.1.1.)

In the following example, we illustrate the procedure for defining the composition ma-
chine given a sets and functions description (3.1) for the component machine A.

Example 4.8: Figure 4.19 shows a feedback composition, where component ma-
chine A has two input ports and one output port,

InputsA = R×R, OutputsA = R,

Lee & Varaiya, Signals and Systems 169

http://LeeVaraiya.org


4.7. FEEDBACK

and states StatesA = R. Thus A has infinite input and output alphabets and in-
finitely many states. At the n-th reaction, the pair of input values is denoted by
(x1(n),x2(n)), the current state by s(n), the next state by s(n+ 1), and the output
symbol by y(n). In terms of these, the update function is given by

(s(n+1),y(n)) = updateA(s(n),(x1(n),x2(n)))

= (0.5s(n)+ x1(n)+ x2(n),s(n)).

Equivalently,

s(n+1) = nextStateA(s(n),(x1(n),x2(n)))

= 0.5s(n)+ x1(n)+ x2(n)

y(n) = outputA(s(n),(x1(n),x2(n))) = s(n).

Thus, the component machine A has state-determined output. The feedback con-
nects the output port to the second input port, so x2(n) = y(n). Given the current
state s(n) and the external input symbol x(n) at the first input port, (4.10) becomes,

outputA(s(n),(x1(n),x2(n))) = x2(n),

which gives
s(n) = x2(n).

So the composite machine is defined by

Inputs = R , Outputs = Reals, States = R

update(s(n),x(n)) = (0.5s(n)+ x(n)+ s(n),s(n))

= (1.5s(n)+ x(n),s(n)).

Note that the input to the composite machine is a scalar. The composite machine is
shown in the lower part of the figure.

170 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


4. COMPOSING STATE MACHINES

4.7.4 Constructive procedure for feedback composition

Our examples so far involve one or two state machines and a feedback loop. If any
machine in the loop has state determined output, then finding the fixed point is easy. Most
interesting designs are more complicated, involving several state machines and several
feedback loops, and the loops do not necessarily include mahcines with state-determined
output.

In this section, we describe a constructive procedure for finding the fixed point that often
(but not always) works. It is “constructive” in the sense that it can it be applied me-
chanically, and will, in a finite number of steps, either identify a fixed point or give up.
The approach is simple. At each reaction, begin with all unspecified signals having value
unknown. Then with what is known about the input symbols, try each state machine to
determine as much as possible about the output symbols. You can try the state machines
in any order. Given what you learn about the output symbols, then update what you know
about the feedback input symbols, and repeat the process, trying each state machine again.
Repeat this process until all signal values are specified, or until you learn nothing more
about the output symbols. We illustrate the procedure in an example involving only one
machine, but keep in mind that the procedure works for any number of machines.

a b

{1}/(1,1)

{1}/(1,0)

{0}/(0,1) {0}/(0,0)

{0, 1, absent}

{0, 1, absent}{react, absent}

A

Figure 4.20: Feedback composition without state-determined output.

Lee & Varaiya, Signals and Systems 171

http://LeeVaraiya.org


4.7. FEEDBACK

Example 4.9: Figure 4.20 shows a feedback composition without state-determined
output. Nonetheless, our constructive procedure can be used to find a unique fixed
point for each reaction. Suppose that the current state is a, and that the input to the
composition is react. Begin by assuming that the symbol on the feedback connec-
tion is unknown. Try component machine A (this is the only component machine in
this example, but if there were more, we could try them in any order). Examining
machine A, we see that in its current state, a, the output symbol cannot be fully
determined. Thus, this machine does not have state-determined output. However,
more careful examination reveals that in state a, the second element of the output
tuple is determined. That second element has value 1. Fortunately, this changes the
value on the feedback connection from unknown to 1.

Now we repeat the procedure. We choose a state machine to try. Again, there is
only one state machine in this example, so we try A. This time, we know that the
input symbol is 1, so we know that the machine must take the transition from a to
b and produce the output tuple (1,1). This results in all symbols being known for
the reaction, so we are done evaluating the reaction.

Now assume the current state is b. Again, the feedback symbol is initially unknown,
but once again, trying A, we see that the second element of the output tuple must be
0. Thus, we change the feedback symbol from unknown to 0 and try the machine
again. This time, its input is 0, so it must take the self loop back to b and produce
the output tuple (0,0).

Recall that the set Behaviors is the set of all (x,y) such that x is an input sequence
and y is an output sequence. For this machine, ignoring stuttering, the only pos-
sible input sequence is (react,react,react, · · ·). We have just determined that the
resulting output sequence is (1,0,0,0, · · ·). Thus, ignoring stuttering,

Behaviors = {((react,react,react, · · ·),(1,0,0,0, · · ·))}.

Of course, we should take into account stuttering, so this set needs to be augmented
with all (x,y) pairs that look like the one above but have stuttering symbols inserted.

This procedure can be applied in general to any composition of state machines. If the
procedure can be applied successfully (nothing remains unknown) for all reachable states

172 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


4. COMPOSING STATE MACHINES

of the composition, then the composition is well-formed. The following example applies
the procedure to a more complicated example.

Example 4.10: We add more detail to the message recorder in Figure 4.9. In
particular, as shown in Figure 4.21, we wish to model the fact that the message
recorder stops recording when either it detects a dialtone or when a timeout period is

telephone
line interface

greeting  playback
device

light

play
button

message playback
device

{end greeting}

{ring, offhook}

{end message}

AnsweringMachine

{answer}

{recorded message}

{record}

Playback
{play}

{light on, light off}

{done  playing} {play messages}

recording device

MessageRecorder
{dialtone}

{start recording}
{timeout}

Figure 4.21: Answering machine composition with feedback. The absent ele-
ments are not shown (to reduce clutter).

Lee & Varaiya, Signals and Systems 173

http://LeeVaraiya.org


4.7. FEEDBACK

reached. This is modeled by a two-state finite state machine, shown in Figure 4.22.
Note that this machine does not have state-determined output. For example, in state
idle, the output could be (absent,start recording) or it could be (absent,absent)
when the input is not the stuttering input.

The MessageRecorder and AnsweringMachine state machines form a feedback
loop. Let us verify that composition is well-formed. First, note that in the idle
state of the MessageRecorder, the upper output symbol is known to be absent (see
Figure 4.22). Thus, only in the recording state is there any possibility of a prob-
lem that would lead to the composition being ill-formed. In that state, the output
symbol is not known unless the input symbols are known. However, notice that
the recording state is entered only when a record input symbol is received. In Fig-
ure 4.6, you can see that the record value is generated only when entering state
record message. But in all arcs emerging from that state, the lower output sym-
bol of AnsweringMachine will always be absent; the input symbol does not need
to be known to know that. Continuing this reasoning by considering all possible
state transitions from this point, we can convince ourselves that the feedback loop
is well-formed.

The sort of reasoning in this more complicated example is difficult and error-prone for
even moderate compositions of state machines. It is best automated. Compilers for syn-
chronous languages do exactly this. Successfully compiling a program involves proving
that feedback loops are well-formed.

idle recording

{(record, absent, absent)}/
(absent, start recording)

{(absent, dialtone, absent), (absent, absent, timeout),
(absent, dialtone, timeout)}/

(end message , absent)

else

else

{record, absent}

{dialtone, absent}

{timeout, absent}

{end message,
absent}

{start recording ,
absent}

Figure 4.22: Message recorder subsystem of the answering system.

174 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


4. COMPOSING STATE MACHINES

4.7.5 Exhaustive search

If a feedback composition has one or more machines with state-determined output, then
finding a unique fixed point is easy. Without such state-determined output, we can apply
the procedure in the previous section. Unfortunately, if the procedure fails, we cannot
conclude that the composition is ill-formed. The procedure fails for example 4.7, shown
in Figure 4.17, despite the fact that this example is well-formed. For that example, we can
determine the unique fixed point by exhaustive search. That is, for each reachable state
of the composition, and for each possible input to the composition, we try all possible
transitions out of the current states of the component machines. We reject those that lead
to a contradiction. For example, in Figure 4.17, assuming the current state is 1, the output
of the component machine cannot be maybe because then the input would have to be
maybe, which would result in the output being absent. If after rejecting all contradictions
there remains exactly one possibility in each reachable state, then the composition is well-
formed.

Exhaustive search works in Figure 4.17 only because the number of reachable states is
finite and the number of transitions out of each state is finite. If either of these conditions
is violated, then exhaustive search will not work. Thus, there are state machine that when
put in a feedback loop are well-formed, but where there is no constructive procedure for
evaluating a reaction (see box on page 176). Even when exhaustive search is theoretically
possible, in practice the number of possibilities that must be tried grows extremely fast.

4.7.6 Nondeterministic machines

Nondeterministic state machines can be composed just as deterministic state machines
are composed. In fact, since deterministic state machines are a special case, the two types
of state machines can be mixed in a composition. Compositions without feedback are
straightforward, and operate almost exactly as described above (see exercises 14 and 15).
Compositions with feedback require a small modification to our evaluation process.

Recall that to evaluate the reaction of a feedback composition, we begin by setting to
unknown any input symbols that are not initially known. We then proceed through a series
of rounds where in each round, we attempt to determine the output symbols of the state
machines in the composition given what we know about the input symbols. After some
number of rounds, no more information is gained. At this point, if all of the input and

Lee & Varaiya, Signals and Systems 175

http://LeeVaraiya.org


4.7. FEEDBACK

Probing Further: Constructive Semantics

The term “semantics” means meaning. We have defined the meaning of compositions
of state machines using the notion of synchrony, which makes feedback compositions
particularly interesting. When we define “well-formed,” we are, in effect, limiting the
compositions that are valid. Compositions that are not well-formed fall outside our
synchronous semantics. They have no meaning.

One way to define the semantics of a composition is to give a procedure for evaluating
the composition (the resulting procedure is called an operational semantics). We have
given three successively more difficult procedures for evaluating a reaction of a com-
position of state machines with feedback. If at least one machine in each directed loop
has state-determined output, then it is easy to evaluate a reaction. If not, we can apply
the constructive procedure of section 4.7.4. However, that procedure may result in some
feedback connections remaining unknown even though the composition is well-formed.
The ultimate procedure is exhaustive search, as described in section 4.7.5. However,
exhaustive search is not always possible, and even when it is theoretically possible, the
number of possibilities to explore may be so huge that it is not practical. There are state
machines that when put in a feedback loop are well-formed, but where there is no con-
structive procedure for evaluating a reaction, and no constructive way to demonstrate
that they are well-formed. Thus, there is no operational semantics for our feedback
compositions.

This situation is not uncommon in computing and in mathematics. Kurt Gödel’s fa-
mous incompleteness theorem (1931), for example, states (loosely) that in any formal
logical system, there are statements that are true but not provable. This is analogous in
that we can have feedback compositions that are well-formed, but we have no procedure
that will always work to demonstrate that they are well-formed. Around the same time,
Alan Turing and Alonzo Church demonstrated that there are functions that cannot be
computed by any procedure.

To deal with this issue, Gerard Berry has proposed that synchronous composition have
a constructive semantics, which means precisely that well-formed compositions are
defined to be those for which the constructive procedure of Section 4.7.4 works. When
that procedure fails, we simply declare the composition to be unacceptable. This is prag-
matic solution, and in many situations, it is adequate. See G. Berry, The Constructive
Semantics of Pure Esterel, Book Draft, http://www-sop.inria.fr/meije/esterel/doc/main-
papers.html.

176 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


4. COMPOSING STATE MACHINES

output symbols are known, then the composition is well-formed. This procedure works
for most (but not all) well-formed compositions.

This process needs to be modified slightly for nondeterministic machines because in each
reaction, a machine may have several possible output symbols and several possible next
states. For each machine, at each reaction, we define the sets PossibleInputs ⊂ Inputs,
PossibleNextStates⊂ States and PossibleNextOutputs⊂Outputs. If the inputs to a partic-
ular machine in the composition are known completely, then PossibleInputs has exactly
one element. If they are completely unknown, then PossibleInputs is empty.

The rounds proceed in a similar fashion to before. For each state machine in the com-
position, given what is known about the input symbols, i.e. given PossibleInputs, deter-
mine what you can about the next state and output symbols. This may result in elements
being added to PossibleNextStates and PossibleNextOutputs. When a round results in
no such added elements, the process has converged. If none of the PossibleInputs or
PossibleOutputs sets is empty, then the composition is well-formed.

4.8 Summary

Many systems are designed as state machines. Usually the design is structured by com-
posing component state machines. In this chapter, we considered synchronous composi-
tion. Feedback composition proves particularly subtle because the input symbol of a state
machine in a reaction may depend on its own output symbol in the same reaction. We call
a feedback composition well-formed if every signal has a unique non-stuttering symbol
in each reaction.

Describing systems as compositions of state machines helps in many ways. It promotes
understanding. The block diagram syntax that describes the structure often shows that
individual components are responsible for distinct functions of the overall system. Some
components may already be available and so we can reuse their designs. The design of the
answering machine in Figure 4.9 takes into account the availability of the telephone line
interface, recording device, etc. Composition also simplifies description; once we specify
the component state machines and the composition, the overall state machine is auto-
matically defined by the rules of composition. Compilers for synchronous programming
languages and tools for verification do this automatically.

We have three successively more difficult procedures for evaluating a reaction of a com-
position of state machines with feedback. If at least one machine in each directed loop

Lee & Varaiya, Signals and Systems 177

http://LeeVaraiya.org


4.8. SUMMARY

has state-determined output, then it is easy to evaluate a reaction. If not, we can apply the
constructive procedure of section 4.7.4. But that procedure may be inconclusive. The ul-
timate procedure is exhaustive search, as described in section 4.7.5. However, exhaustive
search is not always possible, and even when it is theoretically possible, the number of
possibilities to explore may be so huge that it is not practical.

178 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


4. COMPOSING STATE MACHINES

Exercises

In some of the following exercises you are asked to design state machines that carry out
a given task. The design is simplified and elegant if the state space is properly chosen.
Although the state space is not unique, there often is a natural choice. Each problem is
annotated with the letter E, T, C which stands for exercise, requires some thought, requires
some conceptualization. Problems labeled E are usually mechanical, those labeled T
require a plan of attack, those labeled C usually have more than one defensible answer.

1. E Define the composite state machine in Figure 4.7 in terms of the component
machines, as done for the simpler compositions in figures 4.3 and 4.1. Be sure to
state any required assumptions.

2. E Define the composite state machine in Figure 4.10 in terms of the component
machines, as done for the simpler compositions in figures 4.3 and 4.1. Be sure to
state any required assumptions. Give the definition in two different ways:

(a) Directly form a product of the three state spaces.

(b) First compose the A and B state machines to get a new D state machine, and
then compose D with C.

(c) Comment on the relationship between the models in part (a) and (b).

3. T Consider the state machine UnitDelay studied in part (a) of exercise 5 at the end
of the previous chapter.

(a) Construct a state machine model for a cascade composition of two such ma-
chines. Give the sets and functions model (it is easier than the state transition
diagram or table).

(b) Are all of the states in the state space of your model in part (a) reachable? If
not, give an example of an unreachable state.

(c) Give the state space (only) for cascade compositions of three and four unit
delays. How many elements are there in each of these state spaces?

(d) Give an expression for the size of the state space as function of the number N
of cascaded delays in the cascade composition.

4. C Consider the parking meter example of the previous chapter, example 3.1, and
the modulo N counter of Exercise 4 at the end of the previous chapter. Use these

Lee & Varaiya, Signals and Systems 179

http://LeeVaraiya.org


EXERCISES

two machines to model a citizen that parks at the meter when the machines start,
and inserts 25 cents every 30 minutes, and a police officer who checks the meter
every 45 minutes, and issues a ticket if the meter is expired. For simplicity, assume
that the police office issues a new ticket each time he finds the meter expired, and
that the citizen remains parked forever.

You may construct the model at the block diagram level, as in Figure 4.9, but de-
scribe in words any changes you need to make to the designs of the previous chap-
ter. Give state transition diagrams for any additional state machines you need. How
long does it take for the citizen to get the first parking ticket?

Assume you have an eternal clock that emits an event tick every minute.

Note that the output alphabet of the modulo N counter does not match the input
alphabet of the parking meter. Neither does its input alphabet match the output al-
phabet of the parking meter. Thus, one or more intermediate state machines will be
needed to translate these alphabets. You should fully specify these state machines
(i.e., don’t just give them at the block diagram level). Hint: These state machines,
which perform an operation called renaming, only need one state.

5. C Consider a machine with

States = {0,1,2,3},
Inputs = {increment,decrement,reset,absent},

Outputs = {zero,absent},
initialState = 0,

such that increment increases the state by 1 (modulo 4), decrement decreases the
state by 1 (modulo 4), reset resets the state to 0, and the output symbol is absent
unless the next state is 0, in which case the output symbol is zero. So, for example,
if the current state is 3 and the input is increment, then the new state will be 0 and
the output will be zero. If the current state is 0 and the input is decrement, then the
new state will be 3 and the output will be absent.

(a) Give the update function for this machine, and sketch the state transition dia-
gram.

(b) Design a cascade composition of two state machines, each with two states,
such that the composition has the same behaviors as the one above. Give a
diagram of the state machines and their composition, and carefully define all
the input and output alphabets.

180 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


4. COMPOSING STATE MACHINES

(c) Give a simulation relation from the single machine and the cascade compo-
sition, and a simulation relation from the cascade composition to the single
machine.

6. C A road has a pedestrian crossing with a traffic light. The light is normally green
for vehicles, and the pedestrian is told to wait. However, if a pedestrian presses a
button, the light turns yellow for 30 seconds and then red for 30 seconds. When it
is red, the pedestrian is told “cross now.” After the 30 seconds of red, the light turns
back to green. If a pedestrian presses the button again while the light is red, then
the red is extended to a full minute.

Construct a composite model for this system that has at least two state machines,
TrafficLight for the traffic light seen by the cars, and WalkLight for the walk light
seen by the pedestrians. The state of machine should represent the state of the
lights. For example, TrafficLight should have at least three states, one for green,
one for yellow, and one for red. Each color may, however, have more than one state
associated with it. For example, there may be more than one state in which the
light is red. It is typical in modeling systems for the states of the model to represent
states of the physical system.

Assume you have a timer available such that if you emit an output start timer, then
30 seconds later an input symbol timeout will appear. It is sufficient to give the state
transition graphs for the machines. State any assumptions you need to make.

7. E Suppose you are given two state machines A and B, Suppose the sizes of the
input alphabets are iA, iB, respectively, the sizes of the output alphabets are oA,oB

respectively, and the numbers of states are sA,sB, repectively. Give the sizes of the
input and output alphabets and the number of states for the following compositions:

(a) side-by-side,

(b) cascade,

(c) and feedback, where the structure of the feedback follows the pattern in Figure
4.16(a).

8. T Example 4.2 shows a state machine in which a state is not reachable from the
initial state. Here is a recursive algorithm to calculate the reachable states for any
nondeterministic machine,

StateMachine = (States, Inputs,Outputs,possibleUpdates, initialState).

Lee & Varaiya, Signals and Systems 181

http://LeeVaraiya.org


EXERCISES

Recursively define subsets ReachableStates(n), n = 0,1, · · · of States by:

ReachableStates(0) = {initialState}, and for n≥ 0

ReachableStates(n+1) = {s(n+1) | ∃s(n) ∈ ReachableStates(n),

∃ x(n) ∈ Inputs,

∃ y(n) ∈ Outputs,

(s(n+1),y(n))

∈ possibleUpdates(s(n),x(n))}
∪ ReachableStates(n).

In words: ReachableStates(n + 1) is the set of states that can be reached from
ReachableStates(n) in one step using any input symbol, together with ReachableStates(n).

(a) Show that for all n, ReachableStates(n)⊂ ReachableStates(n+1).

(b) Show that ReachableStates(n) is the set of states that can be reached in n or
fewer steps, starting in initialState. Now show that if for some n,

ReachableStates(n) = ReachableStates(n+1), (4.11)

then ReachableStates(n) = ReachableStates(n+ k) for all k ≥ 0.

(c) Suppose (4.11) holds for n = N. Show that ReachableStates(N) is the set of
all reachable states, i.e. this set comprises all the states that can be reached
using any input sequence starting in initialState.

(d) Suppose there are N states. Show that (4.11) holds for n = N.

(e) Compute ReachableStates(n) for all n for the machine in Figure 4.4.

(f) Suppose States is infinite. Show that the set of reachable states is given by

∪∞
n=0ReachableStates(n).

9. T The algorithm in Exercise 8 has a fixed point interpretation. For a nondetermin-
istic state machine,

StateMachine = (States, Inputs,Outputs,possibleUpdates, initialState),

define the function nextStep : ℘(States)→℘(States) that maps subsets of States
into subsets of States (recall that ℘(A) is the powerset of A) as follows: for any

182 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


4. COMPOSING STATE MACHINES

S(n)⊂ States

nextStep(S(n)) = {s(n+1) | ∃s(n) ∈ S(n),

∃x(n) ∈ Inputs,

∃y(n) ∈ Outputs,

(s(n+1),y(n))

∈ possibleUpdates(s(n),x(n))}∪S(n).

By definition, a fixed point of nextStep is any subset S⊂ States such that nextStep(S)=
S.

(a) Show that /0 and States are both fixed points of nextState.

(b) Let ReachableStates be the set of all states that can be reached starting in
initialState. Show that ReachableStates is also a fixed point.

(c) Show that ReachableStates is the least fixed point of nextStep containing
initialState.

10. C Recall the playback machine of Figure 4.8 and the CodeRecognizer machine of
Figure 3.4. Enclose CodeRecognizer in a block and compose it with the playback
machine so that someone can play back the recorded messages only if she correctly
enters the code 1100. You will need to modify the playback machine appropriately.

11. E Consider the following state machine in a feedback composition, where the input
and output alphabets for the state machine is

{1,2,3,absent} :

Lee & Varaiya, Signals and Systems 183

http://LeeVaraiya.org


EXERCISES

1 2

{2}/2

{3}/3

{1,3}/2 {1,2}/3

3{1}/1

{2,3}/1

Is it well-formed? If so, then find the output symbols for the first 10 reactions.

12. E In this problem, we will explore the fact that a carefully defined delay in a feed-
back composition always makes the composition well-formed.

(a) For an input and output alphabet

Inputs = Outputs = {true, false,absent}

design a state machine that outputs false on the first reaction, and then in
subsequent reactions, outputs the value observed at the input in the previous
reaction. This is similar to UnitDelay of problem 5 at the end of Chapter 3,
with the only difference being that it outputs an initial false instead of absent.

(b) Compose the machine in Figure 4.14 (b) with the delay from part (a) of this
problem in a feedback loop (as in Figure 4.16). Give an argument that the
composition is well-formed. Then do the same for Figure 4.14 (c) instead of
(b).

13. C Construct a feedback state machine with the structure of figure 4.12 that outputs
the periodic sequence a,b,c,a,b,c · · · (with, as usual, any number of intervening
stuttering outputs between the non-stuttering outputs).

184 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


4. COMPOSING STATE MACHINES

14. E Modify Figure 4.1 as necessary so that the machines in the side-by-side compo-
sition are both nondeterministic.

15. E Modify Figure 4.3 as necessary so that the machines in the cascade composition
are both nondeterministic.

16. C,T Data packets are to be reliably exchanged between two computers over com-
munication links that may lose packets. The following protocol has been suggested.
Suppose computer A is sending and B is receiving. Then A sends a packet and starts
a timer. If B receives the packet it sends back an acknowledgment. (The packet or
the acknowledgment or both may be lost.) If A does not receive the acknowledg-
ment before the timer expires, it retransmits the packet. If the acknowledgment
arrives before the timer expires, A sends the next packet.

(a) Construct two state machines, one for A and one for B, that implement the
protocol.

(b) Construct a two-state nondeterministic machine to model the link from A to
B, and another copy to model the link from B to A. Remember that the link
may correctly deliver a packet, or it may lose it.

(c) Compose the four machines to model the entire system.

(d) Suppose the link correctly delivers a packet, but after a delay that exceeds the
timer setting. What will happen?

17. T Consider the following three state machines:

-0.5in-

0.5in

a b

{1}/0 {1}/0{0}/ 0

{0}/1

machine A

c d

{1, 0}/1 {0}/0

{1}/0

e
{1}/0

machine B

Lee & Varaiya, Signals and Systems 185

http://LeeVaraiya.org


EXERCISES

machine A machine B

machine C

Machines A and B have input and output alphabets

Inputs = Outputs = {0,1,absent}.

Machine C has the same output alphabet, but input alphabet
InputsC = {react,absent}.

(a) Which of these machines is deterministic?

(b) Draw the state transition diagram for the composition (machine C), showing
only states that are reachable from the initial state.

(c) Give the BehaviorsC relation for the composition of machine C, ignoring stut-
tering.

18. T The feedback composition in Figure 4.14(c) is ill-formed because it has two
non-stuttering fixed points in each of the two states of the component machine.
Instead of declaring it to be ill-formed, we could have interpreted the composition
as representing a nondeterministic state machine. That is, in each state, we accept
either of the two possible fixed points as possible reactions of the machine. Using
this interpretation, give the nondeterministic machine for the feedback composition
by giving its sets and functions model and a state transition diagram.

186 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


5
Linear Systems

Contents
5.1 Operation of an infinite state machine . . . . . . . . . . . . . . . . 189

5.1.1 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
5.2 Linear functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
5.3 The [A,B,C,D] representation of a system . . . . . . . . . . . . . . 195

5.3.1 Impulse response . . . . . . . . . . . . . . . . . . . . . . . . 198
5.3.2 One-dimensional SISO systems . . . . . . . . . . . . . . . . 199
5.3.3 Zero-state and zero-input response . . . . . . . . . . . . . . . 205
5.3.4 Multidimensional SISO systems . . . . . . . . . . . . . . . . 208
5.3.5 Multidimensional MIMO systems . . . . . . . . . . . . . . . 216
5.3.6 Linear input-output function . . . . . . . . . . . . . . . . . . 217

5.4 Continuous-time state-space models . . . . . . . . . . . . . . . . . 218
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Basics: Functions yielding tuples . . . . . . . . . . . . . . . . . . . . 220
Basics: Matrices and vectors . . . . . . . . . . . . . . . . . . . . . . 221
Basics: Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Basics: Matrix arithmetic . . . . . . . . . . . . . . . . . . . . . . . . 223
Basics: Matrix arithmetic (continued from page 223) . . . . . . . . . 224
Probing Further: Impulse Responses of MIMO Systems . . . . . . . . 225
Probing Further: Approximating continuous-time . . . . . . . . . . . 226

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

187



MIMO difference
equation system

States = Reals N

Reals

Reals

Reals

...

Reals

Reals

Reals

...

O
ut

pu
ts

 =
 R

ea
ls

 K

In
pu

ts
 =

 R
ea

ls
 M

Figure 5.1: Block representing a multiple-input, multiple output (MIMO) system.

Recall that the state of a system is a summary of its past. It is what the system needs
to remember about the past in order to react at the present and move into the future. In
previous chapters, systems typically had a finite number of possible states. Many useful
and interesting systems are not like that, however. They have an infinite number of states.
The analytical approaches used to analyze finite-state systems, such as simulation, get
more difficult when the number of states is not finite.

In this chapter, we begin considering infinite-state systems. We impose two key con-
straints. First, we require that the state space and input and output alphabets be numeric
sets. That is, we must be able to do arithmetic on members of these sets. (Contrast this
with the answering machine example, where the states are symbolic names, and no arith-
metic makes sense.) Second, we require that the update function be linear. We will define
what this means precisely. In exchange for these two constraints, we gain a very rich
set of analytical methods for designing and understanding systems. In fact, most of the
remaining chapters are devoted to developing these methods.

In particular, we study state machines with

States = RN

Inputs = RM (5.1)

Outputs = RK .

Such state machines are shown schematically in Figure 5.1. The inputs and outputs are
in product form, as discussed for general state machines in Section 4.4. The system,
therefore, can be viewed as having M distinct inputs and K distinct outputs. So the input

188 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


5. LINEAR SYSTEMS

is a tuple with M real numbers, and the ouptut is a tuple with K real numbers. Such a
system is called a multiple-input, multiple-output (MIMO) system. When M = K = 1,
it is called a single-input, single-output (SISO) system. The state is a tuple with N real
numbers. N (rather than M or K) is called the dimension of the system.

Example 5.1: A stereo audio system processes two channels of audio, and there-
fore has M = K = 2. ”Surround sound,” used in movie theaters and some home
audio systems, has five channels, so M = K = 5.

Example 5.2: Some modern cars have traction control systems, where the torque
applied to each wheel is controled individually to avoid skidding. The key input
comes from the accelerator pedal, which specifies a desired acceleration. The out-
put is the torque applied to each of four wheels. Hence, M = 1 and K = 4. A more
sophisticated traction control system might also use as input the steering angle, in
which case M = 2.

5.1 Operation of an infinite state machine

Recall that a deterministic state machine is a 5-tuple

M = (States, Inputs,Outputs,update, initialState) (5.2)

where States is the state space, Inputs is the input space, Outputs is the output space,
update : States× Inputs→ States×Outputs is the update function, and initialState is the
initial state.

In this chapter, the update function has the form

update : RN×RM → RN×RK .

The result of evaluating this function is an N-tuple (the next state) and a K-tuple (the
current output). It will be useful in this chapter to break this function into two parts, as

Lee & Varaiya, Signals and Systems 189

http://LeeVaraiya.org


5.1. OPERATION OF AN INFINITE STATE MACHINE

done in Section 3.1.1, one giving the new state and one giving the output,

update = (nextState,output),

where
nextState : RN×RM → RN ,

output : RN×RM → RK ,

such that

∀ s ∈ RN ,∀x ∈ RM, update(s,x) = (nextState(s,x),output(s,x)).

These two functions separately give the next state and the current output as a function of
the current state and input. Given an input sequence x(0),x(1), · · · of M-tuples in RM, the
system recursively generates a state response

s(0),s(1), · · ·

of N-tuples in RN and an output response y(0),y(1), · · · of K-tuples in RK as follows:

s(0) = initialState,

(s(n+1),y(n)) = update(s(n),x(n)), n≥ 0. (5.3)

The second equation can be rewritten as a separate state update equation,

∀ n ∈ Z, n≥ 0, s(n+1) = nextState(s(n),x(n)) (5.4)

and an output equation,

∀ n ∈ Z, n≥ 0, y(n) = output(s(n),x(n)). (5.5)

Equations (5.4) and (5.5) together are called a state-space model of the system, because
instead of giving the output directly as a function of the input, the state is explicitly de-
scribed. The equations suggest a detailed procedure for calculating the response of a
system. We start with a given initial state s(0) = initialState, and an input sequence
x(0),x(1), · · · . At step n = 0, we evaluate the right-hand side of (5.4) at the known values
of s(0),x(0) and we assign the result to s(1). At step n = 1, we evaluate the right-hand
side at the known values of s(1),x(1) and we assign the result to s(2). To proceed from
step n to step n+1, we only need to remember s(n) and know the new input x(n). At each

190 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


5. LINEAR SYSTEMS

step n, we evaluate the output y(n) using (5.5). This procedure is no different from that
used for state machines in previous chapters. However, starting with Section 5.2, we will
specialize the nextState and output functions so that they are linear, which will then lead
to a powerful set of analytical tools.

5.1.1 Time

The index n in the equations above denotes the step number, the count of reactions, as
with any state machine. For general state machines, it is rare to associate a fixed time
interval with a step. So there is normally no simple relation between the step number and
the real time at which the corresponding reaction occurs. For example, in the answering
machine, if the initial state is idle, there may be an arbitrary amount of time before ring
occurs and the state moves to count1.

The systems we study in this and the next several chapters, however, usually evolve with
a fixed time interval between updates. Suppose this interval is δ seconds. Then step n
occurs at time nδ seconds, relative to time 0. Such systems are discrete-time systems, and
the index n is called the time index.

We will require that for each time index n, the input x(n) be in RM and the output y(n)
be in RK . We disallow stuttering input or output values such as absent. This is consistent
with the interpretation of n as a real (physical) time index: the system’s input and output
must take some physical value at each n, and absent is not such a value.

Example 5.3: Compact discs store digital audio signals as discrete-time signals.
For each channel of audio, there are 44,100 numbers (samples) representing each
second of sound. The n-th number, therefore, represents the sound value at time
nδ from the beginning of the CD, where δ = 1/44,100, about 23 microseconds.
By contrast, the telephone network transmits speech signals by sending only 8,000
samples per second, so the sampling interval is δ = 1/8,000, or 125 microseconds.
We will see in Chapter 11 that this difference (partly) accounts for the lower audio
quality over the telephone network, compared to CDs.

The systems in this chapter will be time-invariant systems, meaning that the nextState
and output functions do not change with the time index n. It is, therefore, a matter of
convention to have time start at 0 rather than, say, at -10 or 50. We will stick to convention

Lee & Varaiya, Signals and Systems 191

http://LeeVaraiya.org


5.2. LINEAR FUNCTIONS

and so the set of input signals in this chapter will be

InputSignals = [Z+→ RM],

where Z+ = N0 = {0,1,2, · · ·}. Correspondingly,

OutputSignals = [Z+→ RK ].

The state response, then, is a function

s : Z+→ RN

where s(0) = initialState.

5.2 Linear functions

A function f : R→ R is a linear function if ∀u ∈ R and a ∈ R,

f (au) = a f (u),

and ∀u,v ∈ R,
f (u+ v) = f (u)+ f (v).

The first property is called homogeneity and the second property is called additivity.
When its domain and range both are R, a linear function can be represented as

∀x ∈ R, f (x) = ax, (5.8)

for some constant a. The term “linear” comes from the fact that the graph of this function
is a straight line through the origin, with slope a. (If the line did not pass through the ori-
gin, the function is said to be affine. It would satisfy neither homogeniety nor additivity.)
We need a more general notion of linear function, one that operates on tuples.

A function f : RN → RM is a linear function if ∀u,v ∈ RN and ∀a ∈ R,

f (au) = a f (u), (5.10)

f (u+ v) = f (u)+ f (v). (5.11)

192 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


5. LINEAR SYSTEMS

As before, (5.10) is the homogeneity property and (5.11) is the additivity property. The
two properties can be combined into the superposition property:

f is linear if ∀u,v ∈ RN and ∀a,b ∈ R,
f (au+bv) = a f (u)+b f (v)

(5.12)

Above, superposition is defined by considering a linear combination au+ bv of two el-
ements u and v in the domain of f . In fact, for linear functions, superposition holds
for a linear combination of any number of elements. That is, ∀u1, · · · ,un ∈ RN and
∀a1, · · · ,an ∈ R,

f (a1u1 + · · ·+anun) = a1 f (u1)+ · · ·+an f (un). (5.13)

In (5.13) u1, · · · ,un are vectors in RN , f (u1), · · · , f (un) are vectors in RM, and a1, · · · ,an

are scalars (numbers).

Every matrix defines a linear function in the following way. Let A be an M×N matrix.
Then the function f : RN → RM defined by

∀x ∈ RN , f (x) = Ax. (5.14)

is a linear function, as can be checked using the basics of matrix arithmetic.

More interestingly, every linear function can be represented by such a matrix multiplica-
tion, similarly to the scalar case (5.8). To show this, we show how to find the appropriate
matrix given any linear function. Define the vectors

e1 =


1
0
· · ·
0

 ,e2 =


0
1
· · ·
0

 , · · ·eN =


0
0
· · ·
1

 .
Then note that we can express any vector x ∈ RN as a sum

x = x1e1 + · · ·xNeN ,

where xi is the i-th element of the vector x (a scalar). Now consider a linear function
f : RN → RM. Then, by (5.13),

y = f (x) = x1 f (e1)+ · · ·+ xN f (eN). (5.15)

Lee & Varaiya, Signals and Systems 193

http://LeeVaraiya.org


5.2. LINEAR FUNCTIONS

Write the column vector f (e j) ∈ RM as

f (e j) =


a1, j
a2, j
· · ·

aM, j

 .
Then we can rewrite (5.15) as

y =


y1
y2
· · ·
yM

= x1


a1,1
a2,1
· · ·

aM,1

+ x2


a1,2
a2,2
· · ·

aM,2

+ · · ·+ xN


a1,N
a2,2
· · ·

aM.N



=


a1,1 a1,2 · · · a1,N
a2,1 a2,2 · · · a2,N
· · · · · · · · · · · ·
aM,1 aM,2 · · · aM,N




x1
x2
· · ·
xN

 .
More compactly,

y = Ax,

where A is the M×N matrix

A = [ai, j,1≤ i≤M,1≤ j ≤ N].

Thus, there is a straightforward association between linear functions with domain RN and
range RM and M×N matrices. This association will be very important for us.

Example 5.4: The function g : R3→ R given by

∀x ∈ R3, g(x1,x2,x3) = 0.5x1−0.4x3

is linear, as can be checked by verifying (5.12). Here, xi refers the the i-th element
of the vector x. The matrix representation is

g(x) = [0.5, 0,−0.4]

 x1
x2
x3

 .
194 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


5. LINEAR SYSTEMS

The function f : RN → RN given by

∀x ∈ RN , f (x)n =

{
xn+1, if n < N
x1, if n = N

,

is linear. Here f (x)n refers to the n-th element of the vector f (x). The matrix
representation is

f (x) =


0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · · · · · · ·
1 0 0 · · · 0

x.

5.3 The [A,B,C,D] representation of a system

We consider an arbitrary system with

States = RN , Inputs = RM, Outputs = RK .

Its state-space model is given by the state update and output equations: ∀n ∈ Z+,

s(n+1) = nextState(s(n),x(n)),

y(n) = output(s(n),x(n)).

This system is said to be a linear system if the initial state is an N-tuple of zeros, and
the nextState and output functions are linear. If it is also time invariant (the nextState and
output functions do not change with time), then we have a linear time-invariant system,
or LTI system. We can then represent the nextState function by a N× (N +M) matrix
and the output function by a K× (N +M) matrix.

Consider the N× (N +M) matrix representing the nextState function. This matrix has
N +M columns. We denote the N×N matrix comprising the first N columns by A, and
the N×M matrix comprising the last M columns as B, so that

nextState(s(n),x(n)) = As(n)+Bx(n).

We similarly partition the K× (N +M) matrix representing the output function into the
K×N matrix C comprising the first N columns and the K×M matrix D comprising the

Lee & Varaiya, Signals and Systems 195

http://LeeVaraiya.org


5.3. THE [A,B,C,D] REPRESENTATION OF A SYSTEM

last M columns. Then

output(s(n),x(n)) =Cs(n)+Dx(n).

With this notation, the state-space model is represented as

s(n+1) = As(n)+Bx(n),

y(n) = Cs(n)+Dx(n).
(5.16)

This is the [A,B,C,D] representation of the LTI system. This compact representation
is very powerful. All the results in this chapter and the next are in terms of these four
matrices. The A matrix is the most important, since it characterizes the system dynamics
as we will see in the sections below.

Example 5.5: Take [A,B,C,D] as

A =

 1 1 0
0 1 1
0 0 1

 , B =

 0
0
1

 ,
C =

[
1 0 0

]
, D =

[
1
]
.

So N = 3,M = 1,K = 1. (This is a 3-dimensional, SISO system.) Using these in
(5.16) gives the state-space model in tuple form,

s1(n+1) = s1(n)+ s2(n),

s2(n+1) = s2(n)+ s3(n),

s3(n+1) = s3(n)+ x(n),

y(n) = s1(n)+ x(n).

The first three equations together give the nextState function, the fourth equation
gives the output function.

196 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


5. LINEAR SYSTEMS

Observe in (5.16) that if initialState is zero, s(0) = 0, and the input x(n) = 0, for all n≥ 0,
then the state is unchanged, s(n) = 0. That is why we say that 0 is an equilibrium or rest
state of the [A,B,C,D] system.

Example 5.6: An echo effect can be obtained for audio signals by realizing the
following difference equation,

y(n) = x(n)+αy(n−N),

where the (discrete-time) audio input is x, the output is y, 0 ≤ α < 1 is a real con-
stant, and N ∈ N is an integer constant. Together, α and N determine how long
the echo lasts and what it sounds like. Once again, this is a SISO system, with
M = 1,K = 1. This works simply because the output sample at n is a combination
of the current input x(n) and a scaled old output αy(n−N), called the echo term.
Typically, N needs to be a large number to hear this as an echo. For example, if the
sample rate is 8,000 samples per second, then if N = 8000, the echo term αy(n−N)
is the previous output one second earlier. This will be heard as a distinct echo.

To construct a state-space model, we need to figure out what will work as the state.
Since the output depends on y(n−N), which is past history, the state will have to
yield y(n−N). The following state definition will work,

s(n) =


y(n−1)
y(n−2)
· · ·
y(n−N)

 .
It is easy to check that with this state definition, [A,B,C,D] are given by

A =



0 0 · · · 0 0 α

1 0 · · · 0 0 0
0 1 · · · 0 0 0
...

...
...

...
...

0 0 · · · 1 0 0
0 0 · · · 0 1 0


, B =


1
0
...
0

 ,

C =
[

0 0 · · · 0 α
]
, D =

[
1
]
,

Lee & Varaiya, Signals and Systems 197

http://LeeVaraiya.org


5.3. THE [A,B,C,D] REPRESENTATION OF A SYSTEM

5.3.1 Impulse response

The [A,B,C,D] representation provides a complete description of an LTI system. It is a
complete in the sense that given any input sequence, we can calculate the output sequence
using the state and output equations of (5.16) (or (5.19) and (5.20) for the scalar case).
We will discover that there are several other descriptions of LTI systems that are also
complete. The first of these that we will consider is the impulse response. For systems
that are initially at rest, the impulse response gives enough information to calculate the
output sequence given any input sequence. The calculation is performed using what is
known as a convolution sum.

Suppose that M = 1, and the input sequence x is given by x = δ, where

∀ n ∈ Z, δ(n) =
{

1, if n = 0
0, if n 6= 0

. (5.17)

This function δ : Z→ R is called an impulse, or a Kronecker delta function (this func-
tion figures prominently in chapters 8 and 9). Remarkably, the response of an LTI system
to this particular input is a complete description of the LTI system.

Assuming the system is initially at rest, we can use (5.16) to write the state response to
input δ as

s(0) = 0

s(1) = B

s(2) = AB

s(3) = A2B

· · ·
s(n) = An−1B

· · ·

This is because if x = δ, then x(0) = 1 and x(n) = 0 for all n 6= 0.

To avoid confusion, we will use the name h instead of y for the output of a system when
the input is the impulse δ. In other words, while y is the output for any input x, h is the
output for the specific input δ. This output is called the impulse response. Using (5.16),

198 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


5. LINEAR SYSTEMS

it can be written as

h(0) = D

h(1) = CB

h(2) = CAB

h(3) = CA2B

· · ·
h(n) = CAn−1B

· · ·
Of course, since the system is initially at rest, h(n) = 0 for all n < 0. We can recognize
the pattern and write the impulse response as

∀ n ∈ Z, h(n) =


0, if n < 0
D, if n = 0
CAn−1B, if n≥ 1

. (5.18)

This formula is rarely the right way to compute an impulse response (usually it is easier
to directly determine the output when the input is an impulse), but it does relate the im-
pulse response to the [A,B,C,D] representation. The remarkable fact, developed below,
is that knowing the impulse response is sufficient to calculate the output given any input
(assuming the system is initially at rest).

The impulse response only makes sense if the dimension M of the input is one (otherwise
the input could not be an impulse as defined above). We can gain insight by considering
even more special systems where N = K = 1, as done in the next section.

5.3.2 One-dimensional SISO systems

The simplest LTI system is the one-dimensional, SISO system. Since N = M = K = 1,
the [A,B,C,D] representation is simply [a,b,c,d] where a,b,c,d are scalar constants. The
state-space model (5.16) is ∀n ∈ Z+,

s(n+1) = as(n)+bx(n), (5.19)

y(n) = cs(n)+dx(n). (5.20)

The initial state s(0) = initialState. For this system, the state at a given time index is a
real number, as are the input and the output.

Lee & Varaiya, Signals and Systems 199

http://LeeVaraiya.org


5.3. THE [A,B,C,D] REPRESENTATION OF A SYSTEM

Let us consider an example where we construct a state-space model from an input-output
description of a system.

Example 5.7: In Section 2.3.3 we considered a simple moving average example,
where the output y is given in terms of the input x by

∀ n ∈ Z+, y(n) = (x(n)+ x(n−1))/2. (5.21)

This is not a state-space model because it gives the output directly in terms of the
current and past input. To construct a state-space model for it, we first need to
decide what the state is. Usually, there are multiple answers, so we face a choice.
The state is a summary of the past. Examining (5.21), it is evident that we need
to remember the previous input, x(n− 1), in order to produce an output y(n) (of
course, we also need the current input, x(n), but that is not part of the past; that is
the present). So we can define the state to be

∀ n ∈ Z+, s(n) = x(n−1).

We assume that the system is initially at rest, i.e., s(0) = 0. (If we knew x(−1), we
would take that to be the initial state.) With this choice of state, we need to choose
a, b, c, and d so that (5.19) and (5.20) are equivalent to (5.21). Let us look first at
(5.20), which reads

y(n) = cs(n)+dx(n).

Observing that s(n) = x(n− 1), can you determine c and d? From (5.21), it is
obvious that c = d = 1/2.

Next, we determine a and b in

s(n+1) = as(n)+bx(n).

Since s(n) = x(n−1), it follows that s(n+1) = x(n), and this becomes

x(n) = ax(n−1)+bx(n),

from which we can see that a = 0 and b = 1.

Note that we could have chosen the state differently. For example,

∀ n ∈ Z+, s(n) = x(n−1)/2

would work fine. How would that change a, b, c, and d?

200 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


5. LINEAR SYSTEMS

In the preceding example, we started with an input-output description and obtained a
state-space model. The next example shows we can also go the other way.

Example 5.8: Consider a one-dimensional SISO system

s(n+1) = as(n)+bx(n),

y(n) = cs(n)+dx(n).

From these equations we get

y(n) = c[as(n−1)+bx(n−1)]+dx(n),

y(n−1) = cs(n−1)+dx(n−1).

Multiplying the second equation by a and subtracting from the first eliminates the
state to yield a difference equation description of the system,

y(n)−ay(n−1) = dx(n)+(cb−ad)x(n−1).

There is a generalization of this example that works for state-space models of any
dimension.

In the following example, we use a state-space model to calculate the output of a system
given an input sequence.

Example 5.9: Suppose the state s(n) is your bank balance at the beginning of day
n, and x(n) is the amount you deposit or withdraw during day n. If x(n) > 0, it
means that you are making a deposit of x(n) dollars, and if x(n)< 0, it means that
you are withdrawing x(n) dollars. The output of the system at time index n is the
bank balance on day n. Thus,

States = Inputs = Outputs = R.

Note that these sets are probably not, strictly speaking, equal to R , since deposits
and withdrawals can only be a whole number of cents. Using R is a considerable
simplification.

Lee & Varaiya, Signals and Systems 201

http://LeeVaraiya.org


5.3. THE [A,B,C,D] REPRESENTATION OF A SYSTEM

Suppose that the daily interest rate is r. Then your balance at the beginning of day
n+1 is given by

∀ n ∈ Z, s(n+1) = (1+ r)s(n)+ x(n). (5.22)

The output of the system is your current balance,

∀ n ∈ Z, y(n) = s(n).

Comparing to (5.19)-(5.20), we have a = 1+ r, b = 1, c = 1, and d = 0. The initial
condition is initialState, your bank balance at the beginning of day 0. Suppose
the daily interest rate is 0.01, or one percent (this would only be reasonable in an
economy with hyperinflation). Suppose that initialState = 100, and you deposit
1,000 dollars on day 0 and withdraw 30 every subsequent day for the next 30 days.
What is your balance s(31) on day 31? You can compute s(31) recursively from

s(0) = 100,

s(1) = 1.01s(0)+1000,

· · ·
s(n+1) = 1.01s(n)−30, n = 1, · · · ,30,

but this would be tedious. We can develop a formula that is easier to use. We will
do this for a general one-dimensional [a,b,c,d] system.

202 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


5. LINEAR SYSTEMS

Suppose we are given an input sequence x(0),x(1), · · · for an [a,b,c,d] system. As in
example 5.9, if we repeatedly use (5.19) we obtain the first few terms of a sequence,

s(0) = initialState, (5.23)

s(1) = as(0)+bx(0),

s(2) = as(1)+bx(1)

= a{as(0)+bx(0)}+bx(1)

= a2s(0)+abx(0)+bx(1),

s(3) = as(2)+bx(2)

= a{a2s(0)+abx(0)+bx(10)}+bx(2)

= a3s(0)+a2bx(0)+abx(1)+bx(2),

· · ·

From this it is not difficult to guess the general pattern for the state response and the output
response. The state response of (5.19) is given by

s(n) = aninitialState+
n−1
∑

m=0
an−1−mbx(m) (5.24)

for all n≥ 0, and the output response of (5.20) is given by

y(n) = caninitialState+
{

n−1
∑

m=0
can−1−mbx(m)

}
+dx(n) (5.25)

for all n≥ 0.

We use induction to show that these are correct. Induction is where we show that these are
correct for some fixed n, and then show that if it is correct for any n, then it is correct for
n+1. For n = 0, (5.24) gives s(0) = a0initialState = initialState, which matches (5.23),
and hence is correct.1 Now suppose that the right-hand side of (5.24) gives the correct
value of the response for some n ≥ 0. We must show that it gives the correct value of
the response for n+ 1. From (5.19) and using the hypothesis that (5.24) is the correct

1For any real number a, a0 = 1 by definition of exponentiation.

Lee & Varaiya, Signals and Systems 203

http://LeeVaraiya.org


5.3. THE [A,B,C,D] REPRESENTATION OF A SYSTEM

expression for s(n), we get

s(n+1) = as(n)+bx(n)

= a{aninitialState+
n−1

∑
m=0

an−1−mbx(m)}+bx(n)

= an+1initialState+
n−1

∑
m=0

an−mbx(m)+bx(n)

= an+1initialState+
n

∑
m=0

an−mbx(m),

which is the expression on the right-hand side of (5.24) for n+1. It follows by induction
that the response is indeed given by (5.24) for all n≥ 0. The fact that the output response
is given by (5.25) follows immediately from (5.20) and (5.24).

Example 5.10: We use formula (5.24) in example 5.9 to figure out the monthly
payment of $w on a $10,000, 32-month loan with a monthly interest of 0.01. So
in (5.24) we substitute n = 32,a = 1.01,b = 1, s(0) = −10,000,s(32) = 0, and
x(0) = · · ·= x(31) = w, to get

0 =−1.0132×10000+
31

∑
m=0

1.0131−mw.

Using the identity (valid for ρ 6= 1)

M

∑
m=0

ρ
m =

ρ1+M−1
ρ−1

,

we get
31

∑
m=0

1.0131−mw =
1.0132−1

0.01
w.

So the monthly payment is

w = 0.01× 10000×1.0132

1.0132−1
= 366.7.

204 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


5. LINEAR SYSTEMS

In the next example we identify the unknown parameter a of an [a,b,c,d] representation
given input-output data.

Example 5.11: Financial analysts compare alternative investment opportunities
using a measure called the internal rate of return. Suppose an investment of
$10,000 at the beginning of year 0 yields an income stream of $2,000 for each of
10 successive years, and nothing thereafter. By definition, the investment’s internal
rate of return is the annual interest rate r that a bank should give so that you can get
the same income stream. So we need to find r such that

s(n+1) = (1+ r)s(n)+ x(n),

with s(0) = 10,000, s(10) = 0, and x(0) = · · ·= x(9) =−2000. We recognize this
as a state update with a = 1+ r and b = 1. Substituting in (5.24) gives

0 = (1+ r)1010000−
9

∑
m=0

(1+ r)9−m×2000

= (1+ r)1010000− (1+ r)10−1
r

×2000,

so
1− (1+ r)−10 = 5r,

which we can solve by trial-and-error to obtain r ≈ 0.15 or 15 percent. Suppose
there is another investment opportunity for the same $10,000 investment that yields
an internal rate of return smaller than 15 percent. Then, all else being equal, one
would choose the first opportunity.

5.3.3 Zero-state and zero-input response

The expressions (5.24) for the state response and (5.25) for the output are each the sum
of two terms. The role of these two terms will be better understood if we consider them
in isolation.

If the system is initially at rest, initialState= 0, the first term vanishes, and only the second
term is left. This second term is called the zero-state response. It gives the response of

Lee & Varaiya, Signals and Systems 205

http://LeeVaraiya.org


5.3. THE [A,B,C,D] REPRESENTATION OF A SYSTEM

the system to an input sequence when the initial state is zero. For many applications,
particularly when modeling a physical system, the zero-state response is what we are
interested in.

If the input sequence is zero, i.e. 0 = x(0) = x(1) = · · · , the second term vanishes, and
only the first term is left. The first term is called the zero-input response. It gives the
response of the system to some initial condition, with zero input stimulus applied. Of
course, if the system is initially at rest and the input is zero, then the state remains at zero.
So the zero-input response is only interesting if the system is not initially at rest.

So the right-hand side of both equations (5.24) and (5.25) are a sum of a zero-state re-
sponse and a zero-input response. To make it clear which equation we are talking about,
we use the following terminology:

zero-state state response The state sequence s(n) when the
initial state is zero.

zero-input state response
The state sequence s(n) when the
input is zero.

zero-state output response The output sequence y(n) when
the initial state is zero.

zero-input output response
The output sequence y(n) when
the input is zero.

Note that “zero-state” really means that the initial state is zero, while “zero input” means
that the input is always zero.

Let us focus on the zero-state output response. First, note from (5.18) that in this scalar
case, the impulse response can be written

∀ n ∈ Z, h(n) =


0, if n < 0
d, if n = 0
can−1b, if n≥ 1

. (5.26)

We can use this sequence in (5.25) to simplify its form. This simplified form will show us
how to calculate the response to an arbitrary input given only the response to an impulse.

Combining (5.25) and (5.26), the zero-state output response can be written as

∀ n≥ 0, y(n) =
n

∑
m=0

h(n−m)x(m). (5.27)

206 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


5. LINEAR SYSTEMS

Thus, we see that h is a complete description of the system, in the sense that it is all we
need to know to find the output given any input x (assuming zero initial state).

Let x(n) = 0 for all n < 0, and, noting that h(n) = 0 for all n < 0, we can write this as

∀ n ∈ Z, y(n) =
∞

∑
m=−∞

h(n−m)x(m). (5.28)

The additional terms in the summation are harmless because they all have value zero. A
summation of this form is called a convolution sum. We say that y is the convolution of
h and x, and write it using the shorthand

y = h∗ x.

The ‘*’ symbol represents convolution. By changing variables, defining k = n−m, one
can see that the convolution sum can also be written in the equivalent form

∀ n ∈ Z, y(n) =
∞

∑
k=−∞

h(k)x(n− k). (5.29)

That is, h∗ x = x∗h. Convolution sums will be studied in much more detail in Chapter 9.

-0.5in
The impulse response of a system is simply the output when the input is an impulse. If
the system is initially at rest, then its output is given by the convolution of the input and
the impulse response.

Example 5.12: For our bank example, a = 1+ r, b = 1, c = 1, and d = 0 in (5.20).
The impulse response of the bank system is given by (5.18),

h(n) =
{

0, if n≤ 0
(1+ r)n−1, if n≥ 1

.

This represents the balance of a bank account with daily interest rate r if an initial
deposit of one dollar is put in on day 0, and no further deposits or withdrawals are
made. Notice that since 1+ r > 1, the balance continues to increase forever; see

Lee & Varaiya, Signals and Systems 207

http://LeeVaraiya.org


5.3. THE [A,B,C,D] REPRESENTATION OF A SYSTEM

Figure 5.2. This system is said to be unstable because even though the input is
always bounded, the output grows without bound. The system is also an infinite
impulse response (IIR) system.

Writing the output as a convolution, using (5.27), we see that

∀ n≥ 0, y(n) =
n−1

∑
m=0

(1+ r)n−m−1x(m).

This gives a simple formula that we can use to calculate the bank balance on any
given day (although it will be tedious for large n, and you will want to use a com-
puter).

The zero-input state response of the [a,b,c,d] system is

s(n) = ans(0),n≥ 0.

This is a geometric or exponential sequence. If s(0) 6= 0, the response will eventually
die out, i.e. s(n)→ 0 as n→ ∞, if and only if |a|< 1, in which case we say the system is
stable.

5.3.4 Multidimensional SISO systems

In the previous section we considered the simplest systems of the form of Figure 5.1
with M = K = N = 1. Systems with larger dimension, N > 1, occur more frequently in
practice. In this section, we allow the dimension N to be arbitrarily large, but keep the
simplification that M = K = 1, so the system is still SISO (single-input, single-output). In
the [A,B,C,D] representation, A is N×N, B is N×1, C is 1×N and D is 1×1. So for an
SISO system we may write B = b, C = cT , D = d, where b,c are N-dimensional column
vectors and d is a scalar. Thus, SISO systems have an [A,b,c,d] representation, and their
state-space model is

s(n+1) = As(n)+bx(n), (5.30)

y(n) = cT s(n)+dx(n). (5.31)

The result of evaluating the nextState function (5.30) is an N-dimensional vector, s(n+1).
The N×N matrix A defines the linear combination of the N elements of s(n) that are used

208 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


5. LINEAR SYSTEMS

to calculate the N elements s(n+ 1). The N-dimensional column vector b defines the
weights used to include x(n) in the linear combination for each element of s(n+1).

The result of evaluating the output function (5.31) is a scalar, y(n). The row vector cT

(which is N-dimensional) defines the linear combination of elements of s(n) and d defines
the weight used to include x(n) in the output y(n).

Example 5.13: Above we constructed a state-space model for a length-two mov-
ing average. The general form of this is the M-point moving average, given by

∀ n ∈ Z, y(n) =
1
M

M−1

∑
k=0

x(n− k). (5.32)

To be specific, let’s take M = 3. Equation (5.32) becomes

∀ n ∈ Z, y(n) =
1
3
(x(n)+ x(n−1)+ x(n−2)). (5.33)

We can construct a state-space model for this in a manner similar to what we did for
the length-two moving average. First, we need to decide what is the state. Recall
that the state is the summary of the past. Equation (5.33) tells us that we need to
remember x(n− 1) and x(n− 2), the two past inputs. We could define these to be
the state, collected as a column vector,

s(n) =
[

x(n−1)
x(n−2)

]
.

(Of course, we could have equally well put the elements in the other order; see
Exercise 9.)

Consider the output equation (5.31). We need to determine cT and d. The vector
cT is a row vector with dimension N = 2, so we must fill in the blanks in the output
equation below:

y(n) = [ , ]

[
x(n−1)
x(n−2)

]
+[ ]x(n)

It is easy to see that each of the three blanks must be filled with 1/M = 1/3 in order
to get (5.33). Thus,

c =
[

1/3
1/3

]
, d = 1/3.

Lee & Varaiya, Signals and Systems 209

http://LeeVaraiya.org


5.3. THE [A,B,C,D] REPRESENTATION OF A SYSTEM

Consider next the state equation (5.30). We need to determine A and b. The matrix
A is 2×2. The vector b is dimension 2 column vector. So we can fill in the blanks
in the output equation below:

s(n+1) =
[

x(n)
x(n−1)

]
=

[ ][
x(n−1)
x(n−2)

]
+

[ ]
x(n).

From this, we can fill in the blanks, getting

A =

[
0 0
1 0

]
and b =

[
1
0

]
.

Note that once the state is specified, there is only one way to fill in the blanks and
obtain the [A,b,c,d] representation.

The state response of the SISO system (5.30)-(5.31) is given by an expression similar to
(5.24), but involving matrices and vectors rather than just scalars,

s(n) = AninitialState+
n−1
∑

m=0
An−1−mbx(m) (5.34)

for all n≥ 0. The state response is also sometimes called the state trajectory. The output
response of (5.39) is given by

y(n) = cT AninitialState+
{

n−1
∑

m=0
cT An−1−mbx(m)

}
+dx(n) (5.35)

for all n≥ 0. (Exercise 13 asks you to derive these equations.)

Notice again that the state response (5.34) and the output response (5.35) are each the
sum of two terms. The first term is the zero-input response and the second term is the
zero-state response.

The impulse response, in terms of the state-space model, is the sequence of real numbers

h(n) =


0, if n < 0
d, if n = 0
cT An−1b, if n≥ 1

(5.36)

210 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


5. LINEAR SYSTEMS

This is just like (5.18) except that b and c are vectors, and d is a scalar. This formula
can be quite tedious to apply. It is usually easier to simply let x = δ, the Kronecker delta
function, and observe or calculate the output. The zero-state output response is given by
convolution of this impulse response with the input, (5.29).

Example 5.14: We can find the impulse response h of the moving average system
of (5.32) by letting x = δ, where δ is given by (5.17). That is,

∀ n ∈ Z, h(n) =
1
M

M−1

∑
k=0

δ(n− k).

Now, δ(n− k) = 0 except when n = k, at which point it equals one. Thus,

h(n) =


0 if n < 0
1/M if 0≤ n < M
0 if n≥M

.

This function, therefore, is the impulse response of an M-point moving average
system. This result could also have been obtained by comparing (5.32) to (5.29),
the output as a convolution. Or it could have been obtained by constructing a state-
space model for the general length-M moving average, and applying (5.36). How-
ever, this latter method would have proved the most tedious in this case.

Notice that in the previous example, the impulse response is finite in extent (it starts at 0
and stops at M− 1). For this reason, such a system is called a finite impulse response
system or FIR system.

Example 5.15: The M-point moving average can be viewed as a special case of
the more general FIR system given by

∀ n ∈ Z, y(n) =
M−1

∑
k=0

h(k)x(n− k).

Letting h(k) = 1/M for 0≤ k < M, we get the M-point moving average. Choosing
other values for h(k), however, we can get other responses (this will be explored in
chapter 8).

Lee & Varaiya, Signals and Systems 211

http://LeeVaraiya.org


5.3. THE [A,B,C,D] REPRESENTATION OF A SYSTEM

A state-space model for the FIR system is constructed by again deciding on the
state. A reasonable choice is the M−1 past samples of the input,

s(n) = [x(n−1),x(n−2), · · · ,x(n−M+1)]T ,

a column vector. The state-space model is then given by (5.30) and (5.31) with

A =


0 0 0 0 · · · 0 0
1 0 0 0 · · · 0 0
0 1 0 0 · · · 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 1 0

 , b =


1
0
· · ·
0
0

 ,

c =


h(1)
h(2)
· · ·
h(M−2)
h(M−1)

 , d = h(0).

Notice that the model that we found in example 5.13 has this form. The (M−1)×
(M− 1) matrix A has coefficients ai+1,i = 1, while all other coefficients are zero.
This is a rather special form of the A matrix, limited to FIR systems. The vector b
has the first coefficient equal to 1, while all others are zero. The vector c contains
the coefficients of the impulse response.

Many interesting systems, unlike this example, have an infinite impulse response, and
are referred to as IIR systems.

Example 5.16: Recall from example 5.6 that an echo effect can be obtained for
audio signals by realizing the following difference equation,

∀ n ∈ Z, y(n) = x(n)+αy(n−N).

The impulse response h can be obtained by simply letting the input be an impulse,
x = δ, and finding the output y = h. That is

∀ n ∈ Z, h(n) = δ(n)+αh(n−N). (5.37)

212 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


5. LINEAR SYSTEMS

But of course, this means that

h(n−N) = δ(n−N)+αh(n−2N).

Substituting this back into (5.37), we get

h(n) = δ(n)+αδ(n−N)+α
2h(n−2N).

But of course,
h(n−2N) = δ(n−2N)+αh(n−3N),

so
h(n) = δ(n)+αδ(n−N)+α

2
δ(n−2N)+α

3h(n−3N).

Continuing in this fashion, we see that the impulse response of the echo system
is the original impulse and an infinite set of echos (delayed and scaled impulses).
This can be written compactly as follows,

∀ n ∈ Z, h(n) =
∞

∑
k=0

α
k
δ(n− kN).

This impulse response is plotted in Figure 5.3 for N = 4 and α = 0.7. In that figure,
you can see that the original impulse gets through the system at n = 0, while the
first echo is scaled by 0.7 and delayed to n = 4, and the second echo is scaled by
0.72 and delayed to n = 8.

We can check this impulse response using the state-space representation of example
5.6 in (5.36). From example 5.6, we have that d = 1, so (5.36) is obviously correct
for n < 0 and n = 0. Checking it for n > 0 is somewhat more involved. Assuming
N = 4, we have from example 5.6

A =


0 0 0 α

1 0 0 0
0 1 0 0
0 0 1 0

 , b =


1
0
0
0

 , c =


0
0
0
α

 , d =
[

1
]
.

To use (5.36) we need to know An−1. It is easy to check that

A2 =


0 0 α 0
0 0 0 α

1 0 0 0
0 1 0 0

 , A3 =


0 α 0 0
0 0 α 0
0 0 0 α

1 0 0 0

 ,

Lee & Varaiya, Signals and Systems 213

http://LeeVaraiya.org


5.3. THE [A,B,C,D] REPRESENTATION OF A SYSTEM

A4 =


α 0 0 0
0 α 0 0
0 0 α 0
0 0 0 α

= αI,

where I is the 4×4 identity matrix. Thus,

A5 = αA, A6 = αA2, A7 = αA3, A8 = αA4 = α
2I.

The pattern continues. Note that because of the particular structure of b, An−1b is
simply the first column of An−1. Thus,

h(1) = cT A0b = [0 0 0 α]


1
0
0
0

= 0.

Similarly,

h(2) = cT Ab = [0 0 0 α]


0
1
0
0

= 0,

and

h(3) = cT A2b = [0 0 0 α]


0
0
1
0

= 0.

Only when we get to h(4) do we get a non-zero result,

h(4) = cT A3b = [0 0 0 α]


0
0
0
1

= α.

Continuing in this fashion, we can determine that 3 of every four samples of the
impulse response are zero, and the non-zero ones have the form αn/4 where n is a
multiple of four, in perfect agreement with figure 5.3.

214 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


5. LINEAR SYSTEMS

The echo system of the previous example is an example of an infinite impulse response
(IIR) system because the response to an impulse never completely dies out. Here is an-
other example of an IIR system.

Example 5.17: An audio oscillator is a system that produces a sinusoidal signal
of a given frequency. We can construct one with the two-dimensional system given
by

A =

[
cos(ω) −sin(ω)
sin(ω) cos(ω)

]
, b =

[
0
1

]
, c =

[
1
0

]
,d = 0,

where ω is a constant that will turn out to be the oscillation frequency. It can be
shown (see Exercise 14) that for all n = 0,1,2, · · ·

An =

[
cos(nω) −sin(nω)
sin(nω) cos(nω)

]
,

Suppose the initial state is

initialState = [0,1]T .

Then the zero-input state response is

szero−input(n) = An initialState

=

[
cos(nω) −sin(nω)
sin(nω) cos(nω)

][
0
1

]

=

[
−sin(nω)
cos(nω)

]
,

and the zero-input response is

yzero−input(n) = cT An initialState

=
[

1 0
][ −sin(nω)

cos(nω)

]
= −sin(nω).

Notice that without any input, as long as the initial state is non-zero, the system
will produce a sinusoidal output in perpetuity.

Lee & Varaiya, Signals and Systems 215

http://LeeVaraiya.org


5.3. THE [A,B,C,D] REPRESENTATION OF A SYSTEM

If we instead consider the situation where the system is initially at rest, then we find
that the impulse response is

h(n) =
{

d, if n = 0
cT An−1b, if n≥ 1

.

For the values of A,b,c in this example we obtain

h(n) =
{

0, if n = 0
−sin((n−1)ω), if n≥ 1

.

Thus, if the oscillator is initially at rest, it can be started with an impulse, and its
output will henceforth be sinusoidal, similar to the zero-input response. Thus, if
the oscillator is initially at rest, it can be started with an impulse at the input.

5.3.5 Multidimensional MIMO systems

In the preceding sections, the input and output were both scalars. A MIMO system is only
slightly more complicated. A state-space model for such a system is

∀ n ∈ Z+, s(n+1) = As(n)+Bx(n) (5.38)

y(n) = Cs(n)+Dx(n) (5.39)

where, s(n) ∈ RN , x(n) ∈ RM and y(n) ∈ RK , for any integer n. In the [A,B,C,D] repre-
sentation, A is an N×N (square) matrix, B is an N×M matrix, C is a K×N matrix, and
D is a K×M matrix. Now that these are all matrices, it is conventional to write them with
capital letters.

Let initialState ∈ RN be a given initial state. Let x(0),x(1),x(2), · · · , be a sequence of
inputs in RM (each input is a vector of dimension M). The state response of (5.38) is
given by

s(n) = AninitialState+
n−1

∑
m=0

An−1−mBx(m) (5.40)

for all n≥ 0, and the output sequence of (5.39) is given by

y(n) =CAninitialState+

{
n−1

∑
m=0

CAn−1−mBx(m)

}
+Dx(n) (5.41)

216 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


5. LINEAR SYSTEMS

for all n≥ 0 (each output is a vector of dimension K).

The right-hand sides of these equations are the sum of a zero-input response and a zero-
state response. Consider the zero-state output response,

y(n) =
n−1

∑
m=0

CAn−1−mBx(m)+Dx(n) (5.42)

for all n≥ 0. Define the sequence h(0),h(1),h(2), · · · of K×M matrices by

h(n) =
{

D, if n = 0
CAn−1B, if n≥ 1

(5.43)

This can no longer be called an impulse response, because the input cannot be an impulse;
it has the wrong dimension (see box).

From (5.42) it follows that the zero-state output response is given by

y(n) =
n

∑
m=0

h(n−m)x(m), n≥ 0 (5.44)

This is once again a convolution sum.

The i, jth element of the matrix sequence h(0),h(1), · · · , namely

hi, j(0),hi, j(1), · · · ,

is indeed the impulse response of the SISO system whose input is x j and whose output is
yi. In terms of Figure 5.1, this is the SISO system obtained by setting all inputs except
the jth input to zero, and considering only the ith output. If B j denotes the jth column of
B and CT

i denotes the ith row of C, then hi, j is the impulse response of the SISO system
[A,B j,Ci,Di, j]. All these SISO systems have the same A matrix.

5.3.6 Linear input-output function

In the systems that this chapter considers, the nextState and output functions are linear.
Recall that a function f : X → Y is linear if (and only if) it satisfies the superposition
property: for all x1,x2 ∈ X , and w,u ∈ R,

f (wx1 +ux2) = w f (x1)+u f (x2).

Lee & Varaiya, Signals and Systems 217

http://LeeVaraiya.org


5.4. CONTINUOUS-TIME STATE-SPACE MODELS

What does it mean for a system to be linear? Recall that a system S is a function S : X→Y ,
where X and Y are signal spaces. For a MIMO system, X = [Z→RM], and Y = [Z→RK ].
The function S is defined by (5.41), which gives y = S(x), given x. So the answer is
obvious. S is a linear system if S is a linear function. (It is an LTI system if it is also time
invariant).

Examining (5.41), or its simpler SISO versions, (5.25) or (5.35), it is easy to see that
superposition is satisfied if initialState is zero. This is because with zero initial state, the
output y(n) is a linear combination of the input samples x(n). Hence, a system given by
a state-space model that is initially at rest is a linear system. The superposition property
turns out to be an extremely useful property, as we will discover in the next chapters.

5.4 Continuous-time state-space models

A continuous-time state-space model for an LTI SISO system has the form

∀ t ∈ R+, ż(t) = Az(t)+bv(t) (5.45)

w(t) = cT z(t)+dv(t) (5.46)

where

• z : R+→ RN gives the state response;
• ż(t) is the derivative with respect to time of z evaluated at t ∈ R+;
• v : R+→ R is the input signal; and
• w : R+→ R is the output signal.

As with the discrete-time SISO model, A is an N×N matrix, b and c are N× 1 column
vectors, and d is a scalar. As before, this is the [A,b,c,d] representation of the system, but
the equations are different.

Continuous-time systems are no longer state machines, since inputs, outputs, and state
transitions do not occur at discrete instances. Nevertheless, they share many properties of
discrete systems. The major difference between this model and that of (5.30) and (5.31)
is that instead of giving new state as a function of the input and the old state, (5.45) gives
the derivative of the state. The derivative of a vector z is simply the vector consisting of
the derivative of each element of the vector. A derivative, of course, gives the trend of the
state at any particular time. Giving a trend makes more sense than giving a new state for
a continuous-time system, because the state evolves continuously.

218 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


5. LINEAR SYSTEMS

All of the methods that we have developed for discrete-time systems can also be developed
for continuous-time systems. However, they get somewhat more challenging mathemat-
ically because the summations become integrals. We leave it to a more advanced text to
explore this.

A continuous-time state-space model may be approximated by a discrete-time state-space
model (see box). In fact, this approximation forms the basis for most computer simula-
tions of continuous-time systems.

5.5 Summary

This chapter has begun the exploration of state machines whose state update and output
functions are linear. The number of possible states for such systems is typically infinite,
so brute-force methods that enumerate the states will be ineffective. Instead, powerful
mathematical tools leverage the linearity of the key functions. This chapter barely begins
an exploration of the very rich set of tools that engineers have developed for such systems.
Subsequent chapters will continue that exploration.

Lee & Varaiya, Signals and Systems 219

http://LeeVaraiya.org


5.5. SUMMARY

Basics: Functions yielding tuples

The ranges of the nextState and output functions are tuples. It helps if we break them
down further into an N-tuple and K-tuple of functions, one for each element of the result
tuple. That is, we define the functions

nextStatei : RN×RM → R, i = 1, · · · ,N,

such that ∀ s ∈ RN ,∀x ∈ RM,

nextState(s,x) = (nextState1(s,x), · · · ,nextStateN(s,x)).

We write simply
nextState = (nextState1, · · · ,nextStateN).

The output function can be given similarly as

output = (output1, · · · ,outputK),

where
outputi : RN×RM → R, i = 1, · · · ,K.

Using these, the state update equation and output equation can be written as follows. For
all n ∈ Z, n≥ 0,

s1(n+1) = nextState1((s1(n), · · · ,sN(n)),(x1(n), · · · ,xM(n))),

s2(n+1) = nextState2((s1(n), · · · ,sN(n)),(x1(n), · · · ,xM(n))),

· · · (5.6)

sN(n+1) = nextStateN((s1(n), · · · ,sN(n)),(x1(n), · · · ,xM(n))),

and

y1(n) = output1((s1(n), · · · ,sN(n)),(x1(n), · · · ,xM(n))),

y2(n) = output2((s1(n), · · · ,sN(n)),(x1(n), · · · ,xM(n))),

· · · (5.7)

yK(n) = outputK((s1(n), · · · ,sN(n)),(x1(n), · · · ,xM(n))).

This system of equations shows the structure of the operation of such a machine.

220 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


5. LINEAR SYSTEMS

Basics: Matrices and vectors

An M×N matrix A is written as

A =


a1,1 a1,2 · · · a1,N
a2,1 a2,2 · · · a2,N
· · · · · · · · · · · ·
aM,1 aM,2 · · · aM,N

 .
The dimension of the matrix is said to be M×N, where the number of rows is always
given first, and the number of columns is given second. In general, the coefficients
of the matrix are real or complex numbers, so they support all the standard arithmetic
operations. We write the matrix more compactly as

A = [ai, j,1≤ i≤M,1≤ j ≤ N],

or, even more simply as A = [ai, j] when the dimension of A is understood. The matrix
entries ai, j are called the coefficients of the matrix.

Lee & Varaiya, Signals and Systems 221

http://LeeVaraiya.org


5.5. SUMMARY

Basics: Vectors

A vector is a matrix with only one row or only one column. An N-dimensional column
vector s is written as an N×1 matrix

s =


s1
s2
· · ·
sN

 .
An N-dimensional row vector zT is written as a 1×N matrix

zT = [z1,z2, · · · ,zN ].

The transpose of a M×N matrix A = [ai, j] is the N×M matrix AT = [a j,i]. Therefore,
the transpose of an N-dimensional column vector s is the N-dimensional row vector sT ,
and the transpose of an N-dimensional row vector z is the N-dimensional column vector
zT .

From now on, unless explicitly stated otherwise, all vectors denoted s,x,y,b,c etc.
without the transpose notation are column vectors, and vectors denoted sT ,xT ,yT ,bT ,cT

with the transpose notation are row vectors. We follow convention and use lower case
letters to denote vectors and upper case letters to denote matrices.

A tuple of numeric values is often represented as a vector. A tuple, however, is neither
a “row” nor a “column.” Thus, the representation as a vector carries the additional
information that it is either a row or a column vector.

222 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


5. LINEAR SYSTEMS

Basics: Matrix arithmetic

Two matrices (or vectors, since they are also matrices) can be added or subtracted pro-
vided that they have the same dimension. Just as with adding or subtracting tuples,
the elements are added or subtracted. Thus if A = [ai, j] and B = [bi, j] and both have
dimension M×N, then

A+B = [ai, j +bi, j].

Under certain circumstances, matrices can also be multiplied. If A has dimension M×N
and B has dimension N×P, then the product AB is defined. The number of columns of
A must equal the number of rows of B. Suppose the matrices are given by

A =


a1,1 a1,2 · · · a1,N
a2,1 a2,2 · · · a2,N
· · · · · · · · · · · ·
aM,1 aM,2 · · · aM,N

 , B =


b1,1 b1,2 · · · b1,P
b2,1 b2,2 · · · b2,P
· · · · · · · · · · · ·
bN,1 bN,2 · · · bN,P

 .
Then the i, j element of the product C = AB isa

ci, j =
N

∑
m=1

ai,mbm, j. (5.9)

The product C has dimension M×P. (Continued on page 224.)
aIf this notation is unfamiliar, see box on page 77.

Lee & Varaiya, Signals and Systems 223

http://LeeVaraiya.org


5.5. SUMMARY

Basics: Matrix arithmetic (continued from page 223)

Matrix multiplication also works if one of the matrices is a vector. If b is a column vector
of dimension N, then c = Ab as defined by (5.9) is a column vector of dimension M. If
on the other hand bT is a row vector of dimension M, then cT = bT A as defined by (5.9)
is a row vector of dimension N.

Multiplying a matrix by a vector can be interpreted as applying a function to a tuple.
The vector is the tuple and the matrix (together with the definition of matrix multiplica-
tion) defines the function. Thus, in introducing matrix multiplication into our systems,
we are doing nothing new except introducing a more compact notation for defining a
particular class of functions.

A matrix A is a square matrix if it has the same number of rows and columns. A
square matrix may be multiplied by itself. Thus, An for some integer n > 0 is defined to
be A multiplied by itself n times. A0 is defined to be the identity matrix, also written I,
which has ones along the diagonal and zeros everywhere else. If A has an inverse, then
that inverse is denoted A−1, and AA−1 = A−1A = I.

-5 0 5 10
0

0.2

0.4

0.6

0.8

1

n

x

-5 0 5 10
0

0.5

1

1.5

2

2.5

n

s

Figure 5.2: Plots of the impulse (left) and the impulse response of example 5.12 (right)
for r = 0.1.

224 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


5. LINEAR SYSTEMS

h(n)

n......

1
0.7

0.49
0.343

Figure 5.3: Impulse response of the echo example 5.16 for α = 0.7 and N = 4.

Probing Further: Impulse Responses of MIMO Systems

The h function in (5.43) is not the impulse response of a MIMO system with represen-
tation [A,B,C,D]. However, with some care, it is possible to relate it to a set of impulse
responses that characterize the system.

The system has M inputs and K outputs, and for each integer n, h(n) in (5.43) is a
K×M matrix. Each input symbol x(n) is an M-tuple of reals. Let xm(n) represent the
m-th element in this tuple, and let xm represent the sequence of such elements. Similarly,
let yk(n) represent the k-th element of the output tuple, and yk the sequence of such
outputs. Finally, let hk,m(n) represent the k,m-th element of the matrix h(n), and let hk,m
represent the sequence of such elements.

The SISO system comprising the k-th output and m-th input has impulse response
hk,m. Specifically, if xm = δ and xp(n) = 0 for all p 6= m and for all n ∈ Z, then yk = hk,m.
Thus, h can be viewed as a matrix of impulse responses, one for each possible pairing
of input and output signals.

Lee & Varaiya, Signals and Systems 225

http://LeeVaraiya.org


5.5. SUMMARY

Probing Further: Approximating continuous-time

Discrete LTI systems often arise as approximations of systems where differential equa-
tions describe the physics. A differential equation has the form

∀ t ∈ R, ż(t) = g(z(t),v(t)). (5.47)

Here t ∈R stands for continuous time, z :R→RN is the state response, and v :R→RM is
the input signal. That is, at any time t, z(t) is the state and v(t) is the input. The notation
ż stands for derivative of the state response z with respect to t, so g : RN ×RM → RN is
a given function specifying the derivative of the state. Specifying the derivative of the
state is similar to specifying a state update. In a continuous-time system, state updates
occur continuously rather than discretely.

In general, z is an N-tuple, z = (z1, · · · ,zN), where zi : R+→ R. The derivative of an
N-tuple is the N-tuple of derivatives, ż = (ż1, · · · , żN). From calculus,

ż(t) =
dz
dt

= lim
δ→0

z(t +δ)− z(t)
δ

,

and so, if δ > 0 is a small number, we can approximate this derivative by

ż(t)≈ z(t +δ)− z(t)
δ

.

Using this for the derivative in the left-hand side of (5.47) we get

z(t +δ)− z(t) = δg(z(t),v(t)). (5.48)

Suppose we look at this equation at sample times t = 0,δ,2δ, · · · . Denote the value of
the state response at the n-th sample time by s(n) = z(nδ), and the value of the input by
x(n) = v(nδ). In terms of these variables, (5.48) becomes

s(n+1)− s(n) = δg(s(n),x(n))

which we can write as a state update equation,

s(n+1) = s(n)+δg(s(n),x(n)).

226 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


5. LINEAR SYSTEMS

Exercises

Each problem is annotated with the letter E, T, C which stands for exercise, requires some
thought, requires conceptualization. Some of the problems require using Matlab.

1. E Use induction to obtain (5.13) as a consequence of (5.12).

2. E Use induction to show that if

A =

[
a 1
0 a

]
,

then for all n≥ 0,

An =

[
an nan−1

0 an

]
.

3. E Let f : RN → RN be a linear function given by ∀ x ∈ RN , f (x) = Ax for some
N ×N matrix A. Give a similar definition for the composition f ◦ f . Is it also
linear?

4. E What would be the monthly payment in example 5.10 if the monthly interest is
0.015? Also, what would be the total payment over the 32 months?

5. E Construct a SISO state-space model for a system whose input and output are
related by

∀ n ∈ Z, y(n) = x(n−1)+ x(n−2).

You may assume the system is initially at rest. It is sufficient to give the A matrix,
vectors b and c, and scalar d of (5.30) and (5.31).

6. E The A matrix in (5.30) for a SISO system is

A =

[
1 1
0 1

]
.

Calculate the zero-input state response if

(a) the initial state is [1,0]T ,

(b) the initial state is [0,1]T ,

(c) the initial state is [1,1]T .

Lee & Varaiya, Signals and Systems 227

http://LeeVaraiya.org


EXERCISES

7. E Consider the one-dimensional state-space model, ∀ n ∈ Z+,

s(n+1) = s(n)+ x(n)
y(n) = s(n)

Suppose the initial state is s(0)= a for some given constant a. Find another constant
b such that if the first three inputs are x(0) = x(1) = x(2) = b, then y(3) = 0. Note:
In general, problems of this type are concerned with controllability. The question
is whether you can find an input (in this case constrained to be constant) such that
some particular condition on the output is met. The input becomes a control signal.

8. E A SISO LTI system has the A matrix given by

A =

[
0 1
0 0

]
and the b vector by [0,1]T . Suppose that s(0) = [0,0]T . Find the input sequence
x(0),x(1) so that the state at step 2 is s(2) = [1,2]T .

9. E In example 5.13, the state was chosen to be s(n) = [x(n− 1),x(n− 2)]T . How
would the [A,b,c,d] representation change if the state were chosen to be

(a) [x(n−2),x(n−1)]T ?

(b) [x(n−1)+ x(n−2),x(n−1)− x(n−2)]T ?

10. E Suppose the A matrix of a two-dimensional SISO system is

A = σ

[
cos(π/6) sin(π/6)
−sin(π/6) cos(π/6)

]
.

Suppose the initial state is s(0)= [1,0]T , and the input is zero. Sketch the zero-input
state response for n = 0,1, · · · ,12 for the cases

(a) σ = 0

(b) σ = 0.9

(c) σ = 1.1

11. E In this problem we further consider example 5.9. As in the example, suppose
initialState = 100, and you deposit 1,000 dollars on day 0 and withdraw 30 dollars
every subsequent day for the next 30 days.

228 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


5. LINEAR SYSTEMS

(a) Write a Matlab program to compute your bank balance s(n),0≤ n≤ 31, and
plot the result.

(b) Use formula (5.24) to calculate your bank balance at the beginning of day 31.
The following identity may prove useful:

N

∑
m=0

am =
1−aN+1

1−a
,

where a 6= 1.

12. E Use Matlab to calculate and plot the impulse response of the system

s(n+1) = as(n)+bx(n)

y(n) = cs(n)

for the following cases:

(a) a = 1.1

(b) a = 1.0

(c) a = 0.9

(d) a =−0.5

where in all cases, b = c = 1 and d = 0.

13. E Use induction to derive the SISO response expressions (5.34) and (5.35).

14. E Consider the two-dimensional system given in example 5.17, which has

A =

[
cos(ω) −sin(ω)
sin(ω) cos(ω)

]
.

Show that for all n = 0,1,2, · · ·

An =

[
cos(nω) −sin(nω)
sin(nω) cos(nω)

]
,

Hint: use induction and the identities

cos(α+β) = cos(α)cos(β)− sin(α)sin(β)

sin(α+β) = sin(α)cos(β)+ cos(α)sin(β)

Lee & Varaiya, Signals and Systems 229

http://LeeVaraiya.org


EXERCISES

15. E A damped oscillator is a variant of the oscillator in example 5.17, where the
sinusoidal signal decays with time. The damped oscillator is identical, except that
the A matrix is given by

A = α

[
cos(ω) −sin(ω)
sin(ω) cos(ω)

]
,

where 0 < α < 1 is a constant damping factor.

(a) Find the zero-input state response and the zero-input response for the initial
state

initialState = [0,1]T .

(b) Find the zero-state impulse response.

16. T Consider the audio echo system in example 5.6. A more interesting effect (some-
times called reverberation) can be obtained by simultaneously combining multiple
echos. In this problem, consider the following difference equation, which combines
two echos,

y(n) = x(n)+αy(n−M)+βy(n−N),

where the (discrete-time) audio input is x, the output is y, and 0 ≤ α < 1 and 0 ≤
β < 1 are constants that specify two distinct echo terms. Suppose for simplicity that
M = 4 and N = 5. These numbers are not large enough to yield an audible echo,
but the mathematical model is similar for larger numbers, so these are adequate
for study. Note that the zero-state impulse response of this system is much more
complicated than the simple echo system (try to find it!), which accounts for a
considerably more realistic echo effect.

(a) Give a state-space representation [A,B,C,D] of this system.

(b) Modify the system so that the audio input has two channels (stereo), but the
output is still one channel. Combine the two input channels by adding them
with equal weight. Give [A,B,C,D].

230 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


6
Hybrid Systems

Contents
6.1 Mixed models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
6.2 Modal models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
6.3 Timed automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
6.4 More interesting dynamics . . . . . . . . . . . . . . . . . . . . . . 250

Probing Further: Internet protocols . . . . . . . . . . . . . . . . . . 251
6.5 Supervisory control . . . . . . . . . . . . . . . . . . . . . . . . . . 260
6.6 Formal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

This text models signals and systems as functions. To develop understanding, we study
the structure of the domain and range of these functions, as well as the structure of the
mapping from the domain to the range. Despite the uniformity of this approach, we have
begun to evolve two distinct families of models. Chapters 3 and 4 structure this mapping
using state machines. Chapter 5 generalizes these state machines so that the number of
possible states is infinite, and specializes them so that the systems are linear and time-
invariant (LTI). LTI systems prove to yield to powerful analytical techniques, which are
only hinted at in Chapter 5. Chapters 7 through 14 will further develop these analytical
techniques by structuring the system mapping using frequency-domain concepts.

231



The analytical methods available for LTI systems prove so compelling that we wish to
apply them even to systems that are not LTI. In fact, no real-world system is truly LTI. At
a minimum, its properties were certainly different during the initial stages of the big bang,
so it cannot be time invariant. More practically, systems change over time; they are turned
on and off, they deteriorate, etc. Moreover, systems that behave as linear systems typically
do so only over some regime of operation. For example, if the magnitude the inputs
exceed some threshold, a real-world system will overload, and will no longer behave
linearly. A similar effect might result when the state wanders beyond some modest range.
This chapter shows how models that are only applicable some of the time can be used
effectively.

In chapters 3 and 4, signals are sequences of events. Their domain is (typically) N0,
and their range is (typically) a finite and arbitrary set of symbols. The domain is not
interpreted as time, but rather as indexes of a sequence. In chapters 5 and 7 through 14,
the domain of signals is interpreted as time. For continuous-time signals, the domain is
either R or R+, whereas for discrete-time signals it is either Z or N0. This interpretation
of the domain as time is essential to the notion of frequency that is used throughout the
forthcoming chapters.

Chapter 5 and this one provide a bridge between state-machine models and such time-
based models by developing state machine models for time-based systems. In this chap-
ter, we build another bridge between these two families of models by showing that they
can often be usefully combined and used simultaneously in the same model, rather than
as alternative views of a system. The resulting models are called hybrid systems. They
are a powerful tool for understanding real-world systems.

To understand the value of hybrid systems, it is useful to reflect on the relative strengths
and weaknesses of time-based models and state-machine models. Chapter 5 demonstrates
that state-machine models are more general by showing how they can be used to describe
time-based models. Since they are more general, why not just always use state-machine
models? The methods of state-machine models, such as composition by forming a product
of the state spaces and simulation do not yield the depth of understanding that we will get
in the subsequent chapters from looking at frequency response. Why not always use
frequency response? Frequency response is a rather specialized analytical tool. It applies
only to LTI systems. Most real-world systems are not LTI, so such powerful analytical
tools must be applied with careful caveats about the regime of operation over which they
do apply.

232 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


6. HYBRID SYSTEMS

Consider for example a home audio system. It takes data from a compact disc and converts
it into auditory stimulus. Is it LTI? Well, obviously not, since its system function changes
rather drastically when you turn it on and off. The acts of turning it on and off, however,
seem to match well the state transitions of a state machine. Can we come up with a model
where there is a state machine with two states, “on” and “off,” and associated with each
state there is an LTI system that describes the behavior of the system in the corresponding
mode of operation? Indeed we can. Such a model is called a hybrid system.

In order to get state machine models to coexist with time-based models, we need to inter-
pret state transitions on the time line used for the time-based portion of the system, be it
continuous time or discrete time. In the audio system, for example, we need to associate a
time with the acts of turning it on or off. The models used in chapters 3 and 4 do not nat-
urally do this, since the signals there are sequences of events. That is, they are functions
whose domain is N0, where there is no temporal association with an n ∈ N0.

Recall from Chapter 3 that the input and output alphabets of a state machine are required
to include a stuttering element, typically denoted absent. Whenever the state machine
reacts, if its input is the stuttering element, then it does not change state and its output
will be the stuttering element. This is key to hybrid system models because it allows
us to embed the state machine into a time-based model. At any time where there is no
interesting input event, the machine stutters.

A hybrid system combines time-based signals with sequences of events. The time-based
signals are of the form x : T → R, where R is some range (such as R or C), and T is
either R, R+, Z, or N0, depending on whether the time domain is discrete or continuous
and whether the model includes a time origin. In chapters 3 and 4, the event signals had
the form u : N0→ Symbols, where the set Symbols has a stuttering element. For a hybrid
system, however, these have to share a common time base with the time-based signals,
so they have the form u : T → Symbols. Thus, events occur in time. Typically, for most
t ∈ T , u(t) = absent, the stuttering element. The non-stuttering element is used only at
those discrete values of time where an event occurs.

6.1 Mixed models

A state machine model becomes a time-based model if it reacts at all times in the time
base T . This means that state machines and time-based models can interact as peers,
sending time-based signals to one another.

Lee & Varaiya, Signals and Systems 233

http://LeeVaraiya.org


6.1. MIXED MODELS

{(x(n), y(n)) | x(n) > y(n) } / buy

short
over
long

long
over
short

Trader

{(x(n), y(n)) | x(n) < y(n) } / sell

x

y

{buy, sell, absent}

shortTerm

longTerm 

price

2
x10

x
y

price

0

5

10

15

20

25

30

35

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

day

cl
os

in
g 

pr
ic

e

2
x10

sell

absent

buy

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

day

Figure 6.1: An implementation of the classical moving average cross-over method
for trading stocks.

234 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


6. HYBRID SYSTEMS

Example 6.1: Moving averages are popular on Wall Street for detecting trends in
stock prices. But in using them, a key question arises: how long should the moving
average be? A short-term moving average might detect short-term trends, while a
long-term moving average might detect long term trends. A classical method com-
bines the two and compares them to generate buy and sell signals. If the short-term
trend is more sharply upward than the long term trend, a buy signal is generated.
If the short term trend is more sharply downward than the long term trend, a sell
signal is generated.

A system implementing this moving average cross-over method is shown in
Figure 6.1. The input is the discrete-time signal price : Z→ R representing the
closing price of a stock each day. The LTI systems shortTerm and longTerm are
both moving average systems, but shortTerm averages fewer successive inputs than
longTerm. The outputs of these systems are the discrete-time signals x and y. The
finite state machine reacts on each sample from these signals. It begins in the state
short over long. The transition out of this state has the guard

{(x(n),y(n)) | x(n)> y(n)}.

When this transition is taken, a buy signal is generated. The sell signal is generated
similarly. The plots below show the buy and sell signals generated by a (synthetic)
sequence of stock prices.

This example illustrates a simple form of technical stock trading. In this extreme
form, it has the controversial feature that it ignores the fundamentals of the com-
pany whose stock is being traded. It is using the stock price alone as the indicator
of worth. In fact, much more sophisticated signal processing methods are used by
technical stock traders, and they often do take as inputs other quantifiers of com-
pany worth, such as reported revenues and profits.

6.2 Modal models

In the previous section, time-based systems are combined with state machines as peers. A
richer interaction is possible with a hierarchical combination. The general structure of a

Lee & Varaiya, Signals and Systems 235

http://LeeVaraiya.org


6.2. MODAL MODELS

guard/output 
action

guard/output 
action

state 
name

state 
name

...{events

...{time-based 
signals

... }events

... } time-based 
signals

time-based system time-based system

action

HybridSystem

Figure 6.2: Notation for hybrid systems.

hierarchical hybrid system model is shown in figure 6.2. In that figure, there is a two-state
finite state machine. There are some changes to the notation, however, from what was
used in chapters 3 and 4.

First, notice that the inputs and outputs include both event signals and time-based signals.
Second, notice that each state of the state machine is associated with a time-based system,
called the refinement of the state. The refinement of a state gives the time-based behavior
of HybridSystem while the machine is in that state. Thus, the states of the state machine
define modes of operation of the system, where the behavior in a given mode is given
by the refinement. A hybrid system is sometimes called a modal model for this reason.
The refinement has access to all the inputs of HybridSystem, and produces the time-based
output signals of HybridSystem while the machine is in its mode.

Note that the term “state” for such a hybrid system can become confusing. The state
machine has states, but so do the refinement systems (unless they are memoryless). When
there is any possibility of confusion we explicitly refer to the states of the machine as
modes, and we refer to the states of the refinement as refinement states. The (complete)
state of the hybrid system is a pair (m,s) where m is the mode and s is the state of the
time-based refinement system associated with mode m.

236 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


6. HYBRID SYSTEMS

Another difference from the notation used in chapters 3 and 4 is that state transitions in the
machine have, in addition to the usual guard and output notations, an action. The action
will typically set the initial refinement state of the time-based system in the destination
mode.

The guards are, as usual, sets. However, we need for the guards to be rich enough that
a transition can be triggered by a particular value of a refinement state or by a value of a
time-based input. Thus, the elements of the guards are tuples containing values of input
events, time-based signals, and the refinement states. In the state machines in chapters
3 and 4, the elements of the guards only contained values of input events. For hybrid
systems, we add time-based signals and refinement states.

Example 6.2: Overload of an electronic system might be modeled by a state tran-
sition that is triggered by the magnitude of the current refinement state exceeding
some threshold.

On the other hand, when the system is in some mode, the refinement state is only affected
by the time-based inputs. It is not affected by the event inputs. This keeps the time-based
models simple, so that they don’t have to deal with stuttering inputs.

Correspondingly, the time-based outputs are generated by the refinement, and hence need
not be mentioned after the slash on the transitions.

The state machine may react at any time in the time base T . The mode in which it is
before this reaction is called the current mode. It will take a discrete state transition
and switch to the destination mode if the input values and the refinement state at that
time match a guard. If it does not take a discrete state transition, then the state machine
stutters. In either case, the refinement of the current mode also reacts to the time-based
inputs, changes its state and produces outputs.

Example 6.3: Many high-end audio systems offer “digital signal processing.”
Such a system typically has an embedded computer (a digital signal processor or
DSP, see box on page 402). This computer is used to process the audio signal
in various ways, for example to add reverberation or to perform frequency selec-
tive filtering. A particularly simple function that might be performed is loudness
compensation, something offered by all but the cheapest audio systems.

Lee & Varaiya, Signals and Systems 237

http://LeeVaraiya.org


6.2. MODAL MODELS

{(u(n), x(n), s(n), y(n)) | u(n) = on}

flat boost

s(n+1) = As(n) + bx(n)
y(n) = x(n)

LoudnessCompensation

x

y

{on, off, absent}

{(u(n), x(n), s(n), y(n)) | u(n) = off}

s(n+1) = As(n) + bx(n)
y(n) = cTs(n) + dx(n)

Figure 6.3: This system implements loundness compensation, described in ex-
ample 6.3

238 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


6. HYBRID SYSTEMS

At low volumes, the human ear is less sensitive to low frequencies (base notes)
than to high frequencies. Loudness compensation boosts the low frequencies. This
is done simply by implementing a filter, which is a linear time-invariant system that
can be described by a state-space model, as in the previous chapter. Thus, there are
two modes, one where the low frequencies are boosted (using the filter), and one
where they are not.

A simple realization of loudness compensation offers a switch on a control panel to
turn on and off the compensation. Figure 6.3 shows a hybrid system that reacts to
input events from this switch to select from among two modes. The upper input is
simply an event indicating the position of the control switch when it is thrown. The
lower input x is a discrete-time signal, probably sampled at 44,100 samples/second,
the CD rate. The LoudnessCompensation hybrid system has two modes. In the flat
mode, the output y is simply set equal to the input x. That is, if Tf lat ⊂ Z is the time
indexes during which the machine is in the flat mode, then

∀ n ∈ Tf lat , y(n) = x(n).

This (obviously) does not boost low frequencies, since the output is equal to the
input.

When the on event occurs, the machine transitions to the boost mode, where the
filter is applied to the input x. This is done using the state update and output equa-
tions

∀ n ∈ Tboost , s(n+1) = As(n)+bx(n)

y(n) = cT s(n)+dx(n),

where A,b,c,d are chosen to boost the low frequencies (how to do that is explained
in Chapter 9).

Note that in the flat mode, even though the output equation does not depend on the
state, the state update equation is still applied. This ensures that when switching
between states, no glitches are heard in the audio signal. The state of the boost
refinement is maintained even when the mode is flat.

This loudness compensator is not very sophisticated. A more sophisticated version
would have a set of compensation filters and would select among them depending
on the volume level. This is explored in Exercise 1.

Lee & Varaiya, Signals and Systems 239

http://LeeVaraiya.org


6.3. TIMED AUTOMATA

We consider a sequence of special cases of hybrid systems. Although the next few exam-
ples are all continuous-time models, it is easy to construct similar discrete-time models.

6.3 Timed automata

Timed automata are the simplest continuous-time hybrid systems. They are modal models
where the time-based refinements have very simple dynamics; all they do is measure the
passage of time. Such refinements are called clocks. The resulting models are finite state
machines (automata) with time. Note that although all the examples in this section use
continuous time, discrete-time versions are very similar.

A clock is modeled by a first-order differential equation,

∀ t ∈ Tm, ṡ(t) = a,

where s : R→ R is a function, s(t) is the value of the clock at time t, and Tm ⊂ T is the
subset of time during which the hybrid system is in mode m. The rate of the clock, a, is a
constant while the system is in this mode.

Example 6.4: Suppose we want to produce a sequence of output events called tick
with the time between two consecutive ticks alternating between 1 and 2 seconds.
That is, we want to produce a tick at times 1,3,4,6,7,9, · · · .
A hybrid system tickGenerator that does this is illustrated in Figure 6.4. There
are two modes labeled mode 1 and mode 2. The refinement state in each mode
is the value of a clock at time t, denoted by s ∈ R. So at any time t the state of
tickGenerator is the pair (mode(t),s(t)). The output is the event signal v and the
time-based signal s. There is no input.

In both modes, s evolves according to the differential equation ṡ(t) = 1, where ṡ(t)
is the derivative of s with respect to time evaluated at some time t. Thus, s simply
measures the passage of time, with its value rising 1 second for every second of
elapsed time.

The behavior of the system is shown in Figure 6.5. At time 0, as indicated by the
bold arrow in Figure 6.4, the system initially enters mode 1. The bold arrow has an
action, “s(0) := 0,” which sets s(0) to 0. The notation “:=” is used instead of “=”
to emphasize that this is an assignment, not an assertion (see Section A.1.1).

240 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


6. HYBRID SYSTEMS

{s(t) |  s(t) = 1} / tick
s(t) := 0

mode 1 mode 2

s(t) = 1

tickGenerator

{s(t) |  s(t) = 2} / tick
s(t) := 0

.
s(t) = 1
.

v(t) ∈{tick, absent}

s(t) ∈ Reals

s(0) := 0

Figure 6.4: This hybrid system generates tick at time intervals alternating be-
tween 1 and 2 seconds. It is a timed automaton.

Lee & Varaiya, Signals and Systems 241

http://LeeVaraiya.org


6.3. TIMED AUTOMATA

mode(t)

t...
(a)

(b)

(c)

s(t)

t...

v(t)

t...absent
tick

0 1 3 4 

Figure 6.5: (a) The modes of the hybrid system of Figure 6.4, (b) the refinement
state s, and (c) the discrete event output v.

In this example, there is no input, so a guard is a subset of the possible values (R)
of the refinement states. The guard on the transition from mode 1 to mode 2 is

{s(t) | s(t) = 1},

which is satisfied one time unit after beginning. For all t ∈ [0,1], s(t) = t. At time
t = 1, this guard is satisfied, the transition is taken, and the output event v(1) = tick
is produced. For all t ∈ [0,1), v(t) has value absent.

This transition also has an action, “s(t) := 0,” which resets s to zero. This gives the
initial condition for the refinement system of the destination mode. In our defini-
tion, at time t = 1, s(t) = 1, even though the action seems to contradict this. This
is emphasized in Figure 6.5 by showing with a bold dot the value of s at each dis-
continuity. The action s(t) := 0 is merely providing the initial conditions for the
refinement of the destination mode. But the destination mode is not active until
t > 1, so the action is setting s(1+) to 0, where 1+ denotes a time infinitesimally
larger than 1.

242 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


6. HYBRID SYSTEMS

For t ∈ (1,3], the system remains in mode 2, evolving according to the differential
equation

ṡ(t) = 1,

s(1) = 0.

So for 1 < t ≤ 3,

s(t) = s(1)+
∫ t

1
1dt = t−1.

At time t = 3, the guard on the arc from mode 2 to mode 1 is satisfied, so the
transition is taken. The output event tick is again produced, and s is reset to 0 again.

Notice in Figure 6.5 that the output v is absent for all but a few discrete values of t ∈ R.
This signal is called a discrete event signal for this reason. Of course, this signal can also
be reinterpreted as a sequence of tick events with an arbitrary number of stuttering events
in between. That signal could therefore be supplied as input to an ordinary state machine,
enabling compositions of ordinary state machines with hybrid systems.

Also notice in Figure 6.5 that the hybrid system evolves in alternating phases: there is a
time-passage phase in which the system stays in the same mode and its refinement state
changes with the passage of time; this is followed by an instantaneous discrete-event
phase in which a mode transition occurs, an output event is produced, and the refinement
state in the destination mode is initialized. In the figure, the time-passage phases are
(0,1],(1,3],(3,4], · · · and the discrete-event phases occur at 1,3,4, · · · .
Transitions between modes have actions associated with them. Sometimes, it is useful to
have transitions from one mode back to itself, just so that the action can be realized. This
is illustrated in the next example.

Example 6.5: Figure 6.6 shows a hybrid system representation of the 60-minute
parking meter considered in Chapter 3. In the version in Figure 3.6, the states of a
state machine are used to measure the passage of time by counting ticks provided
by the environment. In the hybrid version of figure 6.6, the passage of time is
explicitly modeled by first-order differential equations.

There are two modes, expired and safe, and the refinement state at time t is s(t)∈R.
At time t = 0, the initial mode is expired, and s(0) = 0. In the expired mode, s

Lee & Varaiya, Signals and Systems 243

http://LeeVaraiya.org


6.3. TIMED AUTOMATA

nickel / absent
s(t) := 5

expired safe

s(t) = 0

parkingMeter

timeout / expired

.
s(t) = −1
.

v(t) ∈{expired, 
absent}

s(0) := 0

u(t) ∈{coin5, 
coin25, absent}

quarter / absent
s(t) := 25

nickel / absent
s(t) := min(s(t) + 5, 60)

quarter / absent
s(t) := min(s(t) + 25, 60)

timeout = {(u(t), s(t)) | u(t) = absent and s(t) = 0}
nickel = {(u(t), s(t)) | u(t) = coin5}

quarter = {(u(t), s(t)) | u(t) = coin25}

Figure 6.6: A hybrid system representation of a 60-minute parking meter.

244 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


6. HYBRID SYSTEMS

remains at 0. The input events coin5 and coin25 cause one of two transitions from
expired to safe to be taken. These transitions have guards that are named nickel and
quarter and are defined by

nickel = {(u(t),s(t)) | u(t) = coin5}

quarter = {(u(t),s(t)) | u(t) = coin25}.
Using names for these guards in the figure makes it more readable. It would be
cluttered if the guards were directly noted on the transitions.

The transitions from expired to safe produce absent. The actions on the transitions
change the value of s to 5 and 25, depending on whether coin5 or coin25 is received.

In the safe mode, the refinement state decreases according to the differential equa-
tion of the clock,

∀ t ∈ Tsa f e, ṡ(t) =−1.

There are three possible outgoing transitions from this mode. If the input event
coin5 or coin25 occurs, then one of two self-loop transitions is taken, no output is
produced, and the associated action increments s by setting as s(t) := min(s(t)+
5,60) or s(t) := min(s(t)+25,60). But if the guard timeout is satisfied, where

timeout = {(u(t),s(t)) | u(t) = absent and s(t) = 0}

then there is a transition to expired and the output event expired is produced. Note
that this guard requires that u(t) = absent, so that if the parking meter expires at
the very moment that a coin arrives, then the coin is properly registered.

In this system, the refinement state evolves differently in the two modes; in expired,
s remains at 0 (since ṡ(t) = 0), but in safe, s obeys the differential equation ṡ(t) =
−1.

In the previous example, the transitions from safe back to safe were used for their actions,
which react to input events by setting the values of refinement states. This gives a clean
way to model discontinuities in continuous-time signals, because the state trajectory is a
continuous-time signal. A more extreme example is given next, where there is only one
mode.

Lee & Varaiya, Signals and Systems 245

http://LeeVaraiya.org


6.3. TIMED AUTOMATA

timer

s(t) = 1

TickGenerator

.

v(t) ∈{safe,
expired, absent}

s(0) := 0

{s(t) | s(t) = 1} / tick
s(t) := 0 v(t) ∈{tick,

absent}
parking
meter
state 

machine

u(t) ∈{coin5, coin25, absent}

Figure 6.7: The 60-minute parking meter as a cascade composition of
tickGenerator and an ordinary finite state machine.

246 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


6. HYBRID SYSTEMS

Example 6.6: We could also implement the parking meter as a cascade compo-
sition using a timed automaton, TickGenerator, with only one mode, timer, and
which produces a tick event every minute. This event serves as an input to the park-
ing meter finite state machine of Figure 3.6. The cascade composition is shown in
Figure 6.7. The parking meter machine also accepts an additional (product-form)
input event from {coin5, coin25}, and produces the output event safe or expired.
The difference between Figure 3.6 and 6.7 is that in the former tick was an input
event from the environment, whereas in the latter we explicitly construct a compo-
nent, namely TickGenerator, which produces a tick every minute.

Timed automata are commonly used in modeling communication protocols, the logic
used to achieve communication over a network. The following example models the trans-
port layer of a sender of data on the internet.

Example 6.7: Consider how an application such as an e-mail program sends a
file over a communication network like the internet. There are two host computers
called the Sender and Receiver. The file that Sender wants to send to Receiver is
first divided into a sequence of finite bit strings called packets. For the purposes
of this example, we do not care what is contained by the packets, so we consider
packet to be an event. We are interested in the fact that it needs to be transmitted,
not in its contents.

The problem we address in this example is that the network is unreliable. Packets
that are launched into it may never emerge. If the network is congested, packets get
dropped. We will design a protocol whereby the sender of a packet waits a certain
amount of time for an acknowledgement. If it does not receive the acknowledge-
ment in that time, then it retransmits the packet. This is an ideal application for
timed automata.

The upper diagram in Figure 6.8 shows the structure of the communication system.
Everything begins when the sender produces a packet event. The SenderProtocol
system reacts by producing a transmit event, which instructs its network interface
card or NIC to launch the packet into the internet. The NIC is the physical de-
vice (such as the ethernet card in your desktop computer) that converts the packet

Lee & Varaiya, Signals and Systems 247

http://LeeVaraiya.org


6.3. TIMED AUTOMATA

Application

Sender

SenderProtocol

{packet, absent} {ack, absent}

NIC Internet NIC ReceiverProtocol

Application

Receiver

{packet, absent}

{ack, absent}

{transmit, retransmit, absent} {packet, absent}

{ack, absent}

packetArrives / (transmit, absent)
s(t) := timeoutTime

idle timing

s(t) = 0

SenderProtocol

ackArrives / (absent, ack)
s(t) := 0

.
s(t) = −1
.

v1(t) ∈{transmit, 
retransmit, absent}

s(0) := 0

v2(t) ∈{ack, absent}

timeout / (retransmit, absent)
s(t) := timeoutTime

u1(t) ∈{packet, absent}

u2(t) ∈{ack, absent}

timeout = {(u1(t), u2(t), s(t)) | s(t) = 0 and u2(t) ≠  ack}
packetArrives = {(u1(t), u2(t), s(t)) | u1(t) = packet}

ackArrives = {(u1(t), u2(t), s(t)) | u2(t) = ack}

Figure 6.8: The top diagram describes the structure of a communication system.
The lower diagram is the timed automaton that implements the sender protocol.

248 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


6. HYBRID SYSTEMS

into the appropriate electrical signal that is transmitted through the network. The
internet transfers this signal to the NIC of the receiver. That NIC converts the
signal back into the packet and forwards it to the ReceiverProtocol component.
The ReceiverProtocol in turn forwards the packet to the e-mail application in the
Receiver and simultaneously sends an acknowledgement packet, called ack, to its
NIC.

The receiver’s NIC sends the ack packet back through the network to the Sender.
The sender’s NIC receives this packet and forwards an ack to the SenderProtocol.
The SenderProtocol notifies the application that the packet was indeed delivered.
The application can now send the next packet, and the cycle is repeated until the
entire file is delivered.

In reality, the network may drop the packet so that it is not delivered to the receiver,
who therefore will not send the corresponding ack. The SenderProtocol system is
designed to take care of this contingency. It is a timed automaton with two modes,
idle and timing, and one refinement state s corresponding to a clock. Initially it is
in the idle mode and s(0) = 0. In the idle mode, ṡ(t) = 0, so the refinement state
remains at zero. When SenderProtocol receives a packet it makes a transition to the
timing mode, sends the output event transmit to its NIC, and resets s to a timeout
value timeoutTime.

In the timing mode, there are two possibile transitions. In the normal case, the input
event ack is received before the guard {s(t) == 0} is satisfied. The transition to
mode idle is taken, the output event ack is sent to the application, and the clock
value s(t) is reset to 0. The system waits for another packet from the application.
In the second case, the guard {s(t) == 0} is satisfied (before event ack), and the
self-loop transition is taken. In this case, the output event retransmit is sent to the
NIC, and s(t) is reset to timeoutTime.

Notice a feature of this design that may not be expected. If a packet arrives while
the machine is in mode timing, the packet is ignored. What happens if a packet
happens to arrive simultaneously with an ack while the machine is mode timing?

Exercise 10 asks you to construct the corresponding receiver protocol, which is
simpler.

In summary, the SenderProtocol machine repeatedly retransmits a packet every
timeoutTime seconds until it receives an ack. This reveals a flaw in the protocol.
If the network is for some reason unable ever to successfully transmit a packet to
the receiver, the machine will continue retransmission for ever. A better protocol

Lee & Varaiya, Signals and Systems 249

http://LeeVaraiya.org


6.4. MORE INTERESTING DYNAMICS

packetArrives / (transmit, absent)
s(t) := timeoutTime

r(t) := 5 × timeoutTime

idle timing

s(t) = 0
r(t) = 0

BetterSenderProtocol

ackArrives / (absent, ack)
s(t) := 0
r(0) := 0.

s(t) = −1
r(t) = −1

.

s(0) := 0
r(0) := 0

timeout / (retransmit, absent)
s(t) := timeoutTime

. .

failure / (absent, fail)
s(t) := 0

timeout = {(u1(t), u2(t), s(t), r(t)) | s(t) = 0 and r(t) ≠ 0 and u1(t) ≠ ack}
packetArrives = {(u1(t), u2(t), s(t), r(t)) | u1(t) = packet}

ackArrives = {(u1(t), u2(t), s(t), r(t)) | u2(t) = ack}

v1(t) ∈{transmit, 
retransmit, absent}

v2(t) ∈{ack,
fail, absent}

u1(t) ∈{packet, absent}

u2(t) ∈{ack, absent}

failure = {(u1(t), u2(t), s(t), r(t)) | r(t) = 0 and u1(t) ≠ ack}

Figure 6.9: An improved sender protocol with two clocks, one of which detects a
failed connection.

would retransmit a packet a certain number of times, say five times, and if it is
unsuccessful, it would return to idle and send a message connectionFailed to the
application. The hybrid system of Figure 6.9 incorporates this feature by adding
another clock whose value is r(t).

6.4 More interesting dynamics

In timed automata, all that happens in the time-based refinement systems is that time
passes. Hybrid systems, however, are much more interesting when the behavior of the
refinements is more complex.

Example 6.8: Consider the physical system depicted in Figure 6.11. Two sticky
round masses are attached to springs. The springs are compressed or extended and

250 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


6. HYBRID SYSTEMS

Probing Further: Internet protocols

Communication between two computers, Sender and Receiver, each connected to the
internet, is coordinated by a set of protocols. Each protocol can be modeled by a pair
of hybrid systems, one in the Sender and the other in the Receiver. These protocols are
arranged in a protocol stack, as shown in figure 6.10. Each layer in the stack performs
a certain function, and interacts with the corresponding layer in the other computer. The
physical layer converts a bit stream into an electrical signal and vice versa and transfers
the signal over one link of the network.

The network itself consists of many physical links connected by routers. The routers
act as computers, but are missing the higher levels of the protocol stack. The physi-
cal layer transports bits over wires, optical fibers, or radio links. The medium access
layer manages contention for the physical communication resource, preventing colli-
sions among multiple users of the link. The network layer routes packets appropriately
through the network. The transport layer ensures that the end-to-end transfer of pack-
ets is reliable, even if the network layer is unreliable. The application layer converts
whatever information is to be sent (such as an image or e-mail) into packets and then
reassembles the packets into the appropriate information.

This layered approach provides an abstraction mechanism. Each layer conceptually
interacts with the corresponding layer at a remote machine, as suggested by the dotted
lines in figure 6.10. Each layer provides a “service” to the layer above it. For example,
the medium access layer offers as a service the transfer of a packet over a single link.
The network layer uses this service to transfer a packet over a sequence of links between
the end hosts. This abstraction mechanism permits the design of a single layer, say the
transport layer, assuming the service of the network layer, without regard to the layers
below the network layer. The hybrid system in example 6.7, for instance, models only
the transport layer.

The transport layer in an end-to-end protocol, so it is implemented only at the end
points in the connection, as shown in Figure 6.10. The routers in the network only need
to implement the lower layers.

Each protocol layer is modeled as a pair of hybrid systems. Typically, these are timed
automata, since coordination between end hosts is achieved via several clocks as in
example 6.7. When a guard associated with a clock is satisfied, this signals some con-
tingency in the communication, just as the timeout of the clock in Figure 6.8 signals that
a packet may be lost.

Lee & Varaiya, Signals and Systems 251

http://LeeVaraiya.org


6.4. MORE INTERESTING DYNAMICS

Application

Transport

Network

MediumAccess

Physical

Network

MediumAccess

Physical

Network

MediumAccess

Physical

Application

Transport

Network

MediumAccess

Physical...

Internet

link link

Sender Receiver

Figure 6.10: Network protocols are organized in a stack. Each protocol interacts
with the corresponding layer in a remote computer. The dotted lines indicate
conceptual interactions, whereas the solid lines indicate physical interactions.

252 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


6. HYBRID SYSTEMS

y1(t)

y2(t)

y1(t) 
y2(t) 

0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

0 5 10 15 20 25 30 35 40 45 50 

Displacement of Masses 

time 

Figure 6.11: Sticky masses system considered in example 6.8.

Lee & Varaiya, Signals and Systems 253

http://LeeVaraiya.org


6.4. MORE INTERESTING DYNAMICS

stick /

y(t) := y1(t)

y(t) := (y1(t)m1 + y2(t)m2)/(m1+ m2)

apart together

y1(t) = k1(p1 − y1(t))/m1

stickyMasses

unstick /

y1(t) := y(t)

y2(t) := y(t)

y1(t) := y(t)

y2(t) := y(t)..

y1(t) ∈ Reals

y2(t) ∈ Reals

y1(0) := initialPosition1
y2(0) := initialPosition2

y1(0) := 0
y2(0) := 0

y2(t) = k2(p2 − y2(t))/m2
..

y(t) =
..  k1 p1 + k2 p2 − (k1+ k2)y(t)

m1+ m2

.

.

.

.
.

.

.

. .

y1(t) = y(t);   y2(t) = y(t)

unstick = {(y(t), y(t)) | (k1 − k2)y(t) + k2 p2− k1p1 > stickiness}
.

stick = {(y1(t), y1(t), y2(t), y2(t)) | y1(t) = = y2(t)}
. .

Figure 6.12: Hybrid system model for the sticky masses system considered in
example 6.8.

254 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


6. HYBRID SYSTEMS

then released. The masses oscillate on a frictionless table. If they collide, they stick
together and oscillate together. After some time, the stickiness decays, and masses
pull apart again.

A plot of the displacement of the two masses as a function of time is shown in the
figure. Both springs begin compressed, so the masses begin moving towards one
another. They almost immediately collide, and then oscillate together for a brief
period until they pull apart. In this plot, they collide two more times, and almost
collide a third time.

The physics of this problem is quite simple if we assume idealized springs. Let
y1(t) denote the right edge of the left mass at time t, and y2(t) denote the left edge
of the right mass at time t, as shown in Figure 6.11. Let p1 and p2 denote the
neutral positions of the two masses, i.e. when the springs are neither extended nor
compressed, so the force is zero. For an ideal spring, the force at time t on the mass
is proportional to p1− y1(t) (for the left mass) and p2− y2(t) (for the right mass).
The force is positive to the right and negative to the left.

Let the spring constants be k1 and k2, respectively. Then the force on the left spring
is k1(p1− y1(t)), and the force on the right spring is k2(p2− y2(t)). Let the masses
be m1 and m2 respectively. Now we can use Newton’s law, which relates force,
mass, and acceleration,

f = ma.

The acceleration is the second derivative of the position with respect to time, which
we write ÿ1(t) and ÿ2(t) respectively. Thus, as long as the masses are separate, their
dynamics are given by

ÿ1(t) = k1(p1− y1(t))/m1 (6.1)

ÿ2(t) = k2(p2− y2(t))/m2. (6.2)

When the masses collide, however, the situation changes. With the masses stuck
together, they behave as a single object with mass m1 +m2. This single object is
pulled in opposite directions by two springs. While the masses are stuck together,
y1(t) = y2(t). Let

y(t) = y1(t) = y2(t).

The dynamics are then given by

ÿ(t) =
k1 p1 + k2 p2− (k1 + k2)y(t)

m1 +m2
. (6.3)

Lee & Varaiya, Signals and Systems 255

http://LeeVaraiya.org


6.4. MORE INTERESTING DYNAMICS

It is easy to see now how to construct a hybrid systems model for this physical
system. The model is shown in Figure 6.12. It has two modes, apart and together.
The refinement of the apart mode is given by (6.1) and (6.2), while the refinement
of the together mode is given by (6.3).

We still have work to do, however, to label the transitions. The initial transition is
shown in Figure 6.12 entering the apart mode. Thus, we are assuming the masses
begin apart. Moreover, this transition is labeled with an action that sets the initial
refinement state. Intuitively, the initial state of the masses is their positions and
their initial velocities. In fact, we can define the refinement state to be

s(t) =


y1(t)
ẏ1(t)
y2(t)
ẏ2(t)

 .
It is then a simple matter to rewrite (6.1) and (6.2) in the form

ṡ(t) = g(s(t)) (6.4)

for a suitably chosen function g (see Exercise 12).

In Figure 6.12, the initial state has the masses at some specified displacement, and
the velocities at zero.

The transition from apart to together has the guard

stick = {(y1(t), ẏ1(t),y2(t), ẏ2(t)) | y1(t) == y2(t)}.
Thus, when the refinement state of apart satisfies this guard, the transition will be
taken. No event output is produced, as indicated by the blank after the slash. How-
ever, an action is taken to set the initial refinement state of together. The refinement
state of together could be the same s(t) as above, with the additional constraint that
y1(t) = y2(t) and ẏ1(t) = ẏ2(t), because the masses are stuck together. Or more sim-
ply, we could define the state z(t) of together to be the position y(t) and velocity
ẏ(t), where y(t) = y1(t) = y2(t),

z(t) =
[

y(t)
ẏ(t)

]
.

The transition from apart to together sets y(t) equal to y1(t) (it could equally well
have chosen y2(t), since these are equal). It sets the velocity to conserve momen-
tum. The momentum of the left mass is ẏ1(t)m1, the momentum of the right mass

256 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


6. HYBRID SYSTEMS

is ẏ2(t)m2, and the momentum of the combined masses is ẏ(t)(m1 +m2). To make
these equal, it sets

ẏ(t) =
ẏ1(t)m1 + ẏ2(t)m2

m1 +m2
.

The transition from together to apart has the more complicated guard

unstick = {(y(t), ẏ(t)) | (k1− k2)y(t)+ k2 p2− k1 p1 > stickiness}.

This guard is satisfied when the right-pulling force on the right mass exceeds the
right-pulling force on the left mass by more than the stickiness. The right-pulling
force on the right mass is simply

f2(t) = k2(p2− y(t))

and the right-pulling force on the left mass is

f1(t) = k1(p1− y(t)).

Thus,
f2(t)− f1(t) = (k1− k2)y(t)+ k2 p2− k1 p1.

When this exceeds the stickiness, then the masses pull apart.

An interesting elaboration on this example, considered in problem 13, modifies the
together mode so that the stickiness is initialized to a starting value, but then decays
according to the differential equation

ṡ(t) =−as(t)

where s(t) is the stickiness at time t, and a is some positive constant. In fact, it is
the dynamics of such an elaboration that is plotted in Figure 6.11.

As in example 6.7, it is sometimes useful to have hybrid system models with only one
state. The actions on one or more state transitions define the discrete event behavior that
combines with the time-based behavior.

Lee & Varaiya, Signals and Systems 257

http://LeeVaraiya.org


6.4. MORE INTERESTING DYNAMICS

Example 6.9: Consider a bouncing ball. At time t = 0, the ball is dropped from
a height y(0) = initialHeight meters. It falls freely. At some later time t1 it hits
the ground with a velocity ẏ(t1) < 0 m/sec. A bump event is produced when the
ball hits the ground. The collision is inelastic, and the ball bounces back up with
velocity −aẏ(t1), where a is constant in (0,1). The ball will then rise to a certain
height and fall back to the ground repeatedly.

The behavior of the bouncing ball can be described by the hybrid system of Figure
6.13. There is only one mode, called free. When it is not in contact with the ground,
we know that the ball follows the second-order differential equation,

ÿ(t) =−g, (6.5)

where g = 10 m/sec2 is the acceleration imposed by gravity. We can define the
refinement state of the free mode to be

s(t) =
[

y(t)
ẏ(t)

]
with the initial conditions y(0) = initialHeight and ẏ(0) = 0. It is then a simple
matter to rewrite (6.5) as a first-order differential equation,

ṡ(t) = f (s(t)) (6.6)

for a suitably chosen function f (see Exercise 12).

At the time t1 when the ball first hits the ground, the guard

hit = {(y(t), ẏ(t)) | y(t) = 0}

is satisfied, and the self-loop transition is taken. The output bump is produced, and
the action ẏ(t) := −aẏ(t) assigns ẏ(t1+) = −aẏ(t1). Here, ẏ(t1+) is the velocity
after the bump, and ẏ(t1) is the velocity before the bump. Then (6.5) is followed
again until the guard becomes true again.

By integrating (6.5) we get, for all t ∈ (0, t1),

ẏ(t) = −gt,

y(t) = y(0)+
∫ t

0
ẏ(τ)dτ = initialHeight− 1

2
gt2.

258 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


6. HYBRID SYSTEMS

free

y(t) = − g

BouncingBall

..

y(0) := initialHeight
y(0) := 0

hit / bump
y(t) := − a y(t)

y(t) ∈ Reals

.
{bump, absent}

. .

initialHeight

y(t)

t1 t2 time

y(t)

t1 t2 time

.

hit = {(y(t), y(t)) | y(t) = 0}
.

Figure 6.13: The motion of a bouncing ball may be described as a hybrid system
with only one mode. The system outputs a bump each time the ball hits the
ground, and also outputs the position of the ball. The position and velocity are
plotted versus time at the right.

So t1 > 0 is determined by y(t1) = 0. It is the solution to the equation

initialHeight− 1
2

gt2 = 0.

Thus,
t1 =

√
2 initialHeight/g.

Figure 6.13 plots the refinement state versus time.

Lee & Varaiya, Signals and Systems 259

http://LeeVaraiya.org


6.5. SUPERVISORY CONTROL

x(t)

y(t)
AGV

global
coordinate

frame

e(t)

track

  (t) 

Figure 6.14: Illustration of the automated guided vehicle of example 6.10. The
vehicle is shown as a large arrow on the left and as a small arrow on the right. On
the right, the vehicle is following a curved painted track, and has deviated from
the track by a distance e(t). The coordinates of the vehicle at time t with respect
to the global coordinate frame are (x(t),y(t),φ(t)).

6.5 Supervisory control

We introduce supervisory control through a detailed example. A control system involves
four components. There is a system called the plant—the physical process that is to be
controlled; the environment in which the plant operates; the sensors that measure some
variables of the plant and the environment; and the controller that determines the mode
transition structure and selects the time-based inputs to the plant. The controller has
two levels: the supervisory control that determines the mode transition structure, and
the ‘low-level’ control that selects the time-based inputs which control the behavior of
the refinements. A complete design includes both levels of control as in the following
example.

260 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


6. HYBRID SYSTEMS

 stop left

Vehicle

right straight

x (t)  = 10 cos φ(t)
y (t) = 10 sin φ(t) 
φ (t) =  - π
e (t) = f(x(t), y(t))

u(t) e {stop, start, absent}

x (t) = 10 cos φ (t)
y (t) = 10 sin φ (t)
φ  =  π
e (t) = f(x(t), y(t))

.

.

.

x (t) = 10 cos φ (t)
y (t) = 10 sin φ (t)
φ (t) =  0
e (t) = f(x(t), y(t))

.

.

.

x  = x0
y  = y0 
φ  = φ0

goRight/

goLeft/

x (t) = 0 
y (t) = 0 
φ (t) = 0
e (t) = f(x(t), y(t))

.

.

.

.
.
.

goStraight= {(u(t), x(t), y(t), φ (t)) | u(t) != stop, |e(t)| < ε1}

goRight/

goStraight/

goLeft = {(u(t), x(t), y(t), φ (t)) | u(t) != stop,  - ε2 > − e(t)}

goStraight/

goLeft/

goStop/ goStop/

goStop/

goStart/

goStop = {(u(t), x(t), y(t), φ (t)) | u(t) = stop}
goStart = {(u(t), x(t), y(t), φ (t)) | u(t) = start}

goRight ={(u(t), x(t), y(t), φ (t)) | u(t) != stop, ε2 < e(t)}

Figure 6.15: The automatic guided vehicle of example 6.10 has four modes: stop,
straight , left , right .Lee & Varaiya, Signals and Systems 261

http://LeeVaraiya.org


6.5. SUPERVISORY CONTROL

Example 6.10: The plant is an automated guided vehicle or AGV that moves
along a closed track painted on a warehouse or factory floor. We will design a
controller so that the vehicle closely follows the track.

The vehicle has two degrees of freedom. At any time t, it can move forward along
its body axis at speed u(t) with the restriction that 0 ≤ u(t) ≤ 10 mph. It can also
rotate about its center of gravity with an angular speed ω(t) restricted to −π ≤
ω(t)≤ π radians/second. We ignore the inertia of the vehicle.

Let (x(t),y(t)) ∈ R2 be the position and φ(t) ∈ [−π,π] the angle (in radians) of the
vehicle at time t relative to some fixed coordinate frame, as shown on the left in
Figure 6.14. In terms of this coordinate frame, the motion of the vehicle is given
by a system of three differential equations,

ẋ(t) = u(t)cosφ(t),

ẏ(t) = u(t)sinφ(t), (6.7)

φ̇(t) = ω(t).

The track and the vehicle are shown on the right of Figure 6.14. Equations (6.7) de-
scribe the plant. The environment is the closed painted track. It could be described
by an equation, but instead we will use a sensor to detect it.

The two-level controller design is based on a simple idea. The vehicle always
moves at its maximum speed of 10 mph. If the vehicle strays too far to the left
of the track, the controller steers it towards the right; if it strays too far to the
right of the track, the controller steers it towards the left. If the vehicle is close
to the track, the controller maintains the vehicle in a straight direction. Thus the
controller guides the vehicle in four modes, left, right, straight, and stop. In stop
mode an operator may bring the vehicle to a halt.

The following differential equations govern the AGV’s motion in the refinement
of the four modes. They describe the low-level controller, i.e. the selection of the
time-based inputs in each mode.

straight

ẋ(t) = 10cosφ(t)

ẏ(t) = 10sinφ(t)

φ̇(t) = 0

262 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


6. HYBRID SYSTEMS

left

ẋ(t) = 10cosφ(t)

ẏ(t) = 10sinφ(t)

φ̇(t) = π

right

ẋ(t) = 10cosφ(t)

ẏ(t) = 10sinφ(t)

φ̇(t) = −π

stop

ẋ(t) = 0

ẏ(t) = 0

φ̇(t) = 0

In the stop mode, the vehicle is stopped, x(t),y(t),φ(t) are constant. In the left
mode, φ(t) increases at the rate of π radians/second, so from Figure 6.14 we see
that the vehicle moves to the left. In the right mode, it moves to the right. In the
straight mode, φ(t) is constant, and the vehicle moves straight ahead with a constant
heading. The refinements of the four modes are shown in the boxes of Figure 6.15.

We design the supervisory control governing transitions between modes in such
a way that the vehicle closely follows the track, using a sensor that determines
how far the vehicle is to the left or right of the track. We can build such a sensor
using photodiodes. Let’s suppose the track is painted with a light-reflecting color,
whereas the floor is relatively dark. Underneath the AGV we place an array of
photodiodes as shown in figure 6.16. The array is perpendicular to the AGV body
axis. As the AGV passes over the track, the diode directly above the track generates
more current than the other diodes. By comparing the magnitudes of the currents
through the different diodes, the sensor gives the displacement e(t) of the center of
the array (hence, the center of the AGV) from the track. We adopt the convention
that e(t) < 0 means that the AGV is to the right of the track and e(t) > 0 means it
is to the left.

We model the sensor output as a function f of the AGV’s position,

∀t, e(t) = f (x(t),y(t)).

Lee & Varaiya, Signals and Systems 263

http://LeeVaraiya.org


6.5. SUPERVISORY CONTROL

The function f of course depends on the environment—the track. We now specify
the supervisory controller precisely. We select two thresholds, 0 < ε1 < ε2, as
shown in Figure 6.16. If the magnitude of the displacement is small, |e(t)| < ε1,
we consider that the AGV is close enough to the track, and the AGV can move
straight ahead, in straight mode. If 0 < ε2 < e(t) (e(t) is large and positive), the
AGV has strayed too far to the left and must be steered to the right, by switching
to right mode. If 0 >−ε2 > e(t) (e(t) is large and negative), the AGV has strayed
too far to the right and must be steered to the left, by switching to left mode. This
control logic is captured in the mode transitions of Figure 6.15. The input events
are {stop,start,absent}. By selecting events stop and start an operator can stop or
start the AGV. There is no time-based input. There is no external output. The initial
mode is stop, and the initial values of its refinement are (x0,y0,φ0).

We analyze how the AGV will move. Figure 6.17 sketches one possible trajectory.
Initially the vehicle is within distance ε1 of the track, so it moves straight. At some
later time, the vehicle goes too far to the left, the guard

goRight = {(u(t),x(t),y(t),φ(t)) | u(t) 6= stop,ε2 < e(t)}

is satisfied, and there is a mode switch to right. After some time, the vehicle is
close enough to the track, the guard

goStraight = {(u(t),x(t),y(t),φ(t)) | u(t) 6= stop, |e(t)|< ε1}

is satisfied, and there is a mode switch to straight. Some time later, the vehicle is
too far to the right, the guard

goLeft = {(u(t),x(t),φ(t)) | u(t) 6= stop | − ε2 > e(t)}

is satisfied, there is a mode switch to left, and so on.

The example illustrates the four components of a control system. The plant is described
by the differential equations (6.7) that govern the evolution of the refinement state at time
t, (x(t),y(t),φ(t)), in terms of the time-based input, (u(t),ω(t)). The second component
is the environment—the closed track. The third component is the sensor, whose output
at time t, e(t) = f (x(t),y(t)), gives the position of the AGV relative to the track. The
fourth component is the two-level controller. The supervisory controller comprises the
four modes and the guards that determine when to switch between modes. The low-level

264 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


6. HYBRID SYSTEMS

photodiode
track

e 
1

 
2

Figure 6.16: An array of photodiodes under the AGV is used to estimate the
displacement e of the AGV relative to the track. The photodiode directly above
the track generates more current.

center of track
straight

right

straight

left

 
1

 
2

Initial position
of vehicle

Figure 6.17: A trajectory of the AGV, annotated with modes.

Lee & Varaiya, Signals and Systems 265

http://LeeVaraiya.org


6.6. FORMAL MODEL

controller specifies how the time-based inputs to the plant, u and ω, are selected in each
mode.

6.6 Formal model

We develop a formal model of a hybrid system similar to the ‘sets and functions’ model
of Section 3.1. A hybrid system HybridSystem is a 5-tuple,

HybridSystem = (States, Inputs,Outputs,TransitionStructure, initalState),

where, States, Inputs, Outputs are sets, and initalState∈ States is the initial state. TransitionStructure
consists of several items that determine how the hybrid system evolves in time t ∈ T . T
may be R+ or N0. Here we assume T = R+.

States = Modes×RefinementStates is the state space. Modes is the finite set of modes.
RefinementStates is the state space of the refinements. If the current state at time t is
(m(t),s(t)) we say that the system is in mode m(t) and its refinement is in state s(t).

Inputs= InputEvents×TimeBasedInputs is the set of input symbols. The finite alphabet of
discrete input symbols is InputEvents, which includes a stuttering symbol. TimeBasedInputs
is the set of input values to which the refinement reacts. An input signal consists of a pair
of functions (u,x) where u : R+→ InputEvents and x : R+→ TimeBasedInputs. For all
except a discrete set of times t, u(t) is the stuttering symbol, absent.

Outputs=OutputEvents×TimeBasedOutputs is the set of output symbols, where OutputEvents
is the finite alphabet of discrete output symbols, including a stuttering output, absent, and
TimeBasedOutputs is the set of continuous output values. An output signal consists of a
pair of functions (v,y) where v : R+ → OutputEvents and y : R+ → TimeBasedOutputs.
For all except a discrete set of times, v(t) = absent.

The transition structure determines how a mode transition occurs and how the refinement
state changes over time. Suppose the inputs signal is (u,x). Suppose at time t the mode is
m and the refinement state is s. For each destination mode d there is a guard

Gm,d = Um,d×Xm,d×Sm,d

⊂ InputEvents×TimeBasedInputs×RefinementStates.

There is also an output event, say vm,d , and an action Am,d : RefinmentStates→RefinmentStates
that assigns a (possibly new) value to each refinement state, (possibly) depending on the

266 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


6. HYBRID SYSTEMS

current value of the refinement state. If there is a match (u(t),x(t),s(t))∈Gm,d , then there
is a discrete transition at t; the mode after the transition is d, the output event v(t) = vm,d is
produced, and the refinement state in mode d at time t+ immediately after the transition
is set to s(t+) = Am,d(s(t).

If no guard is satisfied at time t, then the refinement state s(t) and the time-based output
y(t) are determined by the time-based input signal x according to the equations governing
the refinement dynamics. Here we will need to be concrete. In all of the examples above,
we have taken

RefinementStates = RN ,

TimeBasedInputs = RM, and

TimeBasedOutputs = RK .

In this concrete setting, the refinement dynamics are given as

∀t ∈ Tm, ṡ(t) = fm(s(t),x(t)), (6.8)

y(t) = gm(s(t),x(t), (6.9)

where Tm ⊂ T is the set of times t when the system is in mode m, and the functions

fm : RN×RM : → RN ,

gm : RN×RM : → RK

characterize the behavior of the refinement system in mode m. The function

s : R+→ RefinementStates

is the trajectory of the refinment states.

We can now see how the hybrid system evolves over time. At time t = 0, the system
starts in the initial state, say (m(0),s(0)). It evolves in alternating phases of time passage,
(t0 = 0, t1],(t1, t2], · · · , and discrete transitions at t1, t2, · · · . During the first interval (t0, t1],
no guard is satisfied and the system remains in mode m(0); the refinement state s(t)
and time-based output y(t) are determined by (6.8), (6.9); and the discrete event output
v(t) = absent.

At time t1, the guard Gm(0),m(1) for some destination mode m(1) is matched by (u(t1),x(t1),s(t1)).
There is a mode transition to m(1), the output event v(t1) is produced, and the continuous
state is set to s(t1+) = Am(0)m(1)(s(t1)). The discrete transition phase is now over, and
the system begins the time passage phase in the new mode m(1) and the continuous state
s(t1+).

Lee & Varaiya, Signals and Systems 267

http://LeeVaraiya.org


6.7. SUMMARY

6.7 Summary

Hybrid systems bridge time-based models and state-machine models. The combination of
the two families of models provides a rich framework for describing real-world systems.
There are two key ideas. First, discrete events are embedded in a time base. Second, a
hierarchical description is particularly useful, where the system undergoes discrete tran-
sitions between different modes of operation. Associated with each mode of operation
is a time-based system called the refinement of the mode. Mode transitions are taken
when guards that specify the combination of inputs and refinement states are satisfied.
The action associated with a transition, in turn, sets the refinement state in the destination
mode.

The behavior of a hybrid system is understood using the tools of state machine analysis
for mode transitions the tools of time-based analysis for the refinement systems. The
design of hybrid systems similarly proceeds on two levels: state machines are designed
to achieve the appropriate logic of mode transitions, and refinement systems are designed
to secure the desired time-based behavior in each mode.

268 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


6. HYBRID SYSTEMS

Exercises

In some of the following exercises you are asked to design state machines that carry
out a given task. The design is simple and elegant if the state space is properly chosen.
Although the state space is not unique, there often is a natural choice. As usual, each
problem is annotated with the letter E, T, C which stands for exercise, requires some
thought, requires some conceptualization. Problems labeled E are usually mechanical,
those labeled T require a plan of attack, those labeled C usually have more than one
defensible answer.

1. C Consider the loudness compensation of example 6.3. Suppose that instead of a
switch on the front panel, the system automatically selects from among four com-
pensation filters with state-space models [A,b,c1,d1], [A,b,c2,d2], [A,b,c3,d3], and
[A,b,c4,d4]. The A matrix and b vector are the same for all four. Which filter is
used depends on a discrete-time v input, where at index n, v(n) represents the cur-
rent volume level. When the volume is high, above some threshold, filter 4 should
be used. When it is low, filter 1 should be used. Design a hybrid system that does
this.

2. E Construct a timed automaton similar to that of Figure 6.4 which produces tick at
times 1,2,3,5,6,7,8,10,11, · · · . That is, ticks are produced with intervals between
them of 1 second (three times) and 2 seconds (once).

3. E The objective of this problem is to understand a timed automaton, and then to
modify it as specified.

(a) For the timed automaton shown in Figure 6.18, describe the output y. Avoid
imprecise or sloppy notation.

(b) Assume there is a new input u : R→ Inputs with alphabet

Inputs = {reset,absent},

and that when the input has value reset, the hybrid system starts over, behaving
as if it were starting at time 0 again. Modify the hybrid system from part (a)
so that it behaves like the system in (a).

4. E You have an analog source that produces a pure tone. You can switch the source
on or off by the input event on or off . Construct a system that upon receiving

Lee & Varaiya, Signals and Systems 269

http://LeeVaraiya.org


EXERCISES

b / s(t)
r(t) := 0

two one

a / s(t)
r(t) := 0

y(t) ∈Integers 
∪ {absent}

s(0) := 0
r(0) := 0

b = {(r(t), s(t)) | r(t) = 2}
a = {(r(t), s(t)) | r(t) = 1}

s(t) = 1

r(t) = 1

.

.
s(t) = 1

r(t) = 1

.

.

Figure 6.18: Timed automaton considered in Exercise 3.

an input event ring produces an 80 ms-long sound consisting of three 20 ms-long
bursts of the pure tone separated by two 10 ms intervals of silence. What does your
system do if it receives two ring events that are 50 ms apart?

5. C Automobiles today have the features listed below. Implement each feature as a
timed automaton.

(a) The dome light is turned on as soon as any door is opened. It stays on for 30
seconds after all doors are shut. What sensors are needed?

(b) Once the engine is started, a beeper is sounded and a red light warning is
indicated if there are passengers that have not buckled their seat belt. The
beeper stops sounding after 30 seconds, or as soon the seat belts are buckled,
whichever is sooner. The warning light is on all the time the seat belt is un-
buckled. Hint: Assume the sensors provide a warn event when the ignition
is turned on and there is a seat with passenger not buckled in, or if the igni-
tion is already on and a passenger sits in a seat without buckling the seatbelt.
Assume further that the sensors provide a noWarn event when a passenger de-
parts from a seat, or when the buckle is buckled, or when the ignition is turned
off.

270 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


6. HYBRID SYSTEMS

6. E A programmable thermostat allows you to select 4 times, 0≤ T1 ≤ ·· · ≤ T4 < 24
(for a 24-hour cycle) and the corresponding temperatures a1, · · · ,a4. Construct a
timed automaton that sends the event ai to the heating systems controller. The
controller maintains the temperature close to the value ai until it receives the next
event. How many timers and modes do you need?

7. E Construct a parking meter similar to that in figure 6.6 that allows a maximum of
30 minutes (rather than 60 minutes) and accepts coin5 and coin25 as inputs. Then
draw the state trajectories (both the mode and the clock state) and the output signal
when coin5 occurs at time 0, coin25 occurs at time 3, and then there is no input
event for the next 35 minutes.

8. T Consider the timed automaton of Figure 6.6. Suppose we view the box as a
discrete-event system with {coin5,coin25,absent} as the input alphabet and {expired,absent}
as the output alphabet. Does the box behave as a finite state machine?

9. C Figure 6.19 depicts the intersection of two one-way streets, called Main and
Secondary. A light on each street controls its traffic. Each light goes through a cycle
consisting of a red (R), green (G), and yellow (Y) phases. It is a safety requirement
that when one light is in its green or yellow phase, the other is in its red phase. The
yellow phase is always 20 seconds long.

The traffic lights operate as follows, in one of two modes. In the normal mode,
there is a 5 minute-long cycle with the main light having 4 minutes of green and 20
seconds of yellow–the secondary light is red for these 4 minutes and 20 seconds—
and 40 seconds of red—during which the secondary light is green for 20 seconds
followed by 20 seconds of yellow.

The second, or interrupt mode works as follows. Its purpose is to quickly give a
right of way to the secondary road. A sensor in the secondary road detects if a
vehicle has crossed it. When this happens, the main light aborts its green phase and
immediately switches to its 20 second yellow phase. If the vehicle is detected while
the main light is yellow or red, the system continues in its normal mode.

Design a hybrid system that controls the lights. Let this hybrid system have discrete
outputs that are pairs GG,GY,GR, etc. where the first letter denotes the color of the
main light second letter denotes the color of the secondary light.

10. T Design a ReceiverProtocol hybrid system that works together with the SenderProtocol
of example 6.7.

Lee & Varaiya, Signals and Systems 271

http://LeeVaraiya.org


EXERCISES

Main

Se
co
nd
ar
y

light

detector

R

R G

G Y

Y

Figure 6.19: Traffic lights control the intersection of a main street and a secondary
street. A detector senses when a vehicle crosses it. The red phase of one light
must coincide with the green and yellow phases of the other light.

272 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


6. HYBRID SYSTEMS

11. E For the bouncing ball of example 6.9 let tn be the time when the ball hits the
ground for the n-th time, and let v(n) = ẏ(tn) be the velocity at that time.

(a) Find a relation between v(n+1) and v(n) and then calculate v(n) in terms of
v(1).

(b) Obtain tn in terms of v(n).

(c) Calculate the maximum height reached by the ball after successive bumps.

12. E Translate refinement systems that are described as second-order differential
equations into first-order differential equations. Specifically:

(a) For the sticky masses system in example 6.8, find the function g such that
(6.1) and (6.2) are represented as (6.4). Is this function linear?

(b) For the bouncing ball system in example 6.9, find the function f such that
(6.5) is represented as (6.6). Is this function linear?

13. T Elaborate the hybrid system model of Figure 6.12 so that in the together mode,
the stickiness decays according to the differential equation

ṡ(t) =−as(t)

where s(t) is the stickiness at time t, and a is some positive constant. On the tran-
sition into this mode, the stickiness should be initialized to some starting stickiness
b.

14. T Show that the trajectory of the AGV of Figure 6.15 while it is in left or right
mode is a circle. What is the radius of this circle, and how long does it take to
complete a circle?

15. E Express the hybrid system of Figure 6.15 in terms of the formal model of Section
6.6. That is, identify the sets Inputs, Outputs, and the TransitionStructure.

Lee & Varaiya, Signals and Systems 273

http://LeeVaraiya.org


EXERCISES

274 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


7
Frequency Domain

Contents
7.1 Frequency decomposition . . . . . . . . . . . . . . . . . . . . . . . 277

Basics: Frequencies in Hertz and radians . . . . . . . . . . . . . . . 278
Basics: Ranges of frequencies . . . . . . . . . . . . . . . . . . . . . 279
Probing Further: Circle of fifths . . . . . . . . . . . . . . . . . . . . 281

7.2 Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
7.3 Spatial frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
7.4 Periodic and finite signals . . . . . . . . . . . . . . . . . . . . . . . 285
7.5 Fourier series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

Probing Further: Uniform convergence . . . . . . . . . . . . . . . . 295
Probing Further: Mean square convergence . . . . . . . . . . . . . . 296
7.5.1 Uniqueness of the Fourier series . . . . . . . . . . . . . . . . 297
Probing Further: Dirichlet conditions . . . . . . . . . . . . . . . . . 297
7.5.2 Periodic, finite, and aperiodic signals . . . . . . . . . . . . . 298
7.5.3 Fourier series approximations to images . . . . . . . . . . . . 300

7.6 Discrete-time signals . . . . . . . . . . . . . . . . . . . . . . . . . . 300
7.6.1 Periodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
Basics: Discrete-time frequencies . . . . . . . . . . . . . . . . . . . 301
7.6.2 The discrete-time Fourier series . . . . . . . . . . . . . . . . 302

7.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

275



We are interested in manipulating signals. We may wish to synthesize signals, as modems
need to do in order to transmit a voice-like signal through the telephone channel. We may
instead wish to analyze signals, as modems need to do in order to extract digital informa-
tion from a received voice-like signal. In general, the field of communications is all about
synthesizing signals with characteristics that match a channel, and then analyzing signals
that have often been corrupted by the channel in order to extract the original information.

We may also wish to synthesize natural signals such as images or speech. The field of
computer graphics puts much of its energy into synthesizing natural-looking images.
Image processing includes image understanding, which involves analyzing images to
determine their content. The field of signal processing includes analysis and synthesis of
speech and music signals.

We may wish to control a physical process. The physical process is sensed (using tem-
perature, pressure, position and speed sensors). The sensed signals are processed in order
to estimate the internal state of the physical process. The physical process is controlled
on the basis of the state estimate. Control system design includes the design of state
estimators and controllers.

In order to analyze or synthesize signals, we need models of those signals. Since a signal
is a function, a model of the signal is a description or a definition of the function. We
use two approaches. The first is a declarative (what is) approach. The second is an
imperative (how to) approach. These two approaches are complementary. Depending on
the situation, one approach is better than the other.

Signals are functions. This chapter in particular deals with signals where the domain is
time (discrete or continuous). It introduces the concept of frequency-domain represen-
tation of these signals. The idea is that arbitrary signals can be described as sums of
sinusoidal signals. This concept is first motivated by referring to psychoacoustics, how
humans hear sounds. Sinusoidal signals have particular psychoacoustic significance. But
the real justification for the frequency domain approach is much broader. It turns out to
be particularly easy to understand the effect that LTI systems (linear time invariant sys-
tems), discussed in Chapter 5, have on sinusoidal signals. A powerful set of analysis and
design techniques then follow for arbitrary signals and the LTI systems that operate on
them.

Although we know that few (if any) real-world systems are truly LTI, we can easily con-
strue models where the approximation is valid over some regime of operation. The previ-

276 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


7. FREQUENCY DOMAIN

ous chapter showed how modal models can be constructed to build realistic models over a
broader range of operating conditions. Frequency domain methods are amenable to such
hybrid system treatment.

7.1 Frequency decomposition

For some signals, particularly natural signals like voice, music, and images, finding a
concise and precise definition of the signal can be difficult. In such cases, we try to model
signals as compositions of simpler signals that we can more easily model.

Psychoacoustics is the study of how humans hear sounds. Pure tones and their frequency
turn out to be a very convenient way to describe sounds. Musical notes can be reasonably
accurately modeled as combinations of relatively few pure tones (although subtle proper-
ties of musical sounds, such as the timbre of a sound, are harder to model accurately).

When studying sounds, it is reasonable on psychoacoustic grounds to decompose the
sounds into sums of sinusoids. It turns out that the motivation for doing this extends well
beyond psychoacoustics. Pure tones have very convenient mathematical properties that
make it useful to model other types of signals as sums of sinusoids, even when there is
no psychoacoustic basis for doing so. For example, there is no psychoacoustic reason for
modeling radio signals as sums of sinusoids.

1 Hz.
2 Hz.
3 Hz.
4 Hz.

-1.0

-0.5

0.0

0.5

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Time in seconds

Figure 7.1: Plot of four sinusoidal signals.

Lee & Varaiya, Signals and Systems 277

http://LeeVaraiya.org


7.1. FREQUENCY DECOMPOSITION

Consider the range of frequencies covering one octave, ranging from 440Hz to 880 Hz.
“Octave” is the musical term for a factor of two in frequency. The frequencies 440 Hz
and 880 Hz both correspond to the musical note A, but one octave apart. The next higher
A in the musical scale would have the frequency 1760 Hz, twice 880 Hz. In the western
musical scale, there are 12 notes in every octave. These notes are evenly distributed

Basics: Frequencies in Hertz and radians

A standard measure of frequency is Hertz, meaning cycles per second. Figure 7.1 shows
a plot of one second of four sine waves of different frequencies. For example, the fre-
quencies in Hertz of the musical note A on the piano keyboard are

f1 = 55, f2 = 110, f3 = 220, f4 = 440,

f5 = 880, f6 = 1760, f7 = 3520, f8 = 7040.

A sinusoidal waveform x with frequency f4 = 440 can be defined by

∀ t ∈ R, x(t) = sin(440×2πt).

The factor 2π in this expressions is a nuisance. An argument to a sine function has units
of radians, so 2π has units of radians/cycle. Explicitly showing all the units (in square
brackets), we have

440[cycles/second]×2π[radians/cycle]t[seconds] = (440×2πt)[radians].

To avoid having to keep track of the factor 2π everywhere, it is common to use the
alternative units for frequency, radians per second. The symbol ω is commonly used to
denote frequencies in radians per second, while f is used for frequencies in Hertz. The
relationship between Hertz and radians per second is simple,

ω = 2π f ,

as is easily confirmed by checking the units. Thus, in radians per second, the frequencies
of the musical note A on the piano keyboard are

ω1 = 2π×55,ω2 = 2π×110,ω3 = 2π×220,ω4 = 2π×440,

ω5 = 2π×880,ω6 = 2π×1760,ω7 = 2π×3520,ω8 = 2π×7040.

278 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


7. FREQUENCY DOMAIN

(geometrically), so the next note above A, which is B flat, has frequency 440× 12
√

2, where
12
√

2≈ 1.0595. The next note above B flat, which is B, has frequency 440× 12
√

2× 12
√

2.

In table 7.1, the frequencies of the complete musical scale between middle A and A-880
are shown. Each frequency is β = 12

√
2 times the frequency below it.

Frequencies that are harmonically related tend to sound good together. Figure 7.2 shows
the graph of a signal that is a major triad, a combination of the notes A, C] (C sharp), and
E. By “combination” we mean “sum.” The A is a sinusoidal signal at 440 Hz. It is added
to a C], which is a sinusoidal signal at 554 Hz. This sum is then added to an E, which is
a sinusoidal signal at 659 Hz. Each of the components is also shown, so you can verify
graphically that at each point in time, the value of the solid signal is equal to the sum of
values of the dashed signals at that time.

The stimulus presented to the ear is the solid waveform. What you hear, however, as-
suming a small amount of musical training, is the three sinusoidal components, which the
human ear interprets as musical notes. The human ear decomposes the stimulus into its
sinusoidal components.

Basics: Ranges of frequencies

An extremely wide range of frequencies occur in natural and man-made signals. The
following abbreviations are common:
• Hz - hertz, cycles per second.

• kHz - kilohertz, thousands of cycles per second.

• MHz - megahertz, millions of cycles per second.

• GHz - gigahertz, billions of cycles per second.

• THz - terahertz, trillions of cycles per second.

Audible sounds signals are in the range of 20 Hz to 20 kHz. Sounds above this frequency
are called ultrasonic. Electromagnetic waves range from less than one hertz (used spec-
ulatively in seismology for earthquake prediction) through visible light near 1015 Hz to
cosmic ray radiation up to 1025 Hz.

Lee & Varaiya, Signals and Systems 279

http://LeeVaraiya.org


7.1. FREQUENCY DECOMPOSITION

A 880
A[ 831
G 784
F] 740
F 698
E 659
D] 622
D 587
C] 554
C 523
B 494
B[ 466
A 440

Table 7.1: Frequencies of notes over one octave of the western musical scale, in
Hertz.

-3x10

Sum
A

C sharp
E

-2

-1

0

1

2

3

0 1 2 3 4 5 6 7 8

Major Triad

Time in seconds

Figure 7.2: Graph of a major triad, showing its three sinusoidal components and
their sum.

280 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


7. FREQUENCY DOMAIN

Probing Further: Circle of fifths

The western musical scale is based on our perception of frequency and the harmonic
relationships between frequencies. The following frequencies all correspond to the note
A:

110, 220, 440, 880, 1760, and 3520.

What about 440×3 = 1320? Notice that 1320/2 = 660, which is almost exactly the E
in table 7.1. Thus, 440×3 is (roughly) the note E, one octave above the E above A-440.
E and A are closely harmonically related, and to most people, they sound good together.
It is because

440×3≈ 659×2

The notes A, C], and E form a major triad. Where does the C] come from? Its frequency
is 554 (see table 7.1). Notice that

440×5≈ 554×4.

Among all the harmonic relationships in the scale, A, C], and E have one of the simplest.
This is the reason for their pleasing sound together.

For more arcane reasons, the interval between A and E, which is a frequency rise of
approximately 3/2, is called a fifth. The note 3/2 (a fifth) above E has frequency 988,
which is one octave above B-494. Another 3/2 above that is approximately F sharp
(740 Hz). Continuing in this fashion, multiplying frequencies by 3/2, and then possibly
dividing by two, you can approximately trace the twelve notes of the scale. On the 13-
th, you return to A, approximately. This progression is called the circle of fifths. The
notion of key and scale in music are based on this circle of fifths, as is the fact that there
are 12 notes in the scale.

Table 7.1 is calculated by multiplying each frequency by 12
√

2 to get the next higher
frequency, not by using the circle of fifths. Indeed, the 12

√
2 method applied twelve times

yields a note that is exactly one octave higher than the starting point, while the circle of
fifths only yields an approximation. The 12

√
2 method yields the well-tempered scale.

This scale was popularized by the composer J. S. Bach. It sounds much better than a
scale based on the circle fifths when the range of notes spans more than one octave.

Lee & Varaiya, Signals and Systems 281

http://LeeVaraiya.org


7.1. FREQUENCY DECOMPOSITION

-3x10

-2

-1

0

1

2

0 1 2 3 4 5 6 7 8 9

Time in seconds

Figure 7.3: A sound waveform for an A-220 with more interesting timbre.

Example 7.1: The major triad signal can be written as a sum of sinusoids

s(t) = sin(440×2πt)+ sin(554×2πt)+ sin(659×2πt),

for all t ∈ R. The human ear hears as distinct tones the frequencies of these sinu-
soidal components. Musical sounds such as chords can be characterized as sums of
pure tones.

Purely sinusoidal signals, however, do not sound very good. Although they are recog-
nizable as notes, they do not sound like any familiar musical instrument. Truly musical
sounds are much more complex than a pure sinusoid. The characteristic sound of an
instrument is its timbre, and as we shall see, some aspects of timbre can also be charac-
terized as sums of sinusoids.

Timbre is due in part to the fact that musical instruments do not produce purely sinusoidal
sounds. Instead, to a first approximation, they produce sounds that consist of a fundamen-
tal sinusoidal component and harmonics. The fundamental is at the frequency of the note
being played, and the harmonics are at multiples of that frequency. Figure 7.3 shows a
waveform for a sound that is heard as an A-220 but has a much more interesting timbre
than a sinusoidal signal with frequency 220 Hz. In fact, this waveform is generated by
adding together sinusoidal signals with frequencies 220 Hz, 440 Hz, 660 Hz, 880 Hz,

282 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


7. FREQUENCY DOMAIN

-3x10

Phase 1
Phase 2
Phase 3
Phase 4
Phase 5

-1.0

-0.5

0.0

0.5

1.0

0 1 2 3 4 5 6 7 8

Sinusoid with Five Phases

Time in seconds

Figure 7.4: Five sinusoidal signals with different phases.

1100 Hz, 1320 Hz, and higher multiples, with varying weights. The 220 Hz component
is called the fundamental, while the others are called harmonics. The first harmonic is
the component at 440 Hz. The second harmonic is the component at 660 Hz. Etc. The
relative weights of the harmonics is a major part of what makes one musical instrument
sound different from another.

7.2 Phase

A sinusoidal sound has not just a frequency, but also a phase. The phase may be thought
of as the relative starting point of the waveform. Figure 7.4 shows five sinusoidal signals
with the same frequency but five different phases. These signals all represent the sound
A-440, and all sound identical. For a simple sinusoidal signal, obviously, phase has no
bearing on what the human ear hears.

Somewhat more surprising is that when two or more sinusoids are added together, the
relative phase has a significant impact on the shape of the waveform, but no impact on
the perceived sound. The human ear is relatively insensitive to the phase of sinusoidal
components of a signal, even though the phase of those components can strongly affect
the shape. If these waveforms represent something other than sound, like stock prices for
example, the effect of phase could be quite significant. For a sinusoidal signal, the phase

Lee & Varaiya, Signals and Systems 283

http://LeeVaraiya.org


7.3. SPATIAL FREQUENCY

Figure 7.5: Images that are sinusoidal horizontally, vertically, and both.

affects whether a particular point in time corresponds to a peak or a valley, for example.
For stock prices, it makes a difference whether you sell at a high or a low.

There are certain circumstances in which the human ear is sensitive to phase. In particular,
when two sinusoids of the same frequency combine, the relative phase has a big impact,
since it affects the amplitude of the sum. For example, if the two sinusoids differ in phase
by 180 degrees (π radians), then when they add, they exactly cancel, yielding a zero signal.
The human brain can use the relative phase of a sound in the two ears to help spatially
locate the origin of a sound. Also, audio systems with two speakers, which simulate
spatially distributed sounds (“stereo”), can be significantly affected by the relative phase
of the signal produced by the two speakers.

Phase is measured in either radians or degrees. An A-440 can be given by

g(t) = sin(440×2πt +φ),

for all t ∈ R, where φ ∈ R is the phase. Regardless of the value of φ, this signal is still an
A-440. If φ = π/2 then

g(t) = cos(440×2πt).

7.3 Spatial frequency

Psychoacoustics provides a compelling motivation for decomposing audio signals as sums
of sinusoids. In principal, images can also be similarly decomposed. However, the moti-
vations in this case are more mathematical than perceptual.

284 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


7. FREQUENCY DOMAIN

Figure 7.5 shows three images that are sinusoidal. Specifically, the intensity of the image
(the amount of white light that is reflected by the page) varies spatially according to a
sinusoidal function. In the leftmost image, it varies horizontally only. There is no vertical
variation in intensity. In the middle image, it varies vertically only. In the rightmost
image, it varies in both dimensions.

The sinusoidal image has spatial frequency rather than temporal frequency. Its units
are cycles per unit distance. The images in figure 7.5 have frequencies of roughly 2.5
cycles/inch. Recall that a grayscale picture is represented by a function

Image : VerticalSpace×HorizontalSpace→ Intensity.

So an image that varies sinusoidally along the horizontal direction (with a spatial period
of H inches) and is constant along the vertical direction is represented by

∀x ∈ VerticalSpace ∀y ∈ HorizontalSpace Image(x,y) = sin(2πy/H).

Similarly, an image that varies sinusoidally along the vertical direction (with a spatial
period of V inches) and is constant along the horizontal direction is represented by

∀x ∈ VerticalSpace ∀y ∈ HorizontalSpace Image(x,y) = sin(2πx/V ).

An image that varies sinusoidally along both directions is represented by

∀x ∈ VerticalSpace ∀y ∈ HorizontalSpace Image(x,y) = sin(2πx/V )× sin(2πy/H).

These sinusoidal images have much less meaning than audio sinusoids, which we perceive
as musical tones. Nonetheless, we will see that images can be described as sums of
sinusoids, and that such description is sometimes useful.

7.4 Periodic and finite signals

When the domain is continuous or discrete time, we can define a periodic signal. As-
suming the domain is R, a periodic signal x with period p ∈ R is one where for all t ∈ R

x(t) = x(t + p). (7.1)

A signal with period p also has period 2p, since

x(t) = x(t + p) = x(t +2p).

Lee & Varaiya, Signals and Systems 285

http://LeeVaraiya.org


7.4. PERIODIC AND FINITE SIGNALS

In fact, it has period K p, for any positive integer K. Usually, we define the period to be
the smallest p > 0 such that

∀ t ∈ R, x(t) = x(t + p).

Example 7.2: The sinusoidal signal x where for all t ∈ R

x(t) = sin(ω0t)

is a periodic signal with period 2π/ω0 since for all t ∈ R

sin(ω0(t +2π/ω0)) = sin(ω0t).

A periodic signal is defined over an infinite interval. If the domain is instead a subset
[a,b]⊂ R, for some finite a and b, then we call this a finite signal.

Example 7.3: The signal y where for all t ∈ [0,2π/ω0],

y(t) = sin(ω0t)

is a finite signal with duration 2π/ω0. This interval spans exactly one cycle of the
sine wave.

A finite signal with duration p can be used to define a periodic signal with period p. All
that is needed is to periodically repeat the finite signal. Formally, given a finite signal
y : [a,b]→ R, we can define a signal y′ : R→ R by

∀ t ∈ R, y′(t) =

{
y(t) if t ∈ [a,b]
0 otherwise

(7.2)

286 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


7. FREQUENCY DOMAIN

In other words, y′(t) is simply y(t) inside its domain, and zero elsewhere. Then the
periodic signal can be given by1

x(t) =
∞

∑
m=−∞

y′(t−mp) (7.3)

where p= b−a. This is called a shift-and-add summation, illustrated in Figure 7.6. The
periodic signal is a sum of versions of y′(t) that have been shifted in time by multiples of
p. Do not let the infinite sum intimidate: all but one of the terms of the summation are zero
for any fixed t! Thus, a periodic signal can be defined in terms of a finite signal, which
represents one period. Conversely, a finite signal can be defined in terms of a periodic
signal (by taking one period).

We can check that x given by (7.3) is indeed periodic with period p,

x(t + p) =
∞

∑
m=−∞

y′(t + p−mp) =
∞

∑
m=−∞

y′(t− (m−1)p)

=
∞

∑
k=−∞

y′(t− kp) = x(t),

by using a change of variables, k = m−1.

It is also important to note that the periodic signal x agrees with y in the finite domain
[a,b] of y, since

∀t ∈ [a,b] x(t) =
∞

∑
m=−∞

y′(t−mp)

= y′(t)+ ∑
m 6=0

y′(t−mp)

= y(t),

because, by (7.2), for t ∈ [a,b], y′(t) = y(t) and y′(t−mp) = 0 if m 6= 0.

We will see that any periodic signal, and hence any finite signal, can be described as a sum
of sinusoidal signals. This result, known as the Fourier series, is one of the fundamental
tools in the study of signals and systems.

1If this notation is unfamiliar, see box on page 77.

Lee & Varaiya, Signals and Systems 287

http://LeeVaraiya.org


7.4. PERIODIC AND FINITE SIGNALS

y'(t + p)

t

t

t

t

x(t)

t

y'(t)

p

y'(t ! p)

y'(t ! 2p)

a b

......

"

p

Figure 7.6: By repeating the finite signal y we can obtain a periodic signal x.

288 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


7. FREQUENCY DOMAIN

7.5 Fourier series

A remarkable result, due to Joseph Fourier, 1768-1830, is that a periodic signal x : R→R
with period p ∈ R can (usually) be described as a constant term plus a sum of sinusoids,

x(t) = A0 +
∞

∑
k=1

Ak cos(kω0t +φk) (7.4)

This representation of x is called its Fourier series. The Fourier series is widely used
for signal analysis. Each term in the summation is a cosine with amplitude Ak and phase
φk. The particular values of Ak and φk depend on x, of course. The frequency ω0, which
has units of radians per second (assuming the domain of x is in seconds), is called the
fundamental frequency, and is related to the period p by

ω0 = 2π/p.

In other words, a signal with fundamental frequency ω0 has period p = 2π/ω. The con-
stant term A0 is sometimes called the DC term, where “DC” stands for direct current, a
reference back to the early applications of this theory in electrical circuit analysis. The
terms where k ≥ 2 are called harmonics.

Equation (7.4) is often called the Fourier series expansion for x because it expands x in
terms of its sinusoidal components.

If we had a facility for generating individual sinusoids, we could use the Fourier series
representation (7.4) to synthesize any periodic signal. However, using the Fourier series
expansion for synthesis of periodic signals is problematic because of the infinite summa-
tion. But for most practical signals, the coefficients Ak become very small (or even zero)
for large k, so a finite summation can be used as an approximation. A finite Fourier
series approximation with K +1 terms has the form

x̃(t) = A0 +
K
∑

k=1
Ak cos(kω0t +φk). (7.5)

The infinite summation of (7.4) is, in fact, the limit of (7.5) as K goes to infinity. We need
to be concerned, therefore, with whether this limit exists. The Fourier series expansion
is valid only if it exists. There are some technical mathematical conditions on x that, if
satisfied, ensure that the limit exists (see boxes on pages 295 and 296). Fortunately, these
conditions are met almost always by practical, real-world time-domain signals.

Lee & Varaiya, Signals and Systems 289

http://LeeVaraiya.org


7.5. FOURIER SERIES

-3x10

ideal
K=1

K = 3
K = 7

K = 32

-1.0
-0.5

0.0

0.5

1.0

0 1 2 3 4 5 6 7 8

Time in seconds

(a)

3x10

0.0
0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Frequency in Hz

(b)

Figure 7.7: (a) One cycle of a square wave and some finite Fourier series ap-
proximations. (b) The amplitudes of the Fourier series terms for the square wave.

290 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


7. FREQUENCY DOMAIN

Example 7.4: Figure 7.7 shows a square wave with period 8 msec and some finite
Fourier series approximations to the square wave. Only one period of the square
wave is shown. The method for constructing these approximations will be covered
in detail in Chapter 10. Here, we will just observe the general structure of the
approximations.

Notice in Figure 7.7(a) that the K = 1 approximation consists only of the DC term
(which is zero in this case) and a sinusoid with an amplitude slightly larger than
that of the square wave. Its amplitude is depicted in Figure 7.7(b) as the height
of the largest bar. The horizontal position of the bar corresponds to the frequency
of the sinusoid, 125 Hz, which is 1/(8 msec), the fundamental frequency. The
K = 3 waveform is the sum of the K = 1 waveform and one additional sinusoid
with frequency 375 Hz and amplitude equal to the height of the second largest bar
in Figure 7.7(b).

A plot like that in Figure 7.7(b) is called a frequency domain representation of the square
wave, because it depicts the square wave by the amplitude and frequency of its sinusoidal
components. Actually, a complete frequency domain representation also needs to give the
phase of each sinusoidal component.

Notice in Figure 7.7(b) that all even terms of the Fourier series approximation have zero
amplitude. Thus, for example, there is no component at 250 Hz. This is a consequence of
the symmetry of the square wave, although it is beyond the scope of work now to explain
exactly why.

Also notice that as the number of terms in the summation increases, the approximation
more closely resembles a square wave, but the amount of its overshoot does not appear
to decrease. This is known as Gibb’s phenomenon. In fact, the maximum difference
between the finite Fourier series approximation and the square wave does not converge
to zero as the number of terms in the summation increases. In this sense, the square
wave cannot be exactly described with a Fourier series (see box on page 295). Intuitively,
the problem is due to the abrupt discontinuity in the square wave when it transitions
between its high value and its low value. In another sense, however, the square wave is
accurately described by a Fourier series. Although the maximum difference between the
approximation and the square wave does not go to zero, the mean square error does go
to zero (see box on page 296). For practical purposes, mean square error is an adequate

Lee & Varaiya, Signals and Systems 291

http://LeeVaraiya.org


7.5. FOURIER SERIES

criterion for convergence, so we can work with the Fourier series expansion of the square
wave.

Example 7.5: Figure 7.8 shows some finite Fourier series approximations for a
triangle wave. This waveform has no discontinuities, and therefore the maximum
error in the finite Fourier series approxination converges to zero (see box on page
295). Notice that its Fourier series components decrease in amplitude much more
rapidly than those of the square wave. Moreover, the time-domain approximations
appear to be more accurate with fewer terms in the finite summation.

Many practical, real-world signals, such as audio signals, do not have discontinuities, and
thus do not exhibit the sort of convergence problems exhibited by the square wave (Gibbs
phenomenon). Other signals, however, such as images, are full of discontinuities. A (spa-
tial) discontinuity in an image is simply an edge. Most images have edges. Nonetheless,
a Fourier series representation for such a signal is almost always still valid, in a mean
square error sense (see box on page 296). This is sufficient for almost all engineering
purposes.

Example 7.6: Consider an audio signal given by

s(t) = sin(440×2πt)+ sin(550×2πt)+ sin(660×2πt).

This is a major triad in a non-well-tempered scale. The first tone is A-440. The
third is approximately E, with a frequency 3/2 that of A-440. The middle term is
approximately C], with a frequency 5/4 that of A-440. It is these simple frequency
relationships that result in a pleasant sound. We choose the non-well-tempered
scale because it makes it much easier to construct a Fourier series expansion for
this waveform. We leave the more difficult problem of finding the Fourier series
coefficients for a well-tempered major triad to Exercise 5.

To construct the Fourier series expansion, we can follow these steps:

1. Find p, the period. The period is the smallest number p > 0 such that s(t) =
s(t− p) for all t in the domain. To do this, note that

sin(2π f t) = sin(2π f (t− p))

292 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


7. FREQUENCY DOMAIN

-3x10

ideal
K = 1
K = 3
K = 7

K = 32

-1.0

-0.5

0.0

0.5

1.0

0 1 2 3 4 5 6 7 8

Time in seconds

(a)

3x10

0.0

0.2

0.4

0.6

0.8

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Frequency in Hz

(b)

Figure 7.8: (a) One cycle of a triangle wave and some finite Fourier series approx-
imations. (b) The amplitudes of the Fourier series terms for the triangle wave.

Lee & Varaiya, Signals and Systems 293

http://LeeVaraiya.org


7.5. FOURIER SERIES

if f p is an integer. Thus, we want to find the smallest p such that 440p,
550p, and 660p are all integers. Equivalently, we want to find the largest
fundamental frequency f0 = 1/p such that 440/ f0, 550/ f0, and 660/ f0 are
all integers. Such an f0 is called the greatest common divisor of 440, 550,
and 660. This can be computed using the gcd function in Matlab. In this
case, however, we can do it in our heads, observing that f0 = 110.

2. Find A0, the constant term. By inspection, there is no constant component in
s(t), only sinusoidal components, so A0 = 0.

3. Find A1, the fundamental term. By inspection, there is no component at 110
Hz, so A1 = 0. Since A1 = 0, φ1 is immaterial.

4. Find A2, the first harmonic. By inspection, there is no component at 220 Hz,
so A2 = 0.

5. Find A3. By inspection, there is no component at 330 Hz, so A3 = 0.

6. Find A4. There is a component at 440 Hz, sin(440×2πt). We need to find A4
and φ4 such that

A4 cos(440×2πt +φ4) = sin(440×2πt).

By inspection, φ4 =−π/2 and A4 = 1.

7. Similarly determine that A5 = A6 = 1, φ5 = φ6 = −π/2, and that all other
terms are zero.

Putting this all together, the Fourier series expansion can be written

s(t) =
6

∑
k=4

cos(kω0t−π/2)

where ω0 = 2π f0 = 220π.

The method used in the above example for determining the Fourier series coefficients is
tedious and error prone, and will only work for simple signals. We will see much better
techniques in chapters 8 and 10.

294 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


7. FREQUENCY DOMAIN

Probing Further: Uniform convergence

The Fourier series representation of a periodic signal x is a limit of a sequence of func-
tions xN for N = 1,2, · · · where

∀ t ∈ R, xN(t) = A0 +
N

∑
k=1

Ak cos(kω0t +φk).

Specifically, for the Fourier series representation to be valid, we would like that for all
t ∈ R,

x(t) = lim
N→∞

xN(t).

A strong criterion for validity of the Fourier series is uniform convergence of this limit,
in which for each real number ε > 0, there exists a positive integer M such that for all
t ∈ R and for all N > M,

|x(t)− xN(t)|< ε

A sufficient condition for uniform convergence is that the signal x be continuous and that
its first derivative be piecewise continuous.

A square wave, for example, is not continuous, and hence does not satisfy this suffi-
cient condition. Indeed, the Fourier series does not converge uniformly, as you can see in
figure 7.7 by observing that the peak difference between x(t) and xK(t) does not decrease
to zero. A triangle wave, however, is continuous, and has a piecewise continuous first
derivative. Thus, it does satisfy the sufficient condition. Its Fourier series approximation
will therefore converge uniformly, as suggested in Figure 7.8. A weaker, but still useful,
criterion for validity of the Fourier series is considered on page 296. That criterion is
met by the square wave.

See for example R. G. Bartle, The Elements of Real Analysis, Second Edition, John
Wiley & Sons, 1976, p. 117 (for uniform convergence) and p. 337 (for this sufficient
condition).

Lee & Varaiya, Signals and Systems 295

http://LeeVaraiya.org


7.5. FOURIER SERIES

Probing Further: Mean square convergence

The Fourier series representation of a periodic signal x with period p is a limit of a
sequence of functions xN for N = 1,2, · · · where

∀ t ∈ R, xN(t) = A0 +
N

∑
k=1

Ak cos(kω0t +φk).

Specifically, for the Fourier series representation to be valid, we would like that for all
t ∈ R,

x(t) = lim
N→∞

xN(t).

For some practical signals, such as the square wave of figure 7.7, this statement is not
quite true for all t ∈ R. For practical purposes, however, we don’t really need for this
to be true. A weaker condition for validity of the Fourier series is that the total energy
in the error over one period be zero. Specifically, we say that xN(t) converges in mean
square to x(t) if

lim
N→∞

p∫
0

|x(t)− xN(t)|2dt = 0.

The integral here is the energy in the error x(t)− xN(t) over one period. It turns out that
if x itself has finite energy over one period, then xN(t) converges in mean square to x(t).
That is, all we need is that

p∫
0

|x(t)|2dt < ∞.

Virtually all signals with any engineering importance satisfy this criterion. Note that
convergence in mean square does not guarantee that at any particular t ∈ R, x(t) =
lim

N→∞
xN(t). For a condition that (almost) ensures this for all practical signals, see box on

page 297.
See for example R. V. Churchill, Fourier Series and Boundary Value Problems, Third

Edition, McGraw-Hill Book Company, New York, 1978.

296 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


7. FREQUENCY DOMAIN

7.5.1 Uniqueness of the Fourier series

Suppose x : R→R is a periodic function with period p. Then the Fourier series expansion
is unique. In other words if it is both true that

x(t) = A0 +
∞

∑
k=1

Ak cos(kω0t +φk)

Probing Further: Dirichlet conditions

The Fourier series representation of a periodic signal x with period p is a limit of a
sequence of finite Fourier series approximations xN for N = 1,2, · · · . We have seen in
the box on page 295 a strong condition that ensures that ∀ t ∈ R,

x(t) = lim
N→∞

xN(t). (7.6)

We have seen in the box on page 296 a weaker condition that does not guarantee this,
but instead guarantees that the energy in the error over one period is zero. It turns that
for almost all signals of interest, we can assert that (7.6) holds for almost all t ∈ R. In
particular, if the Dirichlet conditions are satisfied, then (7.6) holds for all t except where
x is discontinuous. The Dirichlet conditions are three:
• Over one period, x is absolutely integrable, meaning that

p∫
0

|x(t)|dt < ∞.

• Over one period, x is of bounded variation, meaning that there are no more than
a finite number of maxima or minima. That is, if the signal is oscillating between
high and low values, it can only oscillate a finite number of times in each period.

• Over one period, x is continuous at all but a finite number of points.

These conditions are satisfied by the square wave, and indeed by any signal of practical
engineering importance.

Lee & Varaiya, Signals and Systems 297

http://LeeVaraiya.org


7.5. FOURIER SERIES

and

x(t) = B0 +
∞

∑
k=1

Bk cos(kω0t +θk),

where ω0 = 2π/p, then it must also be true that

∀ k ≥ 0, Ak = Bk and φk mod 2π = θk mod 2π.

(The modulo operation is necessary because of the non-uniqueness of phase.) Thus, when
we talk about the frequency content of a signal, we are talking about something that
is unique and well defined. For a suggestion about how to prove this uniqueness, see
problem 11.

7.5.2 Periodic, finite, and aperiodic signals

We have seen in Section 7.4 that periodic signals and finite signals have much in common.
One can be defined in terms of the other. Thus, a Fourier series can be used to describe
a finite signal as well as a periodic one. The “period” is simply the extent of the finite
signal. Thus, if the domain of the signal is [a,b] ⊂ R, then p = b− a. The fundamental
frequency, therefore, is just ω0 = 2π/(b−a).

An aperiodic signal, like an audio signal, can be partitioned into finite segments, and a
Fourier series can be constructed from each segment.

Example 7.7: Consider the train whistle shown in Figure 7.9(a). Figure 7.9(b)
shows a segment of 16 msec. Notice that within this segment, the sound clearly has
a somewhat periodic structure. It is not hard to envision how it could be described
as sums of sinusoids. The magnitudes of the Ak Fourier series coefficients for this
16 msec segment are shown in Figure 7.9(c). These are calculated on a computer
using techniques we will discuss later, rather than being calculated by hand as in
the previous example. Notice that there are three dominant frequency components
that give the train whistle its tonality and timbre.

298 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


7. FREQUENCY DOMAIN

-0.4

-0.2

0.0

0.2

0.4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Time in seconds

(a)

-2x10

-0.2

-0.1

0.0

0.1

0.2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

(b)

3x10

0.00

0.02

0.04

0.06

0.08

0.10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

(c)
Figure 7.9: (a) A 1.6 second train whistle. (b) A 16 msec segment of the train
whistle. (c) The Fourier series coefficients for the 16 msec segment.

Lee & Varaiya, Signals and Systems 299

http://LeeVaraiya.org


7.6. DISCRETE-TIME SIGNALS

7.5.3 Fourier series approximations to images

Images are invariably finite signals. Given any image, it is possible to construct a periodic
image by just tiling a plane with the image. Thus, there is again a close relationship
between a periodic image and a finite one.

We have seen sinusoidal images (Figure 7.5), so it follows that it ought to be possible
to construct a Fourier series representation of an image. The only hard part is that im-
ages have a two-dimensional domain, and thus are finite in two distinct dimensions. The
sinusoidal images in Figure 7.5 have a vertical frequency, a horizontal frequency, or both.

Suppose that the domain of an image is [a,b]× [c,d] ⊂ R×R. Let pH = b− a, and
pV = d − c represent the horizontal and vertical “periods” for the equivalent periodic
image. For constructing a Fourier series representation, we can define the horizontal and
vertical fundamental frequencies as follows:

ωH = 2π/pH

ωV = 2π/pV

The Fourier series representation of Image : [a,b]× [c,d]→ Intensity is

Image(x,y) =
∞

∑
k=0

∞

∑
m=0

Ak,m cos(kωHx+φk)cos(mωV y+ϕm)

For convenience, we have included the constant term A0,0 in the summation, so we assume
that φ0 = ϕ0 = 0. (Recall that cos(0) = 1).

7.6 Discrete-time signals

Consider signals of the form x : Z→ R, which if the domain is interpreted as time are
discrete-time signals. Discrete-time signals can be decomposed into sinusoidal compo-
nents much like continuous-time signals. There are some minor subtleties, however.

7.6.1 Periodicity

A discrete-time signal is periodic if there is a non-zero integer p > 0 such that

∀ n ∈ Z, x(n+ p) = x(n).

300 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


7. FREQUENCY DOMAIN

Note that, somewhat counterintuitively, not all sinusoidal discrete-time signals are peri-
odic. Consider

x(n) = cos(2π f n). (7.7)

For this to be periodic, we must be able to find a non-zero integer p such that for all
integers n,

x(n+ p) = cos(2π f n+2π f p) = cos(2π f n) = x(n).

This can be true only if (2π f p) is an integer multiple of 2π. That is, if there is some
integer m such that

2π f p = 2πm.

Dividing both sides by 2πp, we see that this signal is periodic only if we can find nonzero
integers p and m such that

f = m/p.

Basics: Discrete-time frequencies

When the domain of a signal is Z, then the units of frequency are cycles/sample.
Consider for example the discrete-time signal given by

∀n ∈ Z, x(n) = cos(2π f n).

Suppose this represents an audio signal that is sampled at 8000 samples/second. Then
to convert f to Hertz, just watch the units:

f [cycles/sample]×8000[samples/second] = 8000 f [cycles/second].

The frequency could have been equally well given in units of radians/sample, as in

x(n) = cos(ωn).

for all n ∈ Z. To convert ω to Hertz,

ω[radians/sample]×8000[samples/second]× (1/2π)[cycles/radian]

= (8000w/2π)[cycles/second].

Lee & Varaiya, Signals and Systems 301

http://LeeVaraiya.org


7.6. DISCRETE-TIME SIGNALS

In other words, f must be rational. Only if f is rational is this signal periodic.

Example 7.8: Consider a discrete-time sinusoid x given by

∀ n ∈ Z, x(n) = cos(4πn/5).

Putting this into the form of (7.7),

x(n) = cos(2π(2/5)n),

we see that it has frequency f = 2/5 cycles/sample. If this were a continuous-time
sinusoid, we could invert this to get the period. However, the inverse is not an inte-
ger, so it cannot possibly be the period. Noting that the inverse is 5/2 samples/cycle,
we need to find the smallest multiple of this that is an integer. Multiply by 2, we
get 5 samples/(2 cycles). So the period is p = 5 samples.

In general, for a discrete sinusoid with frequency f cycles/sample, the period is p = K/ f ,
where K > 0 is the smallest integer such that K/ f is an integer.

7.6.2 The discrete-time Fourier series

Assume we are given a periodic discrete-time signal x with period p. Just as with continuous-
time signals, this signal can be described as a sum of sinusoids, called the discrete-time
Fourier series (DFS) expansion,

x(n) = A0 +
K
∑

k=1
Ak cos(kω0n+φk) (7.8)

where

K =

{
(p−1)/2 if p is odd
p/2 if p is even

Unlike the continuous-time case, the sum is finite. Intuitively, this is because discrete-
time signals cannot represent frequencies above a certain value. We will examine this
phenomenon in more detail in Chapter 11, but for now, it proves extremely convenient.

302 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


7. FREQUENCY DOMAIN

Mathematically, the above relation is much simpler than the continuous-time Fourier se-
ries. All computations are finite. There is a finite number of signal values in one period
of the waveform. There is a finite number of terms in the Fourier series representation
for each signal value. Unlike the continuous-time case, it is easy for computers to man-
age this representation. Given a finite set of values, A0, · · · ,AK , a computer can calculate
x(n). Moreover, the representation is exact for any periodic signal. No approximation is
needed, and there is no question of convergence. In the continuous-time case, the Fourier
series representation is accurate only for certain signals. For the discrete-time case, it is
always accurate.

The DFS can be calculated efficiently on a computer using an algorithm called the fast
Fourier transform (FFT). All of the Fourier series examples that are plotted in this text
were calculated using the FFT algorithm.

7.7 Summary

A time-based signal can be described as a sum of sinusoids. This sum is called a Fourier
series. The magnitudes and phases of the sinusoids, taken together as a function of fre-
quency, are called the frequency-domain representation of the signal. For audio signals,
this frequency-domain representation has a direct psychoacoustic significance. But we
will see in the next chapter that this representation has a significance for all signals when
LTI systems are used to process the signals. We will see that the effect that an LTI system
has on a signal is particularly easy to understand in the frequency domain.

Lee & Varaiya, Signals and Systems 303

http://LeeVaraiya.org


EXERCISES

Exercises

Note: each problem is annotated with the letter E, T, C which stands for exercise, requires
some thought, requires some conceptualization. Problems labeled E are usually mechan-
ical, those labeled T require a plan of attack, those labeled C usually have more than one
defensible answer.

1. E In (7.1) we defined periodic for continuous-time signals.

(a) Define finite and periodic for discrete-time signals, where the domain is Z.

(b) Define finite and periodic for images.

2. E Which of the following signals is periodic with a period greater than zero, and
what is that period? All functions are of the form x : R→ C. The domain is time,
measured in seconds, and so the period is in seconds.

(a) ∀ t ∈ R, x(t) = 10sin(2πt)+(10+2i)cos(2πt)

(b) ∀ t ∈ R, x(t) = sin(2πt)+ sin(
√

2πt)

(c) ∀ t ∈ R, x(t) = sin(2
√

2πt)+ sin(
√

2πt)

3. E Consider the discrete-time signal x where

∀ n ∈ Z, x(n) = 1+ cos(4πn/9).

(a) Find the period p, where p > 0.

(b) Give the fundamental frequency corresponding to the period in (1). Give the
units.

(c) Give the coefficients A0,A1,A2, · · · and φ1,φ2, · · · of the Fourier series expan-
sion for this signal.

4. E Consider a continuous-time signal x : R→ R defined by

∀ t ∈ R, x(t) = cos(ω1t)+ cos(ω2t),

where ω1 = 2π and ω2 = 3π radians/second.

(a) Find the smallest period p ∈ R+, where p > 0.

(b) Give the fundamental frequency corresponding to the period in (a). Give the
units.

304 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


7. FREQUENCY DOMAIN

(c) Give the coefficients A0,A1,A2, · · · and φ1,φ2, · · · of the Fourier series expan-
sion for x.

5. T Determine the fundamental frequency and the Fourier series coefficients for the
well-tempered major triad,

s(t) = sin(440×2πt)+ sin(554×2πt)+ sin(659×2πt).

6. E Define x : R→ R

∀ t ∈ R, x(t) = 5cos(ω0t +π/2)

+5cos(ω0t−π/6)

+5cos(ω0t−2π/3).

Find A and φ so that

∀ t ∈ R, x(t) = Acos(ω0t +φ).

Hint: Appendix B might be useful.

7. T In this problem, we examine a practical application of the mathematical result in
problem 6. In particular, we consider multipath interference, a common problem
with wireless systems where multiple paths from a transmitter to a receiver can
result in destructive interference of a signal.

When a transmitter sends a radio signal to a receiver, the received signal consists
of the direct path plus several reflected paths. In Figure 7.10, the transmitter is on
a tower at the left of the figure, the receiver is the telephone in the foreground, and
there are three paths: the direct path is l0 meters long, the path reflected from the
hill is l1 meters long, and the path reflected from the building is l2 meters long.

Suppose the transmitted signal is a f Hz sinusoid x : R→ R,

∀ t ∈ R, x(t) = Acos(2π f t)

So the received signal is y such that ∀ t ∈ R,

y(t) = α0Acos(2π f (t− l0
c
))

+α1Acos(2π f (t− l1
c
))

+α2Acos(2π f (t− l2
c
)). (7.9)

Lee & Varaiya, Signals and Systems 305

http://LeeVaraiya.org


EXERCISES

Here, 0≤ αi ≤ 1 are numbers that represent the attenuation (or reduction in signal
amplitude) of the signal, and c = 3× 108 m/s is the speed of light in a vacuum.2

Answer the following questions.

(a) Explain why the description of y given in (7.9) is a reasonable model of the
received signal.

(b) What would be the description if instead of the 3 paths as shown in Figure
7.10, there were 10 paths (one direct and 9 reflected).

(c) The signals received over the different paths cause different phase shifts, φi,
so the signal y (with three paths) can also be written as

∀ t ∈ R, y(t) =
2

∑
k=0

αkAcos(2π f t−φk)

What are the φk? Give an expression in terms of f , lk, and c.

(d) Let Φ = max{φ1− φ0,φ2− φ0} be the largest difference in the phase of the
received signals and let L = max{l1− l0, l2− l0} be the maximum path length
difference. What is the relationship between Φ,L, f ?

(e) Suppose for simplicity that there is only one reflected path of distance l1, i.e.
take α2 = 0 in the expressions above. Then Φ = φ1− φ0. When Φ = π, the
reflected signal is said to destroy the direct signal. Explain why the term “de-
stroy” is appropriate. (This phenomenon is called destructive interference.)

(f) In the context of mobile radio shown in the figure, typically L ≤ 500m. For
what values of f is Φ ≤ π/10? (Note that if Φ ≤ π/10 the signals will not
interact destructively by much.)

(g) For the two-path case, derive an expression that relates the frequencies f that
interfere destructively to the path length difference L = l1− l0.

8. T The function x : R→ R is given by its graph shown in Figure 7.11. Note that
∀ t 6∈ [0,1], x(t) = 0, and x(0.4) = 1. Define y by

∀ t ∈ R, y(t) =
∞

∑
k=−∞

x(t− kp)

where p is the period.

2In reality, the reflections are more complicated than the model here.

306 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


7. FREQUENCY DOMAIN

reflected paths

direct path

Figure 7.10: A direct and two reflected paths from transmitter to receiver.

1

0 0.4 1x

Figure 7.11: The graph of x.

Lee & Varaiya, Signals and Systems 307

http://LeeVaraiya.org


EXERCISES

(a) Prove that y is periodic with period p, i.e.

∀ t ∈ R,y(t) = y(t + p).

(b) Plot y for p = 1.
(c) Plot y for p = 2.
(d) Plot y for p = 0.8.
(e) Plot y for p = 0.5.
(f) Suppose the function z is obtained by advancing x by 0.4, i.e.

∀ t ∈ R, z(t) = x(t +0.4).

Define w by

∀ t ∈ R, w(t) =
∞

∑
k=−∞

z(t− kp)

What is the relation between w and y. Use this relation to plot w for p = 1.

9. T Suppose x : R→ R is a periodic signal with period p, i.e.

∀ t ∈ R, x(t) = x(t + p).

Let f : R→ R be any function, and define the signal y : R→ R by y = f ◦ x, i.e.

∀ t ∈ R, y(t) = f (x(t)).

(a) Prove that y is periodic with period p.
(b) Suppose ∀ t ∈ R, x(t) = sin(2πt). Suppose f is the sign function, ∀ a ∈ R,

f (a) =
{

1 if a≥ 0
−1 if a < 0

Plot x and y.
(c) Suppose ∀ t ∈R, x(t) = sin(2πt). Suppose f is the square function, ∀ x∈R,

f (x) = x2. Plot y.

10. C Suppose the periodic square wave shown on the left in Figure 7.12 has the Fourier
series representation

A0 +
∞

∑
k=1

Ak cos(2πkt/p+φk)

Use this to obtain a Fourier series representation of the two-dimensional pattern of
rectangles on the right.

308 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


7. FREQUENCY DOMAIN

p

2p/3 2p/3 p

p

2p/3

Figure 7.12: A periodic square wave (left) and a periodic pattern (right).

11. T Suppose Ak ∈ C, ωk ∈ R, and k = 1,2, such that

∀ t ∈ R, A1eiω1t = A2eiω2t . (7.10)

Show that A1 = A2 and ω1 = ω2. Hint: Evaluate both sides of (7.10) at t = 0, and
evaluate their derivatives at t = 0.

Discussion: This result shows that in order for two complex exponential signals
to be equal, their frequencies, phases, and amplitudes must be equal. More in-
terestingly, this result can be used to show that if a signal can be described as a
sum of complex exponential signals, then that description is unique. There is no
other sum of complex exponentials (one involving different frequencies, phases,
or amplitudes) that will also describe the signal. In particular, the Fourier series
representation of a periodic signal is unique, as stated above in theorem 7.5.1.

Lee & Varaiya, Signals and Systems 309

http://LeeVaraiya.org


EXERCISES

310 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


8
Frequency Response

Contents
8.1 LTI systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

8.1.1 Time invariance . . . . . . . . . . . . . . . . . . . . . . . . . 313
8.1.2 Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
8.1.3 Linearity and time-invariance . . . . . . . . . . . . . . . . . 321

8.2 Finding and using the frequency response . . . . . . . . . . . . . . 325
8.2.1 Linear difference and differential equations . . . . . . . . . . 328
Basics: Sinusoids in terms of complex exponentials . . . . . . . . . . 330
Tips and Tricks: Phasors . . . . . . . . . . . . . . . . . . . . . . . . 331
8.2.2 The Fourier series with complex exponentials . . . . . . . . . 338
8.2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

8.3 Determining the Fourier series coefficients . . . . . . . . . . . . . 339
8.3.1 Negative frequencies . . . . . . . . . . . . . . . . . . . . . . 340

8.4 Frequency response and the Fourier series . . . . . . . . . . . . . 340
8.5 Frequency response of composite systems . . . . . . . . . . . . . . 342

8.5.1 Cascade connection . . . . . . . . . . . . . . . . . . . . . . . 342
8.5.2 Feedback connection . . . . . . . . . . . . . . . . . . . . . . 344

8.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
Probing Further: Relating DFS coefficients . . . . . . . . . . . . . . 347
Probing Further: Formula for Fourier series coefficients . . . . . . . 349
Probing Further: Exchanging integrals and summations . . . . . . . 350
Probing Further: Feedback systems are LTI . . . . . . . . . . . . . . 352

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

311



A class of systems that yield to sophisticated analysis techniques is the class of linear time-
invariant systems (LTI system), discussed in Chapter 5. LTI systems have a key property:
given a sinusoidal input, the output is a sinusoidal signal with the same frequency, but
possibly different amplitude and phase. Given an input that is a sum of sinusoids, the
output will be a sum of the same sinusoids, each with its amplitude and phase (possibly)
modified.

We can justify describing audio signals as sums of sinusoids on purely psychoacoustic
grounds. However, because of this property of LTI systems, it is often convenient to de-
scribe any signal as a sum of sinusoids, regardless of whether there is a psychoacoustic
justification. The real value in this mathematical device is that by using the theory of
LTI systems, we can design systems that operate more-or-less independently on the sinu-
soidal components of a signal. For example, abrupt changes in the signal value require
higher frequency components. Thus, we can enhance or suppress these abrupt changes by
enhancing or suppressing the higher frequency components. Such an operation is called
filtering because it filters frequency components. We design systems by crafting their
frequency response, their response to sinusoidal inputs. An audio equalizer, for exam-
ple, is a filter that enhances or suppresses certain frequency components. Images can also
be filtered. Enhancing the high frequency components will sharpen the image, whereas
suppressing the high frequency components will blur the image.

State-space models described in previous chapters are precise and concise, but in a sense,
not as powerful as a frequency response. For an LTI system, given a frequency response,
you can assert a great deal about the relationship between an input signal and an output
signal. Fewer assertions are practical in general with state-space models.

LTI systems, in fact, can also be described with state-space models, using difference
equations and differential equations, as explored in Chapter 5. But state-space models
can also describe systems that are not LTI. Thus, state-space models are more general.
It should come as no surprise that the price we pay for this increased generality is fewer
analysis and design techniques. In this chapter, we explore the (very powerful) analysis
and design techniques that apply to the special case of LTI systems.

312 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


8. FREQUENCY RESPONSE

8.1 LTI systems

LTI systems have received a great deal of intellectual attention for two reasons. First,
they are relatively easy to understand. Their behavior is predictable, and can be fully
characterized in fairly simple terms, based on the frequency domain representation of
signals that we introduced in the previous chapter. Second, many physical systems can
be reasonably approximated by them. Few physical systems perfectly fit the model, but
many fit very well within a certain regime of operation. Hybrid system models can be
used when we wish to model more than one such regime of operation.

8.1.1 Time invariance

Consider the set of signals whose domain is interpreted as time. Such signals are func-
tions of time, sometimes called time-domain signals. The domain might be R , for
continuous-time signals, or Z , for discrete-time signals. Physical audio signals, for
example, are continuous-time signals, while a digital audio file is a discrete-time sig-
nal. Systems with continuous-time input and output signals are called continuous-time
systems. Systems with discrete-time input and output signals are called discrete-time
systems.

A simple continuous-time system is the delay system Dτ, where if the input is x, then the
output y = Dτ(x) is given by

∀ t ∈ R, y(t) = x(t− τ). (8.1)

Positive values of τ result in positive delays (despite the subtraction in x(t − τ)). Any
delay results in a shifting left or right of the graph of a signal, as shown in Figure 8.1.

Example 8.1: Consider a continuous-time signal x given by

∀ t ∈ R, x(t) = cos(2πt).

Let y = D0.5(x). Then

∀ t ∈ R, y(t) = cos(2π(t−0.5)) = cos(2πt−π).

The delay by 0.5 seconds is equivalent to a phase shift of −π radians. For a sinu-
soidal signal, and only for a sinusoidal signal, time delay and phase changes are

Lee & Varaiya, Signals and Systems 313

http://LeeVaraiya.org


8.1. LTI SYSTEMS

t 

x 

0 1 -1 

D+1.0(x) 

 
D-1.4(x) 

Figure 8.1: Illustration of the delay system Dτ. D−1.4(x) is the signal x to the left
by 1.4, and D+1.0(x) is x moved to the right by 1.0.

equivalent, except for the fact that phase is measured in radians (or degrees) rather
than in seconds. In addition, a phase change of q is equivalent to a phase change
of q+K2π for any integer K. Phase applies to sinusoidal signals, whereas delay
applies to any signal that is a function of time.

Intuitively, a time-invariant system is one whose response to inputs does not change with
time. More precisely, a continuous-time system S is said to be time invariant if

∀τ ∈ R, S◦Dτ = Dτ ◦S. (8.2)

Figure 8.2 illustrates this equivalence, where the left hand side, S ◦Dτ, is shown on top,
and the right hand side, Dτ ◦S, is shown on the bottom. Time invariance implies that the
upper and lower systems in figure 8.2 have identical behavior.

Equivalently, S is time-invariant if for all x and τ,

S(Dτ(x)) = Dτ(S(x)).

Since both sides above are functions, this equation means that

∀t ∈ R, S(Dτ(x))(t) = Dτ(S(x))(t).

Thus a less compact version of (8.2) is1

∀ τ, t,x, S(Dτ(x))(t) = Dτ(S(x))(t).

1We use the shorthand “∀ x” instead of “∀ x ∈ [R→ R]” when the set is understood. Similarly, we can
write “∀ τ, t,x” instead of “∀ τ ∈ R,∀ t ∈ R,∀x ∈ [R→ R].

314 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


8. FREQUENCY RESPONSE

x
DτS

z

y

0 τ0

00

τ0

τ0

x
Dτ S

Figure 8.2: Time invariance implies that the top and bottom systems produce the
same output signal for the same input signal.

This is interpreted as follows:

A system S is time invariant if, for any input x that produces output y, a delayed input
Dτ(x) produces output Dτ(y).

Similarly, the discrete-time M-sample delay is written DM. The signal y = DM(x) is given
by

∀ n ∈ Z, y(n) = x(n−M). (8.3)

A discrete-time system S is time invariant if

∀M,x, S(DM(x)) = DM(S(x)). (8.4)

Example 8.2: Consider a discrete-time system S,

S : [Z→ R]→ [Z→ R].

Suppose that any input x produces output y where

∀ n ∈ Z, y(n) = x(n)+0.9x(n−1). (8.5)

This system is time-invariant. To show this, consider a delayed input x̂ = DM(x),
for some integer M. That is,

∀ n, x̂(n) = x(n−M). (8.6)

Lee & Varaiya, Signals and Systems 315

http://LeeVaraiya.org


8.1. LTI SYSTEMS

Suppose that this input produces output ŷ = S(x̂). Then by the relation (8.5) be-
tween an input and an output,

∀ n, ŷ(n) = x̂(n)+0.9x̂(n−1).

Substituting (8.6), we see that

∀ n, ŷ(n) = x(n−M)+0.9x(n−M−1) = y(n−M).

Since ŷ = DM(y), the system is time-invariant.

Example 8.3: Consider the system DelayAndSquare, or DS for short,

DS : [R→ R]→ [R→ R].

Suppose that any input x produces output y where

∀ t ∈ R, y(t) = (x(t−1))2. (8.7)

This system is time-invariant. To show this, consider a delayed input x̂ = Dτ(x), for
some real number τ. That is,

∀ t, x̂(t) = x(t− τ). (8.8)

Suppose that this input produces output ŷ = S(x̂). Then by the relation (8.7) be-
tween an input and an output,

∀ t, ŷ(t) = (x̂(t−1))2.

Substituting (8.8), we see that

∀ t, ŷ(t) = (x(t−1− τ))2 = y(t− τ).

Since ŷ = Dτ(y), the system is time-invariant.

316 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


8. FREQUENCY RESPONSE

Example 8.4: Consider a system ReverseTime or RT ,

RT : [R→ R]→ [R→ R],

where any input x produces output y related by

∀ t ∈ R, y(t) = x(−t). (8.9)

This system is not time-invariant. To show this, consider a delayed input x̂ = Dτ(x),
for some real number τ. That is,

∀ t, x̂(t) = x(t− τ). (8.10)

Suppose that this input produces output ŷ = S(x̂). Then by the relation (8.9) be-
tween an input and an output,

∀ t, ŷ(t) = x̂(−t).

Substituting (8.10), we see that

∀ t, ŷ(t) = x(−t− τ) 6= y(t− τ) = x(−t + τ).

Since ŷ 6= Dτ(y), the system is not time-invariant.

To be completely convinced that these two signals are different in general, consider
a particular signal x such that ∀t, x(t) = t, and take τ = 1. Then ŷ(0) = −1, but
(Dτ(y))(0) = 1.

Time invariance is a mathematical fiction. No electronic system is time invariant in the
strict sense. For one thing, such a system is turned on at some point in time. Clearly,
its behavior before it is turned on is not the same as its behavior after it is turned on.
Nevertheless, it proves to be a very convenient mathematical fiction, and it is a reasonable
approximation for many systems if their behavior is constant over a relatively long period
of time (relative to whatever phenomenon we are studying). For example, your audio
amplifier is not a time-invariant system. Its behavior changes drastically when you turn it
on or off, and changes less drastically when you raise or lower the volume. However, for

Lee & Varaiya, Signals and Systems 317

http://LeeVaraiya.org


8.1. LTI SYSTEMS

the duration of a compact disc, if you leave the volume fixed, the system can be reasonably
approximated as being time-invariant.

Some systems have a similar property even though they operate on signals whose domain
is not time. For example, the domain of an image is a region of a plane. The output
of an image processing system may not depend significantly on where in the plane the
input image is placed. Shifting the input image will only shift the output image by the
same amount. This property which generalizes time invariance and holds for some image
processing systems, is called shift invariance (see problem 5).

8.1.2 Linearity

Consider the set of signals whose range is R or C . Such signals are real-valued functions
or complex-valued functions. Since real-valued functions are a subset of complex-valued
functions, we only need to talk about complex-valued functions. It does not matter (for
now) whether they are continuous-time signals or discrete-time signals. The domain could
be R or Z.

Suppose x is a complex-valued function and a is a complex constant. Then we can define
a new complex-valued function ax such that for all t in the domain of x,

(ax)(t) = a(x(t)).

In other words, the new function, which we call ax, is simply scaled by the constant a.

Similarly, given two complex-valued functions x1 and x2 with the same domain and range,
we can define a new function (x1 + x2) such that for all t in the domain,

(x1 + x2)(t) = x1(t)+ x2(t).

Consider the set of all systems that map complex-valued functions to complex-valued
functions. Such systems are called complex systems. Again, it does not matter (for now)
whether they are discrete-time systems or continuous-time systems. Suppose that S is a
complex system. S is said to be linear if for all a ∈ C and for all complex signals x,

S(ax) = aS(x) (8.11)

and for all complex signals x1 and x2 in the domain of S,

S(x1 + x2) = S(x1)+S(x2) (8.12)

318 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


8. FREQUENCY RESPONSE

Sa
x

S a
x

Figure 8.3: If S is linear, then these two systems are equivalent. The triangle
represents a system that scales a signal by some complex constant a.

The first of these—called the homogeneity property—says that if you scale the input, the
output is scaled. The second one—called the additivity property—says that if the input
is described as the sum of two component signals, then the output can be described as
the sum of two signals that would result from the components alone. Recall that linear
functions were introduced in Section 5.2. A linear system is one whose function relating
the output to the input is linear.

In pictures, the first property says that the two systems in Figure 8.3 are equivalent if S is
linear. Here, the triangle represents the scaling operation. The second property says that
the two systems in Figure 8.4 are equivalent.

Example 8.5: Consider the same discrete-time system S of example 8.2, where
input x produces output y such that

∀ n ∈ Z, y(n) = x(n)+0.9x(n−1).

This system is linear. To show this, we must show that (8.11) and (8.12) hold.
Suppose input x̂ = ax produces output ŷ = S(x̂). Then

∀ n, ŷ(n) = x̂(n)+0.9x̂(n−1)

= ax(n)+0.9ax(n−1)

= a(x(n)+0.9x(n−1))

= ay(n).

Lee & Varaiya, Signals and Systems 319

http://LeeVaraiya.org


8.1. LTI SYSTEMS

S

x

y

S

S

x

y

Figure 8.4: If S is linear, then these two systems are equivalent.

Thus, S(ax) = aS(x), establishing (8.11).

To check (8.12), suppose input x1 produces output y1 and x2 produces y2. Let
x = x1+x2 produce y. We must show that y = y1+y2. We leave this as an exercise.

Example 8.6: In the continuous-time system DelayAndSquare or DS of example
8.3, an input x produces output y where

∀ t ∈ R, y(t) = (x(t−1))2.

This system is not linear. To show this we must show that either (8.11) or (8.12)
does not hold for DS. We will show that (8.11) does not hold. To show this, consider
a scaled input x̂= ax, for some complex number a. Suppose that this input produces
output ŷ = S(x̂). Then,

∀ t, ŷ(t) = (x̂(t−1))2.

Since x̂ = ax,

∀ t, ŷ(t) = (ax(t−1))2 = a2(x(t−1))2 6= ay(t) = a(x(t−1))2.

320 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


8. FREQUENCY RESPONSE

In particular, take for example a = 2, t = 0, and x such that ∀ t, x(t) = 1. These
values result in

ŷ(t) = 4 6= ay(t) = 2.

Example 8.7: In the time-reversal system RT of example 8.4,

RT : [R→ R]→ [R→ R],

any input x produces output y related by

∀ t ∈ R, y(t) = x(−t).

This system is linear. To show this we must show that (8.11) and (8.12) both hold.
We first show that (8.11) holds; that is, for all a ∈ R,x ∈ [R→ R], and t ∈ R,

RT(ax)(t) = (aRT(x))(t).

But this is certainly true, since the left and right sides both evaluate to ax(−t). A
similar argument is used to show (8.12).

Linearity is a mathematical fiction. No electronic system is linear in the strict sense. A
system is designed to work with a range of input signals, and arbitrary scaling of the input
does not translate into arbitrary scaling of the output. If you provide an input to your
audio amplifier that is higher voltage than it is designed for, then it is not likely to just
produce louder sounds. Its input circuits will get overloaded and signal distortion will
result. Nonetheless, as a mathematical fiction, linearity is extremely convenient. It says
that we can decompose the inputs to a system and study the effect of the system on the
individual components.

8.1.3 Linearity and time-invariance

For time-domain systems, time-invariance is a useful (if fictional) property. For com-
plex (or real) systems, linearity is a useful (if fictional) property. For complex (or real)

Lee & Varaiya, Signals and Systems 321

http://LeeVaraiya.org


8.1. LTI SYSTEMS

time-domain systems, the combination of these properties is extremely useful. Linear
time-invariant (LTI) systems turn out to have particularly simple behavior with sinusoidal
inputs.

Given a sinusoid at the input, the output of an LTI system will be a sinusoid with the
same frequency, but possibly with different phase and amplitude.

It then follows that

Given an input that is described as a sum of sinusoids of certain frequencies, the output
can be described as a sum of sinusoids with the same frequencies, but with (possible)
phase and amplitude changes at each frequency.

A straightforward way to show that LTI systems have these properties starts by consid-
ering complex exponentials (for a review of complex numbers, see Appendix B). A
continuous-time complex exponential is a signal x ∈ [R→ C] where

∀ t ∈ R, x(t) = eiωt = cos(ωt)+ isin(ωt).

Complex exponential functions have an interesting property that will prove useful to us.
Specifically,

∀ t ∈ R and τ ∈ R, x(t− τ) = eiω(t−τ) = e−iωτeiωt .

This follows from the multiplication property of exponentials,

eb+c = ebec.

Since Dτ(x)(t) = x(t− τ), we have that for the complex exponential x,

Dτ(x) = ax, where a = e−iωτ. (8.13)

In words, a delayed complex exponential is a scaled complex exponential, where the
scaling constant is the complex number a = e−iωτ.

We will now show that if the input to a continuous-time LTI system is eiωt , then the output
will be H(ω)eiωt , where H(ω) is a constant (not a function of time) that depends on the
frequency ω of the complex exponential. In other words, the output is only a scaled
version of the input.

When the output of a system is only a scaled version of the input, the input is called an
eigenfunction, which comes from the German word for “same.” The output is (almost)
the same as the input.

322 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


8. FREQUENCY RESPONSE

Complex exponentials are eigenfunctions of LTI systems, as we will now show. This is
the most important reason for the focus on complex exponentials in the study of signals
and systems. This single property underlies much of the discipline of signal processing,
and is used heavily in circuit analysis, communication systems, and control systems.

Given an LTI system S : [R→ C]→ [R→ C], let x be an input signal where

∀ t ∈ R, x(t) = eiωt

Recall that S is time invariant if for all τ ∈ R,

S◦Dτ = Dτ ◦S.

Thus
S(Dτ(x)) = Dτ(S(x)).

From (8.13),
S(Dτ(x)) = S(ax)

where a = e−iωτ, and from linearity,

S(ax) = aS(x)

so
aS(x) = Dτ(S(x)). (8.14)

Let y = S(x) be the corresponding output signal. Substituting into (8.14) we get

ay = Dτ(y).

In other words,
∀ t,τ ∈ R, e−iωτy(t) = y(t− τ).

In particular, this is true for t = 0, so letting t = 0,

∀ τ ∈ R, y(−τ) = e−iωτy(0).

Changing variables, letting t =−τ , we note that this implies that

∀ t ∈ R, y(t) = eiωty(0).

Recall that y(0) is the output evaluated at 0 when the input is eiωt . It is a constant, in that
it does not depend on t, so this establishes that the output is a complex exponential, just

Lee & Varaiya, Signals and Systems 323

http://LeeVaraiya.org


8.1. LTI SYSTEMS

like the input, except that it is scaled by y(0). However, y(0) does, in general, depend on
ω, so we define the function H : R→ C by

∀ ω ∈ R, H(ω) = y(0) = (S(x))(0), where ∀ t ∈ R, x(t) = eiωt . (8.15)

That is, H(ω) is the output at time zero when the input is a complex exponential with
frequency ω.

Using this notation, we write the output y as

∀ t ∈ R, y(t) = H(ω)eiωt

when the input is eiωt . Note that H(ω) is a function of ω ∈ R, the frequency of the input
complex exponential.

The function H : R→ C is called the frequency response. It defines the response of the
LTI system to a complex exponential input at any given frequency. It gives the scaling
factor that the system imposes on that complex exponential.

For discrete-time systems, the situation is similar. By reasoning identical to that above,
for an LTI system, if the input is a discrete complex exponential,

∀ n ∈ Z, x(n) = eiωn

then the output is the same complex exponential scaled by a constant (a complex number
that does not depend on time),

∀ n ∈ Z, y(n) = H(ω)eiωn

H is once again called the frequency response, and since it is a function of ω, and is
possibly complex valued, it has the form H : R→ C.

There is one key difference, however, between discrete-time systems and continuous-time
systems. Since n is an integer, notice that

eiωn = ei(ω+2π)n = ei(ω+4π)n,

and so on. That is, a discrete complex exponential with frequency ω is identical to a
discrete complex exponential with frequency ω+2Kπ, for any integer K. The frequency
response, therefore, must be identical at these frequencies, since the inputs are identical.
That is

∀ω ∈ R, H(ω) = H(ω+2Kπ)

for any integer K. That is, a discrete-time frequency response is periodic with period 2π.

324 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


8. FREQUENCY RESPONSE

8.2 Finding and using the frequency response

We have seen that if the input to an LTI system is a complex exponential signal x ∈ [R→
C] where

∀ t ∈ R, x(t) = eiωt = cos(ωt)+ isin(ωt).

then the output is

∀t ∈ R, y(t) = H(ω)eiωt . (8.16)

where H(ω) is a (possibly complex-valued) number that is a property of the system. H(ω)
is called the frequency response at frequency ω.

Example 8.8: Consider a delay system S = DT , for some T ∈ R. It is an LTI
system, as is easy to verify by checking that (8.2), (8.11), and (8.12) are satisfied.
Suppose the input to the delay system is the complex exponential x given by

∀ t ∈ R, x(t) = eiωt .

Then the output y satisfies

∀ t ∈ R, y(t) = eiω(t−T ) = e−iωT eiωt .

Comparing this to (8.16) we see that the frequency response of the delay is

H(ω) = e−iωT .

Example 8.9: Consider a discrete-time M-sample delay system S = DM. If y =
S(x) then y is given by

∀ n ∈ Z, y(n) = x(n−M). (8.17)

This is an LTI system, as is easy to verify. We could find the frequency response
exactly the same way as in the previous example, but instead we use a slightly
different method. Since the system is LTI, we know that if the input is x such that

Lee & Varaiya, Signals and Systems 325

http://LeeVaraiya.org


8.2. FINDING AND USING THE FREQUENCY RESPONSE

for all n ∈ Z, x(n) = eiωn, then the output is H(ω)eiωn, where H is the frequency
response. By plugging this input and output into (8.17), we get

H(ω)eiωn = eiω(n−M) = eiωne−iωM.

Divide both sides by eiωn to get

H(ω) = e−iωM.

The techniques in the previous examples can be used to find the frequency response of
more complicated systems. Simply replace the input x in a difference equation like (8.17)
with eiωn, and replace the output y with H(ω)eiωn, and then solve for H(ω).

Example 8.10: Consider a discrete-time, length two moving average, given by the
difference equation

∀ n ∈ Z, y(n) = (x(n)+ x(n−1))/2,

where x is the input and y is the output. When the input for all n is eiωn, this becomes

H(ω)eiωn = (eiωn + eiω(n−1))/2.

Solving for H(ω), we find that the frequency response is

H(ω) = (1+ e−iω)/2.

A similar approach can find the frequency response of a continuous-time system described
by a differential equation.

Example 8.11: Consider a continuous-time system with input x and output y
related by the differential equation

∀t ∈ R, RC
dy
dt

(t)+ y(t) = x(t), (8.18)

326 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


8. FREQUENCY RESPONSE

R

Cx(t) y(t)

+

-

+

-

Figure 8.5: The RC circuit of example 8.11.

where R and C are real-valued constants. This differential equation describes the
RC circuit of Figure 8.5, which consists of an R-ohm resistance in series with a C-
farad capacitor. The circuit has input voltage x, provided by a voltage source, shown
as a circle on the left. The output is the voltage y across the capacitor. Kirchhoff’s
voltage law gives the differential equation. It is easy to verify that this differntial
equation describes an LTI system.

We can determine the frequency response of this system by assuming that the input
x is given by ∀ t ∈ R, x(t) = eiωt , and finding the output. Since the system is LTI,
the output will be given by y(t) = H(ω)eiωt . Plugging these values for x and y into
(8.18) gives

RC(iω)H(ω)eiωt +H(ω)eiωt = eiωt , (8.19)

because
dy
dt

(t) = iωH(ω)eiωt .

Dividing both sides of (8.19) by eiωt yields the frequency response of this circuit,

∀ω ∈ R, H(ω) =
1

1+ iRCω
.

Lee & Varaiya, Signals and Systems 327

http://LeeVaraiya.org


8.2. FINDING AND USING THE FREQUENCY RESPONSE

8.2.1 Linear difference and differential equations

The procedure of example 8.10 can be used to write down by inspection the frequency
response of any high-order linear difference equation of the form, ∀ n ∈ Z,

a0y(n)+a1y(n−1)+ · · ·+aNy(n−N) = b0x(n)+b1x(n−1)+ · · ·+bMx(n−M). (8.20)

The coefficients of this difference equation, a0, · · · ,aN and b0, · · · ,bM, are real constants.
(They could also be complex.) This describes an LTI system, and a good way to recognize
that a discrete-time system is LTI is to write it in this form. If the input for all n is
x(n) = eiωn, then the output for all n is y(n) = H(ω)eiωn. Plugging these values of input
and output into (8.20) gives,

a0H(ω)eiωn +a1H(ω)eiω(n−1) + · · ·+aNH(ω)eiω(n−N)

= b0eiωn + b1eiω(n−1)+ · · ·+bMeiω(n−M).

Recognizing that eiω(n−m) = e−imωeiωn, we can divide both sides by eiωn and solve for
H(ω) to get

∀ω ∈ R, H(ω) =
b0 +b1e−iω + · · ·+bMe−iMω

a0 +a1e−iω + · · ·+aNe−iNω
(8.21)

Observe that the frequency response (8.21) is a ratio of two polynomials in e−iω.

Example 8.12: Consider an LTI system given by the difference equation

∀n ∈ Z, y(n)− y(n−3) = x(n)+2x(n−1)+ x(n−2).

Its frequency response is

∀ω ∈ R, H(ω) =
1+2e−iω + e−i2ω

1− e−i3ω
.

In a similar way one can obtain the frequency response of any linear differential equation
of the form,

∀t ∈ R, aN
dNy
dtN (t)+ · · ·+a1

dy
dt (t)+a0y(t) =

bM
dMx
dtM (t)+ · · ·+b1

dx
dt (t)+b0x(t), (8.22)

328 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


8. FREQUENCY RESPONSE

where the coefficients aN , · · · ,a0 and bM, · · · ,b0, are real (or complex) constants. This
describes an LTI system, and a good way to recognize that a continuous-time system is
LTI is to write it in this form. If the input for all t is x(t) = eiωt , the output for all t is
y(t) = H(ω)eiωt . Plugging these values of input and output into (8.22), and recognizing
that

dk

dtk eiωt = (iω)keiωt ,

gives,

aN(iω)NH(ω)eiωt + · · · + a1(iω)H(ω)eiωt +a0H(ω)eiωt =

bM(iω)Meiωt + · · ·+b1(iω)eiωt +b0eiωt .

We can divide both sides by eiωt to get

∀ω ∈ R, H(ω) =
bM(iω)M + · · ·+b1(iω)+b0

aN(iω)N + · · ·+a1(iω)+a0
(8.23)

Observe that the frequency response (8.23) is a ratio of two polynomials in iω.

Example 8.13: Consider the continuous-time system given by the differential
equation

∀ t ∈ R,
d2y
dt2 (t)−3

dy
dt

(t)+2y(t) =
dx
dt

+ x(t),

where x is the input and y is the output. It has frequency response

∀ω ∈ R, H(ω) =
iω+1

(iω)2−3iω+2
.

Complex exponentials as inputs are rather abstract. We have seen that with audio signals,
sinusoidal signals are intrinsically significant because the human ear interprets the fre-
quency of the sinusoid as its tone. Note that a real-valued sinusoidal signal can be given
as a combination of exponential signals (see box on page 330),

cos(ωt) = (eiωt + e−iωt)/2.

Lee & Varaiya, Signals and Systems 329

http://LeeVaraiya.org


8.2. FINDING AND USING THE FREQUENCY RESPONSE

Thus, if this is the input to an LTI system with frequency response H, then the output will
be

y(t) = (H(ω)eiωt +H(−ω)e−iωt)/2. (8.25)

Many (or most) LTI systems are not capable of producing complex-valued outputs when
the input is real, so for such systems, this y(t) must be real. This implies that

H(ω) = H∗(−ω). (8.26)

To see why this is so, note that if y(t) is real then so is H(ω)eiωt +H(−ω)e−iωt . But for
this to be real, it must be that the imaginary parts of the two terms cancel,

Im{H(ω)eiωt}=−Im{H(−ω)e−iωt}. (8.27)

Note that
Im{H(ω)eiωt}= Re{H(ω)}sin(ωt)+ Im{H(ω)}cos(ωt).

Basics: Sinusoids in terms of complex exponentials

Euler’s formula states that
eiθ = cos(θ)+ isin(θ).

The complex conjugate is
e−iθ = cos(θ)− isin(θ).

Summing these,
eiθ + e−iθ = 2cos(θ)

or
cos(θ) = (eiθ + e−iθ)/2.

Thus, for example,
cos(ωt) = (eiωt + e−iωt)/2.

Similarly,

sin(θ) =−i(eiθ− e−iθ)/2.

In appendix A we show that many useful trigonometric identities are easily derived from
these simple relations.

330 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


8. FREQUENCY RESPONSE

Using a similar fact for the right side of (8.27), we get

Re{H(ω)}sin(ωt)+ Im{H(ω)}cos(ωt)

=−Re{H(−ω)}sin(−ωt)− Im{H(−ω)}cos(−ωt).

Tips and Tricks: Phasors

Consider a general continuous-time sinusoidal signal, x(t)=Acos(ωt+φ), for all t ∈R.
Here A is the amplitude, φ is the phase, and ω is the frequency of the sinewave. (We
call this a sinewave, even though we are using cosine to describe it.) The units of φ are
radians. The units of ω are radians per second, assuming t is in seconds. This can be
written

x(t) = Re{Aei(ωt+φ)}= Re{Aeiφeiωt}= Re{Xeiωt}
where X = Aeiφ is called the complex amplitude or phasor. The representation

x(t) = Re{Xeiωt} (8.24)

is called the phasor representation of x. It can be convenient. For example, consider
summing two sinusoids with the same frequency,

x(t) = A1 cos(ωt +φ1)+A2 cos(ωt +φ2).

This is particularly easy using phasors, since

x(t) = Re{(X1 +X2)eiωt}= |X1 +X2|cos(ωt +∠(X1 +X2))

where X1 = A1eiφ1 and X2 = A2eiφ2 . Thus, addition of the sinusoids reduces to addition
of two complex numbers.

The exponential Xeiωt in (8.24) is complex valued. If we represent it in a two-
dimensional plane as in Figure 8.6, it will rotate in a counter-clockwise direction as t
increases. The frequency of rotation will be ω radians per second. At time 0 it will be X ,
shown in gray. The real-valued sinewave x(t) is the projection of Xeiωt on the real axis,
namely

Re{Xeiωt}= |X |cos(ωt +∠X).

The sum of two sinusoids with the same frequency is similarly depicted in Figure 8.7.
The two phasors, X1 and X2 are put head to tail and then rotated together. A similar
method can be used to add sinusoids of different frequencies, but then the two vectors
will rotate at different rates.

Lee & Varaiya, Signals and Systems 331

http://LeeVaraiya.org


8.2. FINDING AND USING THE FREQUENCY RESPONSE

Re

Im

X

Xeiωt

ωt

{Re{Xeiωt} = |X| cos(ωt + ∠X)

Figure 8.6: Phasor representation of a sinusoid.

If we evaluate this at t = 0 we get

Im{H(ω)}=−Im{H(−ω)},

and if we evaluate it at t = π/(2ω), we get

Re{H(ω)}= Re{H(−ω)},

which together imply (8.26).

Property (8.26) is called conjugate symmetry. The frequency response of a real system
(one whose input and output signals are real-valued) is conjugate symmetric. Thus,
combining (8.25) and (8.26), when the input is x(t) = cos(ωt), the output is

∀ t ∈ R, y(t) = Re{H(ω)eiωt}.

If we write H(ω) in polar form,

H(ω) = |H(ω)|ei∠H(ω),

332 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


8. FREQUENCY RESPONSE

Re

Im

X1

(X1+X2)eiωt

{|X1+X2| cos(ωt + ∠(X1+X2))

X2

Figure 8.7: Phasor representation of the sum of two sinusoids with the same
frequency.

Lee & Varaiya, Signals and Systems 333

http://LeeVaraiya.org


8.2. FINDING AND USING THE FREQUENCY RESPONSE

then when the input is cos(ωt), the output is

∀ t ∈ R, y(t) = |H(ω)|cos(ωt +∠H(ω)).

Thus, H(ω) gives the gain |H(ω)| and phase shift ∠H(ω) that a sinusoidal input with
frequency ω experiences. |H(ω)| is called the magnitude response of the system, and
∠H(ω) is called the phase response.

Example 8.14: The delay system S = DT of example 8.8 has frequency response

H(ω) = e−iωT .

The magnitude response is
|H(ω)|= 1.

Thus, any cosine input into a delay yields a cosine output with the same amplitude
(obviously). A filter with a constant unity magnitude response is called an allpass
filter, because it passes all frequencies equally. A delay is a particularly simple
form of an allpass filter.

The phase response is
∠H(ω) =−ωT.

Thus, any cosine input with frequency ω yields a cosine output with the same fre-
quency, but phase shift −ωT .

Example 8.15: The M-sample discrete-time delay of example 8.9 is also an allpass
filter. Its phase response is

∠H(ω) =−ωM.

Example 8.16: The magnitude response of the length-two moving average con-
sidered in example 8.10 is

|H(ω)|= |(1+ e−iω)/2|.

334 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


8. FREQUENCY RESPONSE

We can plot this using the following Matlab code, which (after adjusting the labels)
results in Figure 8.8.

omega = [0:pi/250:pi];
H = (1 + exp(-i*omega))/2;
plot(omega, abs(H));

Notice that at frequency zero (a cosine with zero frequency has constant value), the
magnitude response is 1. That is, a constant signal gets through the filter without
any reduction in amplitude. This is expected, since the average of two neighbor-
ing samples of a constant signal is simply the value of the constant signal. Notice
that the magnitude response decreases as the frequency increases. Thus, higher
frequency signals have their amplitudes reduced more by the filter than lower fre-
quency signals. Such a filter is called a lowpass filter because it passes lower fre-
quencies better than higher frequencies.

Example 8.17: The RC circuit of example 8.11 has frequency response given by

∀ω ∈ R, H(ω) =
1

1+ iRCω
.

We can express this in polar form, H(ω) = |H(ω)|ei∠H(ω) to get the magnitude and
phase responses,

|H(ω)|= 1√
1+(RCω)2

, ∠H(ω) =− tan−1 RCω.

If for all t, x(t) = cos(ωt), then y(t) = |H(ω)|cos(ωt−∠H(ω)). Since |H(ω)| → 0
as ω→ ∞, this RC circuit is a (not very good) low-pass filter.

Lee & Varaiya, Signals and Systems 335

http://LeeVaraiya.org


8.2. FINDING AND USING THE FREQUENCY RESPONSE

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

frequency in radians/sample

Figure 8.8: The magnitude response of a length-two moving average.

Often, we are given a frequency response, rather than some other description of an LTI
system such as a difference equation. The frequency response, in fact, tells us everything
we need to know about the system. The next example begins the exploration of that idea.

Example 8.18: Suppose that the frequency response H of a discrete-time LTI
system Filter is given by

∀ ω ∈ R, H(ω) = cos(2ω)

where ω has units of radians/sample. Suppose that the input signal x : Z→ R is
such that for all n ∈ Z,

x(n) =
{
+1 n even
−1 n odd

336 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


8. FREQUENCY RESPONSE

We can determine the output. All we have to do is notice that the input can be
written as

x(n) = cos(πn).

Thus, the input is a cosine with frequency π radians/sample. Hence, the output is

y(n) = |H(π)|cos(πn+∠H(π)) = cos(πn) = x(n).

This input is passed unchanged by the system.

Suppose instead that the input is given by

x(n) = 5.

Once again, the input is a cosine, but this time with zero frequency,

x(n) = 5cos(0n).

Hence the output is

y(n) = |H(0)| ·5cos(0n+∠H(0)) = 5 = x(n).

This input is also passed unchanged by the system.

Suppose instead that the input is

x(n) = cos(πn/2).

This input is given explicitly as a cosine, making our task easier. The output is

y(n) = |H(π/2)|cos(πn/2+∠H(π/2))

= cos(πn/2+π)

= −cos(πn/2)

= −x(n).

This input is inverted by the system.

Finally, suppose that the input is

x(n) = cos(πn/4).

The output is
y(n) = |H(π/4)|cos(πn/4+∠H(π/4)) = 0.

This input is filtered out by the system.

Lee & Varaiya, Signals and Systems 337

http://LeeVaraiya.org


8.2. FINDING AND USING THE FREQUENCY RESPONSE

8.2.2 The Fourier series with complex exponentials

The Fourier series for a continuous-time, periodic signal x : R → R with period p =
2π/ω0, can be written as (see (7.4))

x(t) = A0 +
∞

∑
k=1

Ak cos(kω0t +φk).

For reasons that we can now understand, the Fourier series is usually written in terms of
complex exponentials rather than cosines. Since complex exponentials are eigenfunctions
of LTI systems, this form of the Fourier series decomposes a signal into components that
when processed by the system are only scaled.

Each term of the Fourier series expansion has the form

Ak cos(kω0t +φk)

which we can write (see box on page 330)

Ak cos(kω0t +φk) = Ak(ei(kω0t+φk)+ e−i(kω0t+φk))/2.

So the Fourier series can also be written

x(t) = A0 +
∞

∑
k=1

Ak

2
(ei(kω0t+φk)+ e−i(kω0t+φk)).

Observe that
ei(kω0t+φk) = eikω0teiφk ,

and let

Xk =


A0 if k = 0
0.5Akeiφk if k > 0
0.5A−ke−iφ−k if k < 0

(8.28)

Then the Fourier series becomes

x(t) =
∞

∑
k=−∞

Xkeikω0t . (8.29)

This is the form in which one usually sees the Fourier series. Notice from (8.28) that the
Fourier series coefficients are conjugate symmetric,

Xk = X∗−k.

338 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


8. FREQUENCY RESPONSE

Of course, since (8.29) is an infinite sum, we need to worry about convergence (see box
on page 295).

The discrete-time Fourier series (DFS) can be similarly written. If x : Z→ R is a peri-
odic signal with period p = 2π/ω0, then we can write

x(n) =
p−1
∑

k=0
Xkeikω0n (8.30)

for suitably defined coefficients Xk. Relating the coefficients Xk to the coefficients Ak and
φk is a bit more difficult in the discrete-time case than in the continuous-time case (see
box on page 347).

There are two differences between (8.29) and (8.30). First, the sum in the discrete-time
case is finite, making it manageable by computer. Second, it is exact for any periodic
waveform. There are no mathematically tricky cases, and no approximation needed.

8.2.3 Examples

The Fourier series coefficients Ak of a square wave are shown in figure 7.7 in the previous
chapter. The magnitudes of the corresponding coefficients Xk for the Fourier series ex-
pansion of (8.29) are shown in figure 8.9. Since each cosine is composed of two complex
exponentials, there are twice as many coefficients.

Notice the symmetry in the figure. There are frequency components shown at both pos-
itive and negative frequencies. Notice also that the amplitude of the components is half
that in Figure 7.7, |Xk| = |Ak|/2. This is because there are now two components, one at
negative frequencies and one at positive frequencies, that contribute.

8.3 Determining the Fourier series coefficients

We have seen in the previous chapter that determining the Fourier series coefficients by
directly attempting to determine the amplitude of individual frequency components can be
difficult, even when the individual frequency components are known. Usually, however,
they are not known. A general formula for computing the coefficients for a continuous-
time periodic signal is

Lee & Varaiya, Signals and Systems 339

http://LeeVaraiya.org


8.4. FREQUENCY RESPONSE AND THE FOURIER SERIES

Xm = 1
p

p∫
0

x(t)e−imω0tdt. (8.32)

The m-th Fourier series coefficient is obtained by multiplying x by a complex exponential
with frequency −mω0 and averaging. The validity of this equation is demonstrated in the
box on page 349.

The discrete-time case is somewhat simpler. A discrete-time periodic signal x with period
p ∈ Z has Fourier series coefficients given by

Xk =
1
p

p−1
∑

m=0
x(m)e−imkω0 . (8.33)

This can be shown by manipulations similar to those in the box on page 349. The practical
importance in computing is much greater than that of the Fourier series for continuous-
time signals. Since this sum is finite, the DFS coefficients can be easily computed pre-
cisely on a computer.

8.3.1 Negative frequencies

The Fourier series expansion for a periodic signal x(t) is

x(t) =
∞

∑
k=−∞

Xkeikω0t

This includes Fourier series coefficients for the constant term (when k = 0, eikω0t = 1),
plus the fundamental and harmonics (k ≥ 1). But it also includes terms that seem to
correspond to negative frequencies. When k ≤−1, the frequency kω0 is negative. These
negative frequencies balance the positive ones so that the resulting sum is real-valued.

8.4 Frequency response and the Fourier series

Recall that if the input to an LTI system S is a complex exponential signal x ∈ [R→ C]
where

∀ t ∈ R, x(t) = eiω0t = cos(ω0t)+ isin(ω0t).

340 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


8. FREQUENCY RESPONSE

then the output for all t is
y(t) = H(ω0)eiω0t ,

where the complex number H(ω0) is the frequency response of the system at the funda-
mental frequency ω0 of the periodic input. It is equal to the output at time zero y(0) when
the input is eiω0t . H itself is a function H : R→ C that in principle can be evaluated for
any frequency ω ∈ R, including negative frequencies.

Recall further that if an input x to the system S is a periodic signal with period p, then it
can be represented as a Fourier series,

∀ t ∈ R, x(t) =
∞

∑
k=−∞

Xkeikω0t ,

where ω0 = 2π/p. By linearity and time invariance of S, the output y = S(x) for this
periodic input x, is given by

∀ t ∈ R, y(t) =
∞

∑
k=−∞

H(kω0)Xkeikω0t .

Thus, linearity tells us that if the input is decomposed into a sum of components, then the
output can be decomposed into a sum of components where each component is the re-
sponse of the system to a single input component. Linearity together with time invariance
tells us that each component, which is a complex exponential, is simply scaled. Thus, the
output is given by a Fourier series with coefficients XkH(kω0).

This major result is summarized below:

For an LTI system, if the input is given by a sum of complex exponentials, then the
output can be given by a sum of the same complex exponentials, each one scaled by the
frequency response evaluated at the corresponding frequency.

Among other things, this result tells us:

• There are no frequency components in the output that were not in the input. The
output consists of the same frequency components as the input, but with each com-
ponent individually scaled.

• LTI systems can be used to enhance or suppress certain frequency components.
Such operations are called filtering.

Lee & Varaiya, Signals and Systems 341

http://LeeVaraiya.org


8.5. FREQUENCY RESPONSE OF COMPOSITE SYSTEMS

• The frequency response function characterizes which frequencies are enhanced or
suppressed, and also what phase shifts might be imposed on individual components
by the system.

We will see many examples of filtering in the next chapter.

8.5 Frequency response of composite systems

In section 2.1.5 we studied several ways of composing systems (using block diagrams) to
obtain more complex, composite systems. We will see in this section that when each block
is an LTI system, the resulting composite system is also LTI. Moreover, we can easily ob-
tain the frequency response of the composite system from the frequency response of each
block. This provides a useful way to construct interesting and complex systems by as-
sembling simpler components. This tool works equally well with discrete and continuous
systems.

8.5.1 Cascade connection

Consider the composite system S obtained by the cascade connection of systems S1 and
S2 in figure 8.10. Suppose S1 and S2 are LTI. We first show that S = S2 ◦ S1 is LTI. To
show that S is time-invariant, we must show that for any τ, S◦Dτ = Dτ ◦S. But,

S◦Dτ = S2 ◦S1 ◦Dτ

= S2 ◦Dτ ◦S1, since S1 is time-invariant

= Dτ ◦S2 ◦S1, since S2 is time-invariant

= Dτ ◦S,

as required.

We now show that S is linear. Let x be any input signal and a any complex number. Then

S(ax) = (S2 ◦S1)(ax)

= S2(S1(ax))

= S2(aS1(x)), since S1 is linear

= aS2(S1(x)), since S2 is linear

= aS(x).

342 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


8. FREQUENCY RESPONSE

Lastly, if x and y are two input signals, then

S(x+ y) = (S2 ◦S1)(x+ y)

= S2(S1(x+ y))

= S2(S1(x)+S1(y)), since S1 is linear

= S2(S1(x))+S2(S1(y)), since S2 is linear

= S(x)+S(y).

This shows that S is linear.

We now compute the frequency response of S. Let H1(ω),H2(ω),H(ω) be the frequency
response of S1, S2, and S, respectively, at the frequency ω. Consider the complex expo-
nential input x given by

∀t ∈ R, x(t) = eiωt .

Then the signal y = S1(x) is a multiple of x, namely, y = H1(ω)x. In particular, y is a
(scaled) complex exponential, and so z = S2(y) is given by

z = H2(ω)y = H2(ω)H1(ω)x.

But since H(ω) is the frequency response of S at the frequency ω, we also have

z = S(x) = H(ω)x,

and so we obtain
∀ω ∈ R, H(ω) = H2(ω)H1(ω). (8.34)

The frequency response of the cascade composition is the product of the frequency re-
sponses of the components. Exactly the same formula applies in the discrete-time case.
This is a remarkable result. First, suppose that the cascade connection of Figure 8.10 is
reversed, i.e. consider the system S̃ = S1 ◦S2. Then the frequency response of S̃ is

H̃(ω) = H1(ω)H2(ω) = H2(ω)H1(ω) = H(ω).

That is, S̃ and S have the same frequency response! This implies, in fact, that S and S̃ are
equivalent; they give the same output for the same input. Hence,

In any cascade connection of LTI systems, the order in which the systems are composed
does not matter.

Lee & Varaiya, Signals and Systems 343

http://LeeVaraiya.org


8.5. FREQUENCY RESPONSE OF COMPOSITE SYSTEMS

8.5.2 Feedback connection

The feedback arrangement shown in figure 8.11 is fundamental to the design of control
systems. Typically, S1 is some physical system, and S2 is a controller that we design to
get the physical system to do our bidding. The overall system S is called a closed-loop
system. We first show that S is LTI if S1 and S2 are LTI, and we then calculate its frequency
response.

Suppose x is the input signal, and define the signals u,z and y as shown. The circle with
the plus sign represents the relationship u = x+ z. The signals are then related by

y = S1(u)

= S1(x+ z)

= S1(x)+S1(z), since S1 is linear

= S1(x)+S1(S2(y)),

Note that this equation relates the input and output, but the output appears on both sides.
We can rewrite this as

y−S1(S2(y)) = S1(x). (8.35)

Thus, given the input signal x, the output signal y is obtained by solving this equation. We
will assume that for any signal x, (8.35) has a unique solution y. Then, of course, y= S(x).
We can use (8.35) and methods similar to the ones we used for the cascade example to
show that S is LTI (see box on page 352).

We now compute the frequency response H(ω) of S at frequency ω. Let the frequency
response of S1 be H1, and of S2 be H2. Suppose the input signal is the complex exponential

∀t ∈ R, x(t) = eiωt .

For this input, we know that S1(x) = H1(ω)x and S2(x) = H2(ω)x. Since S is LTI, we
know that the output signal y is given by

y = H(ω)x.

Using this relation for y in (8.35) we get

H(ω)x−S1(S2(H(ω)x)) = H(ω)[x−S1(S2(x))], since S2,S1 are linear

= H(ω)[x−H1(ω)H2(ω)x]

= H(ω)[1−H1(ω)H2(ω)]x

= S1(x)

= H1(ω)x, by (8.35),

344 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


8. FREQUENCY RESPONSE

from which we get the frequency response of the feedback system,

H(ω) =
H1(ω)

1−H1(ω)H2(ω)
(8.38)

This relation is at the foundation of linear feedback control design.

Example 8.19: Consider a discrete-time feedback system as in Figure 8.11 where
S1 simply scales the input by 0.9. That is, for all discrete-time input signals u,
S1(u) = 0.9u. Suppose further that S2 is a one-sample delay. That is, S2 = D1.
From example 8.9, the frequency response of S2 is given by

∀ ω ∈ R, H2(ω) = e−iω.

The frequency response of S1 is (trivially) given by

∀ ω ∈ R, H1(ω) = 0.9.

Thus, the frequency response of the feedback composition is

∀ ω ∈ R, H(ω) =
0.9

1−0.9e−iω .

We can plot the magnitude of this using the following Matlab code, which (after
adjusting the labels) results in Figure 8.12.

omega = [0:pi/250:pi];
H = 0.9./(1 - 0.9.*exp(-i*omega));
plot(omega, abs(H));

Notice that at zero frequency, the gain is 9, and that it rapidly drops off at higher
frequencies. Thus, this system behaves as a lowpass filter.

Example 8.20: We can use formula (8.38) to obtain the frequency response of
more complex composition, such as the one shown in Figure 8.13. To find the

Lee & Varaiya, Signals and Systems 345

http://LeeVaraiya.org


8.6. SUMMARY

frequency response of the composition S given on the left of the figure, we first
express as the composition on the right where the system S3 is given in the lower
part of the figure. The frequency response H of S can now be obtained from formula
(8.38) as

H(ω) =
H1(ω)H3(ω)

1−H1(ω)H3(ω)
.

The same formula also gives the frequency response H3 of S3,

H3(ω) =
H2(ω)

1−H2(ω)
,

which, upon substitution in the previous expression, yields,

H(ω) =
H1(ω)H2(ω)

1−H2(ω)−H1(ω)H2(ω)
.

8.6 Summary

Linear time-invariant systems have a particularly nice property: if the input is a sinusoid,
then the output is a sinusoid of the same frequency. Moreover, if the input is a sum of two
sinusoids, then the output will be a sum of two sinusoids with the same frequencies as the
input sinusoids. Each sinusoid is scaled and shifted in phase by the system. The scaling
and phase shift, as a function of frequency, is called the frequency response of the system.

It turns out that mathematically, this phenomenon is easiest to analyze using complex
exponentials instead of real-valued sinusoids. The reason for this is that the phase shift
and scaling together amount to simple multiplication of the complex exponential by a
complex constant. If an input is represented as a sum of complex exponentials (a form
of the Fourier series), then the output is simply the same Fourier series with each term of
the series scaled by a complex constant. These scaling constants, viewed as a function of
frequency, are the frequency response of the system.

Composing LTI system becomes particularly easy. The frequency response of the cascade
of two LTI systems is simply the product of the frequency responses of the individual
systems. This simple fact can be used to quickly ascertain the frequency response of
complicated compositions.

346 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


8. FREQUENCY RESPONSE

Probing Further: Relating DFS coefficients

We have two discrete-time Fourier series expansions (see (8.30) and (7.8)),

x(n) =
p−1

∑
k=0

Xkeikω0n (8.31)

x(n) = A0 +
K

∑
k=1

Ak cos(kω0n+φk), K =

{
(p−1)/2 if p is odd
p/2 if p is even

There is a relationship between the coefficients Ak, φk and Xk, but the relationship is
more complicated than in the continuous-time case, given by (8.28). To develop that
relationship, begin with the second of these expansions and write

x(n) = A0 +
K

∑
k=1

Ak

2
(ei(kω0n+φk)+ e−i(kω0n+φk)).

Note that since ω0 = 2π/p, then for all integers n, eiω0 pn = 1, so

e−i(kω0n+φk) = e−i(kω0n+φk)eiω0 pn = ei(ω0(p−k)n−φk).

Thus
x(n) = A0 +

K

∑
k=1

Ak

2
eiφk eikω0n++

K

∑
k=1

Ak

2
e−iφk eiω0(p−k)n

= A0 +
K

∑
k=1

Ak

2
eiφk eikω0n++

p−1

∑
m=K

Ap−m

2
e−iφp−meiω0mn,

by change of variables. Comparing this against (8.31),

Xk =


A0 if k = 0
Akeiφk/2 if k ∈ {1, · · · ,K−1}
Akeiφk/2+Ake−iφk/2 = Ak cos(φk) if k = K
Ap−ke−iφp−k/2 if k ∈ {K +1, · · · , p−1}

This relationship is more complicated than (8.28). Fortunately, it is rare that we need to
use both forms of the DFS, so we can usually just pick one of the two forms and work
only with its set of coefficients.

Lee & Varaiya, Signals and Systems 347

http://LeeVaraiya.org


8.6. SUMMARY

-3x10

K = 1
K = 3
K = 7

K = 32

-1.0

-0.5

0.0

0.5

1.0

-0 1 2 3 4 5 6 7 8

Time in seconds

(a)

3x10

-0.0

0.1

0.2

0.3

0.4

0.5

0.6

-4 -3 -2 -1 0 1 2 3 4

Frequency in Hz

(b)

Figure 8.9: (a) Some finite Fourier series approximations to one cycle of a square
wave. The number of Fourier series terms that are included in the approximation
is 2K+1, so K is the magnitude of the largest index the terms. (b) The magnitude
of the complex Fourier series coefficients shown as a function of frequency.

348 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


8. FREQUENCY RESPONSE

Probing Further: Formula for Fourier series coefficients

To see that (8.32) is valid, try substituting for x(t) its Fourier series expansion,

x(t) =
∞

∑
k=−∞

Xkeikω0t

to get Xm =
1
p

∫ p

0

∞

∑
k=−∞

Xkeikω0te−imω0tdt.

Exchange the integral and sum (assuming this is valid, see box on page 350) to get

Xm =
1
p

∞

∑
k=−∞

Xk

∫ p

0
eikω0te−imω0tdt.

The exponentials can be combined to get

Xm =
1
p

∞

∑
k=−∞

Xk

∫ p

0
ei(k−m)ω0tdt.

In the summation, where k varies over all integers, there will be exactly one term of the
summation where k = m. In that term, the integral evaluates to p. For the rest of the
terms, k 6= m. Separating these two situations, we can write

Xm = Xm +
1
p

∞

∑
k=−∞,k 6=m

Xk

p∫
0

ei(k−m)ω0tdt,

where the first term Xm is the value of the term in the summation where k = m. For each
remaining term of the summation, the integral evaluates to zero, thus establishing our
result. To show that the integral evaluates to zero, let n = k−m, and note that n 6= 0.
Then ∫ p

0
einω0tdt =

∫ p

0
cos(nω0t)dt + i

∫ p

0
sin(nω0t)dt

Since ω0 = 2π/p, these two integrals exactly span one or more complete cycles of the
cosine or sine, and hence integrate to zero.

Lee & Varaiya, Signals and Systems 349

http://LeeVaraiya.org


8.6. SUMMARY

Probing Further: Exchanging integrals and summations

The demonstration of the validity of the formula for the Fourier series coefficients in the
box on page 349 relies on being able to exchange an integral and an infinite summation.
The infinite summation can be given as a limit of a sequence of functions

xN(t) =
N

∑
k=−N

Xkeikω0t .

Thus, we wish to exchange the integral and limit in

Xm =
1
p

∫ p

0
( lim

N→∞
xN(t))dt.

A sufficient condition for being able to perform the exchange is that the limit converges
uniformly in the interval [0, p]. A sufficient condition for uniform convergence is that x
is continuous and that its first derivative is piecewise continuous.

See R. G. Bartle, The Elements of Real Analysis, Second Edition, John Wiley & Sons,
1976, p. 241.

S1 S2
S

x y z

Figure 8.10: The cascade connection of the two LTI systems is the system S =
S2 ◦S1. The frequency response is related by ∀ω,H(ω) = H1(ω)H2(ω).

350 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


8. FREQUENCY RESPONSE

S1

S2
S

x y
+  

z

u

Figure 8.11: The feedback connection of the two LTI systems S1, S2 is the LTI
system S. The frequency response is related by ∀ω ∈ R,H(ω) = H1(ω)/[1−
H1(ω)H2(ω)].

Lee & Varaiya, Signals and Systems 351

http://LeeVaraiya.org


8.6. SUMMARY

Probing Further: Feedback systems are LTI

To show that S in Figure 8.11 is time-invariant we must show that for any τ ∈ R,

S(Dτ(x)) = Dτ(S(x)) = Dτ(y), (8.36)

that is, we must show that Dτ(y) is the output of S when the input is Dτ(x). Now the
left-hand side of (8.35) with y replaced by Dτ(y) is

Dτ(y)−S1(S2(Dτ(y))) = Dτ(y)−Dτ(S1(S2(y)),

since S1 and S2 are time-invariant

= Dτ(y−S1(S2(y))), since Dτ is linear,

= Dτ(S1(x)), by (8.35)

= S1(Dτ(x)), since S1 is time-invariant

so that Dτ(y) is indeed the solution of (8.35) when the input is Dτ(x). This proves (8.36).
Linearity is shown similarly. Let a be any complex number. To show that ay is the output
when the input is ax, we evaluate the left-hand side of (8.35) at ay,

ay−S1(S2(ay)) = ay−aS1(S2(y)), since S2 and S1 are linear

= a[y−S1(S2(y))]

= aS1(x), by (8.35)

= S1(ax), since S1 is linear

which shows that S(ax) = aS(x).
Now suppose w is another input and z = S(w) is the corresponding output. I.e.,

z−S1(S2(z)) = S1(w). (8.37)

We evaluate the left-hand side of (8.35) at y+ z, using that S2 and S1 are linear,

(y+ z)−S1(S2(y+ z)) = [y−S1(S2(y))]+ [z−S1(S2(z)],

= S1(x)+S1(w), by (8.35) and (8.37)

= S1(x+w), since S1 is linear

and so S(x+w) = y+ z = S(x)+S(z).

352 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


8. FREQUENCY RESPONSE

0 0.5 1 1.5 2 2.5 3 3.5
0

1

2

3

4

5

6

7

8

9

frequency (radians/sample)

am
pl

itu
de

 re
sp

on
se

Figure 8.12: The magnitude response of the feedback composition of example
8.19.

Lee & Varaiya, Signals and Systems 353

http://LeeVaraiya.org


8.6. SUMMARY

S1 S2

S

x y
+  

u
+  S1 S3

x y
+  

S

S2+  
S3

Figure 8.13: The composition on the left can be expressed as the one on the
right, where S3 is the system at the bottom.

354 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


8. FREQUENCY RESPONSE

Exercises

Each problem is annotated with the letter E, T, C which stands for exercise, requires some
thought, requires some conceptualization. Problems labeled E are usually mechanical,
those labeled T require a plan of attack, those labeled C usually have more than one
defensible answer.

1. E Find A ∈ C so that

∀ t ∈ Reals, Aeiωt +A∗e−iωt = cos(ωt +π/4),

where A∗ is the complex conjugate of A.

2. E Plot the function s : R→ R given by

∀ x ∈ R, s(x) = Im{e(−x+i2πx)}.

You are free to choose a reasonable interval for your plot, but be sure it includes
x = 0.

3. E This exercise explores the fact that a delay in a sinewave causes a phase shift.
That is, for any real numbers τ and ω, there is a phase shift φ ∈ R such that for all
t ∈ R,

sin(ω(t− τ)) = sin(ωt−φ).

Give φ in terms of τ,ω. What are the units of τ,ω,φ? Hint: The argument to the
sin function has units of radians.

4. E Let x : R→ R. Show that x is periodic with period p if and only if Dp(x) = x.
Now show that if S is a time-invariant system and x is a periodic signal, then S(x)
is also periodic with period p.

5. E Analogously to Dτ in (8.1) and DM in Section 8.1.3, define formally the following
variants:

(a) A shift operator Sv,h that shifts an image v units vertically and h units horizon-
tally, where v ∈ R and h ∈ R.

(b) A shift operator Sm,n that shifts a discrete image m units vertically and n units
horizontally, where m ∈ Z and n ∈ Z.

Lee & Varaiya, Signals and Systems 355

http://LeeVaraiya.org


EXERCISES

6. E Consider a discrete-time system D : [Z→R]→ [Z→R], where if y = D(x) then

∀ n ∈ Z, y(n) = x(n−1).

(a) Is D linear? Justify your answer.

(b) Is D time-invariant? Justify your answer.

7. E Consider a continuous-time system TimeScale : [R→ R]→ [R→ R], where if
y = TimeScale(x) then

∀ t ∈ R, y(t) = x(2t).

(a) Is TimeScale linear? Justify your answer.

(b) Is TimeScale time-invariant? Justify your answer.

8. E Consider the continuous-time signal x where

∀ t ∈ R, x(t) = 1+ cos(πt)+ cos(2πt).

Suppose that x is the input to an LTI system with frequency response given by

∀ ω ∈ R, H(ω) =

{
eiω if |ω|< 4 radians/second
0 otherwise

Find the output y of the system.

9. T Suppose that the continuous-time signal x : R→R is periodic with period p. Let
the fundamental frequency be ω0 = 2π/p. Suppose that the Fourier series coeffi-
cients for this signal are known constants A0,A1,A2, · · · and φ1,φ2, · · · . Give the
Fourier series coefficients A′0,A

′
1,A
′
2, · · · and φ′1,φ

′
2, · · · for each of the following

signals:

(a) ax, where a ∈ R is a constant;

(b) Dτ(x), where τ ∈ R is a constant and Dτ is the delay system; and

(c) S(x), where S is an LTI system with frequency response H given by

∀ ω ∈ R, H(ω) =

{
1; if ω = 0
0; otherwise

(Note that this is a highly unrealistic frequency response.)

356 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


8. FREQUENCY RESPONSE

(d) Let y : R→R be another periodic signal with period p. Suppose y has Fourier
series coefficients A′′0,A

′′
1,A
′′
2, · · · and φ′′1,φ

′′
2, · · · . Give the Fourier series coef-

ficients of x+ y.

10. E Consider discrete-time systems with input x : Z→R and output y : Z→R. Each
of the following defines such a system. For each, indicate whether it is linear (L),
time-invariant (TI), both (LTI), or neither (N).

(a) ∀ n ∈ Z, y(n) = x(n)+0.9y(n−1)

(b) ∀ n ∈ Z, y(n) = cos(2πn)x(n)

(c) ∀ n ∈ Z, y(n) = cos(2πn/9)x(n)

(d) ∀ n ∈ Z, y(n) = cos(2πn/9)(x(n)+ x(n−1))

(e) ∀ n ∈ Z, y(n) = x(n)+0.1(x(n))2

(f) ∀ n ∈ Z, y(n) = x(n)+0.1(x(n−1))2

11. E Suppose that the frequency response of a discrete-time LTI system S is given by

H(ω) = |sin(ω)|

where ω has units of radians/sample. Suppose the input is the discrete-time signal
x given by ∀ n ∈ Z, x(n) = 1. Give a simple expression for y = S(x).

12. T Find the smallest positive integer n such that

n

∑
k=0

ei5kπ/6 = 0.

Hint: Note that the term being summed is a periodic function of k. What is its
period? What is the sum of a complex exponential over one period?

13. T Consider a continuous-time periodic signal x with fundamental frequency ω0 = 1
radian/second. Suppose that the Fourier series coefficients (see (7.4)) are

Ak =

{
1 k = 0, 1, or 2
0 otherwise

and for all k ∈ N0, φk = 0.

(a) Find the Fourier series coefficients Xk for all k ∈ Z (see (8.29)).

Lee & Varaiya, Signals and Systems 357

http://LeeVaraiya.org


EXERCISES

(b) Consider a continuous-time LTI system Filter : [R→ R]→ [R→ R], with
frequency response

H(ω) = cos(πω/2).

Find y = Filter(x). I.e., give a simple expression for y(t) that is valid for all
t ∈ R.

(c) For y calculated in (b), find the fundamental frequency in radians per second.
I.e., find the largest ω′0 > 0 such that

∀ t ∈ R, y(t) = y(t +2π/ω
′
0)

14. T Consider a continuous-time LTI system S. Suppose that when the input x is given
by

∀t ∈ Reals, x(t) =
{

1, if 0≤ t < 1
0, otherwise

then the output y = S(x) is given by

∀t ∈ Reals, y(t) =
{

1, if 0≤ t < 2
0, otherwise

Give an expression and a sketch for the output of the same system if the input is

(a)

∀t ∈ Reals, x′(t) =


1, if 0≤ t < 1
−1, if 1≤ t < 2
0, otherwise

(b)

∀t ∈ Reals, x′(t) =
{

1, if 0≤ t < 1/2
0, otherwise

15. T Suppose that the frequency response H of a discrete-time LTI system Filter is
given by:

∀ ω ∈ [−π,π], H(ω) = |ω|.
where ω has units of radians/sample. Note that since a discrete-time frequency
response is periodic with period 2π, this definition implicitly gives H(ω) for all
ω ∈R. Give simple expressions for the output y when the input signal x : Z→R is
such that ∀ n ∈ Z each of the following is true:

(a) x(n) = cos(πn/2).

358 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


8. FREQUENCY RESPONSE

(b) x(n) = 5.

(c) x(n) =
{

+1, n even
−1, n odd

16. T Consider a continuous-time LTI system S. Suppose that when the input is given
by

x(t) =
{

sin(πt) 0≤ t < 1
0 otherwise

then the output y = S(x) is given by

y(t) =


sin(πt) 0≤ t < 1
sin(π(t−1)) 1≤ t < 2
0 otherwise

for all t ∈ R.

(a) Carefully sketch these two signals.

(b) Give an expression and a sketch for the output of the same system if the input
is

x(t) =


sin(πt) 0≤ t < 1
−sin(π(t−1)) 1≤ t < 2
0 otherwise

.

17. T Suppose you are given the building blocks shown below for building block dia-
grams:

-0.5in-

0.5in

HW  Gg 

These blocks are defined as follows:

• An LTI system HW : [R→ R]→ [R→ R] that has a rectangular frequency
response given by

∀ ω ∈ R, H(ω) =

{
1 −W < ω <W
0 otherwise

where W is a parameter you can set.

Lee & Varaiya, Signals and Systems 359

http://LeeVaraiya.org


EXERCISES

• A gain block Gg : [R→ R]→ [R→ R] where if y = g(x), then

∀ t ∈ R, y(t) = gx(t)

where g ∈ R is a parameter you can set.

• An adder, which can add two continuous-time signals. Specifically, Add : [R→
R]× [R→ R]→ [R→ R] such that if y = Add(x1,x2) then

∀ t ∈ R, y(t) = x1(t)+ x2(t).

Use these building blocks to construct a system with the frequency response shown
below:

H(ω)

ω

1

2

1 2 0 −1−2 

18. T Let u be a discrete-time signal given by

∀ n ∈ Z, u(n) =
{

1 0≤ n
0 otherwise

This is the unit step signal, which we saw before in (2.16). Suppose that a discrete-
time system H that is known to be LTI is such that if the input is u, the output is
y = H(u) given by

∀ n ∈ Z, y(n) = nu(n).

This is called the step response of the system. Find a simple expression for the
output w = H(p) when the input is p given by

∀ n ∈ Z, p(n) =
{

2 0≤ n < 8
0 otherwise

Sketch w.

19. T Suppose you are given the Fourier series coefficients · · ·X−1,X0,X1,X2, · · · for a
periodic signal x : R→ R with period p. Find the fundamental frequency and the
Fourier series coefficients of the following signals in terms of those of x.

360 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


8. FREQUENCY RESPONSE

(a) y such that ∀ t ∈ R, y(t) = x(at), for some positive real number a.

(b) w such that ∀ t ∈ R, w(t) = x(t)eiω0t , where ω0 = 2π/p.

(c) z such that ∀ t ∈ R, z(t) = x(t)cos(ω0t), where ω0 = 2π/p.

20. E Analogously to the box on page 349, show that the formula (8.33) for the discrete
Fourier series coefficients is valid.

21. C Consider a system Squarer : [R→ R]→ [R→ R], where if y = Squarer(x) then

∀ t ∈ R, y(t) = (x(t))2.

(a) Show that this system is memoryless.

(b) Show that this system is not linear.

(c) Show that this system is time invariant.

(d) Suppose that the input x is given by

∀ t ∈ R, x(t) = cos(ωt),

for some fixed ω. Show that the output y contains a component at frequency
2ω.

Lee & Varaiya, Signals and Systems 361

http://LeeVaraiya.org


EXERCISES

362 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


9
Filtering

Contents
9.1 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

9.1.1 Convolution sum and integral . . . . . . . . . . . . . . . . . 367
9.1.2 Impulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
9.1.3 Signals as sums of weighted delta functions . . . . . . . . . . 372
9.1.4 Impulse response and convolution . . . . . . . . . . . . . . . 375

9.2 Frequency response and impulse response . . . . . . . . . . . . . . 378
9.3 Causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
9.4 Finite impulse response (FIR) filters . . . . . . . . . . . . . . . . . 382

Probing Further: Causality . . . . . . . . . . . . . . . . . . . . . . . 383
9.4.1 Design of FIR filters . . . . . . . . . . . . . . . . . . . . . . 385
9.4.2 Decibels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
Probing Further: Decibels . . . . . . . . . . . . . . . . . . . . . . . 394

9.5 Infinite impulse response (IIR) filters . . . . . . . . . . . . . . . . 395
9.5.1 Designing IIR filters . . . . . . . . . . . . . . . . . . . . . . 396

9.6 Implementation of filters . . . . . . . . . . . . . . . . . . . . . . . 398
9.6.1 Matlab implementation . . . . . . . . . . . . . . . . . . . . . 398
9.6.2 Signal flow graphs . . . . . . . . . . . . . . . . . . . . . . . 400
Probing Further: Java implementation of an FIR filter . . . . . . . . 401
Probing Further: FIR filter in a programmable DSP . . . . . . . . . . 402

9.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

363



Linear time invariant systems have the property that if the input is described as a sum of
sinusoids, then the output is a sum of sinusoids of the same frequencies. Each sinusoidal
component will typically be scaled differently, and each will be subjected to a phase
change, but the output will not contain any sinusoidal components that are not also present
in the input. For this reason, an LTI system is often called a filter. It can filter out
frequency components of the input, and also enhance other components, but it cannot
introduce components that are not already present in the input. It merely changes the
relative amplitudes and phases of the frequency components that are present in the inputs.

LTI systems arise in two circumstances in an engineering context. First, they may be used
as a model of a physical system. Many physical systems are accurately modeled as LTI
systems. Second, they may present an ideal for an engineered system. For example, they
may specify the behavior that an electronic system is expected to exhibit.

Consider for example an audio system. The human ear hears frequencies in the range of
about 30 to 20,000 Hz, so a specification for a high fidelity audio system typically requires
that the frequency response be constant (in magnitude) over this range. The human ear is
relatively insensitive to phase, so the same specification may say nothing about the phase
response (the argument, or angle of the frequency response). An audio system is free to
filter out frequencies outside this range.

Consider an acoustic environment, a physical context such as a lecture hall where sounds
are heard. The hall itself alters the sound. The sound heard by your ear is not identical to
the sound created by the lecturer. The room introduces echoes, caused by reflections of the
sound by the walls. These echoes tend to occur more for the lower frequency components
in the sound than the higher frequency components because the walls and objects in the
room tend to absorb higher frequency sounds better. Thus, the lower frequency sounds
bounce around in the room, reinforcing each other, while the higher frequency sounds,
which are more quickly absorbed, become relatively less pronounced. In an extreme
circumstance, in a room where the walls are lined with shag carpeting, for example, the
higher frequency sounds are absorbed so effectively that the sound gets muffled by the
room.

The room can be modeled by an LTI system where the frequency response H(ω) is smaller
in magnitude for large ω than for small ω. This is a simple form of distortion introduced
by a channel (the room), which in this case carries a sound from its transmitter (the
lecturer) to its receiver (the listener). This form of distortion is called linear distortion, a
shorthand for linear, time-invariant distortion (the time invariance is left implicit).

364 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


9. FILTERING

A public address system in a lecture hall may compensate for the acoustics of the room by
boosting the high frequency content in the sound. Such a compensator is called an equal-
izer because it corrects for distortion in the channel so that all frequencies are received
equally well by the receiver.

In a communications system, a channel may be a physical medium, such as a pair of
wires, that carries an electrical signal. That physical medium distorts the signal, and this
distortion is often reasonably well approximated as linear and time invariant. An equalizer
in the receiver compensates for this distortion. Unlike the audio example, however, such
an equalizer often needs to compensate for the phase response, not just the magnitude
response. Because the human ear is relatively insensitive to phase distortion, a public
address system equalizer need not compensate for phase distortion. But the wire pair may
be carrying a signal that is not an audio signal. It may be, for example, a modem signal.

Images may also be processed by LTI systems. Consider the three images shown in Figure
9.1. The top image is the original, undistorted image. The lower left image is blurred,
as might result for example from unfocused optics. The lower right image is, in a sense,
the opposite of the blurred image. Whereas the blurred image deemphasizes the patterns
in the outfit, for example, the right image deemphasizes the regions of constant value,
changing them all to a neutral gray.

For images, time is not the critical variable. Its role is replaced by two spatial variables,
one in the horizontal direction and one in the vertical direction. Thus, instead of LTI, we
might talk about an image processing system being a linear, space-invariant (LSI) sys-
tem. The blurred image is constructed from the original by an LSI system that eliminates
high (spatial) frequencies, passing unaltered the low frequencies. Such a system is called
a lowpass filter. The lower right image is constructed from the original by an LSI system
that eliminates low frequencies, passing unaltered the high frequencies. Such a system is
called a highpass system. Both images were created using Adobe Photoshop, although
the blurred image could have been just as easily created by a defocused lens.

9.1 Convolution

The frequency response of a system is a declarative description of the system. It tells
us what it is, not how it works. It tells us, for example, that it is a lowpass filter, but it
does not tell us whether it is a defocused lens or a computer program, much less telling
us how the computer program works. In this chapter, we explore imperative descriptions

Lee & Varaiya, Signals and Systems 365

http://LeeVaraiya.org


9.1. CONVOLUTION

Figure 9.1: An image and two versions that have been distorted by a linear,
space-invariant system.

366 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


9. FILTERING

of systems, and build up to detailed descriptions of software that can implement certain
kinds of LTI (or LSI) systems. These imperative descriptions are based on convolution.

9.1.1 Convolution sum and integral

For discrete-time signals the convolution operator is called the convolution sum, and for
continuous-time signals it is called the convolution integral. We define these two operators
now and note some important properties.

Let x,y∈ [Z→R] be two discrete-time signals. The convolution of x and y is the discrete-
time signal, denoted x∗ y, given by the convolution sum,

∀n ∈ Z, (x∗ y)(n) =
∞

∑
k=−∞

x(k)y(n− k). (9.1)

We note two properties. First, the order in the convolution does not matter, x ∗ y = y ∗ x.
Indeed, if in (9.1) we change the variables in the summation, letting m = n− k, we get

∀n ∈ Z, (x∗ y)(n) =
∞

∑
k=−∞

x(k)y(n− k)

=
∞

∑
m=−∞

x(n−m)y(m).

Thus,
(x∗ y)(n) = (y∗ x)(n). (9.2)

This property is called commutativity of the convolution operator.1

Another property of convolution is linearity. That is, if x,y1,y2 are three signals and a1
and a2 are real numbers, then

x∗ (a1y1 +a2y2) = a1(x∗ y1)+a2(x∗ y2), (9.3)

which may be checked directly by applying definition (9.1) to both sides.

1Matrix multiplication is an example of an operator that is not commutative, while matrix addition is.
Since the sum of two matrices M and N (of the same size) does not depend on the order, i.e., M+N = N+M,
the matrix sum is a commutative operator. However, the product of two matrices depends on the order, i.e., it
is not always true that M×N = N×M, so the matrix product is not commutative.

Lee & Varaiya, Signals and Systems 367

http://LeeVaraiya.org


9.1. CONVOLUTION

We now use the convolution sum to define some LTI systems. Fix a discrete-time signal
h, and define the system

S : [Z→ R]→ [Z→ R]

by
∀ x ∈ [Z→ R], S(x) = h∗ x.

Thus the output signal y = S(x) corresponding to the input signal x is given by

∀ n ∈ Z, y(n) =
∞

∑
k=−∞

h(k)x(n− k).

We now show that S is LTI. The linearity of S follows immediately from the linearity
property of the convolution. To show time-invariance, we must show that for any integer
M, and any input signal x,

DM(h∗ x) = h∗ (DM(x)),

where DM is a delay by M. But this is easy to see, since for all n,

(DM(h∗ x))(n) = (h∗ x)(n−M)

=
∞

∑
k=−∞

h(k)x(n−M− k), by definition (9.1)

=
∞

∑
k=−∞

h(k)z(n− k), where z = DM(x)

= (h∗ z)(n).

Thus every discrete-time signal h defines an LTI system via convolution. In the next
section we will see the converse result, that every LTI system is defined by convolution
with some signal h.

Example 9.1: Consider a discrete-time signal h defined by

∀ n ∈ Z, h(n) =
{

1/3 if n ∈ {0,1,2}
0 otherwise

This is shown in Figure 9.2. Let us define a system S as follows. If the input is x,
then the output is

y = S(x) = h∗ x.

368 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


9. FILTERING

h(n)

n...... 1/3

Figure 9.2: Signal in example 9.1.

I.e.,

∀ n ∈ Z, y(n) =
∞

∑
k=−∞

h(k)x(n− k)

=
2

∑
k=0

(1/3)x(n− k)

= (x(n)+ x(n−1)+ x(n−2))/3. (9.4)

This system calculates the three-point moving average!

We now turn to the continuous time case. Let x,y ∈ [R→ R] be two continuous-time
signals. The convolution of x and y is the continuous-time signal, denoted x∗ y, given by
the convolution integral

∀ t ∈ R, (x∗ y)(t) =
∞∫
−∞

x(τ)y(t− τ)dτ. (9.5)

By a change of variable in the integral we can check that convolution again is commuta-
tive, i.e.,

∀ t ∈ R, (x∗ y)(t) = (y∗ x)(t), (9.6)

and it is linear; i.e. if x,y1,y2 are three continuous-time signals and a1,a2 are real numbers,
then

x∗ (a1y1 +a2y2) = a1(x∗ y1)+a2(x∗ y2). (9.7)

Again fix h ∈ [R→ R], and define the system

S : [R→ R]→ [R→ R]

Lee & Varaiya, Signals and Systems 369

http://LeeVaraiya.org


9.1. CONVOLUTION

h(t)

t1/3

3

Figure 9.3: Signal in example 9.2.

by

∀ x ∈ [R→ R], S(x) = h∗ x.

Then in exactly the same way as for the discrete-time case, we can show that S is LTI.

Example 9.2: Consider a continuous-time signal h defined by

∀ t ∈ R, h(t) =
{

1/3 if t ∈ [0,3]
0 otherwise

This is shown in Figure 9.3. Let us define a system S as follows. If the input is x,
then the output is

y = S(x) = h∗ x.

I.e,

∀ t ∈ R, y(t) =

∞∫
−∞

h(τ)x(t− τ)dτ

=
1
3

3∫
0

x(t− τ)dτ. (9.8)

This system is the length-three continuous-time moving average!

Note that we are using the same symbol ‘*’ for the convolution sum and the convolution
integral. The context will determine which operator is intended.

370 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


9. FILTERING

δ(n)

n......
1

Figure 9.4: The Kronecker delta function, a discrete-time impulse.

9.1.2 Impulses

Intuitively, an impulse is a signal that is zero everywhere except at time zero. In the
discrete-time case, the Kronecker delta function,

δ : Z→ R

is defined by

∀ n ∈ Z, δ(n) =
{

1 if n = 0
0 otherwise

(9.9)

Its graph is shown in Figure 9.4.

The continuous-time case, which is called the Dirac delta function, is mathematically
much more difficult to work with. Like the Kronecker delta function, it is zero everywhere
except at zero. But unlike the Kronecker delta function, its value is infinite at zero. We
will not concentrate on its subtleties, but rather just introduce it and assert some results
without fully demonstrating their validity. The Dirac delta function is defined to be

δ : R→ R++

where R++ = R∪{∞,−∞}, and

∀ t ∈ R where t 6= 0, δ(t) = 0

and where the following property is satisfied for any ε > 0 in R++,

ε∫
−ε

δ(t)dt = 1

Lee & Varaiya, Signals and Systems 371

http://LeeVaraiya.org


9.1. CONVOLUTION

δ(t)

t
1

Figure 9.5: The Dirac delta function, a continuous-time impulse.

For the latter property to be satisfied, clearly no finite value at t = 0 would suffice. This
is why the value must be infinite at t = 0. Notice that the Kronecker delta function has a
similar property,

a

∑
n=−a

δ(n) = 1

for any integer a > 0, but that in this case, the property is trivial. There is no mathematical
subtlety.

The Dirac delta function is usually depicted as in Figure 9.5. In any figure, of course,
the infinite value at t = 0 cannot be shown directly. The figure suggests that infinite value
with a vertical arrow. Next to the arrow is the weight of the delta function, ‘1’ in this case.
In general, a Dirac delta function can be multiplied by any real constant a. Of course, this
does not change its value at t = 0, which is infinite, nor does it change its value at t 6= 0,
which is zero. What it does change is its integral,

ε∫
−ε

aδ(t)dt = a.

Thus, although the impulse is still infinitely narrow and infinitely high, the area under the
impulse has been scaled by a.

9.1.3 Signals as sums of weighted delta functions

Any discrete-time signal x : Z→ R can be expressed as a sum of weighted Kronecker
delta functions,

∀ n ∈ Z, x(n) =
∞

∑
k=−∞

x(k)δ(n− k). (9.10)

372 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


9. FILTERING

n...... 1/3

(1/3)δ(n)

n...... 1/3

n...... 1/3

n...... 1/3

n......

0 δ(n+1)

n......

Σ

(1/3)δ(n − 1)

(1/3)δ(n − 2)

0 δ(n − 3)

...

...

(δ(n) + δ(n − 1) + δ(n − 2))/3

Figure 9.6: A discrete-time signal is a sum of weighted delta functions.

Lee & Varaiya, Signals and Systems 373

http://LeeVaraiya.org


9.1. CONVOLUTION

The kth term in the sum is x(k)δ(n− k). This term, by itself, defines a signal that is zero
everywhere except at n= k, where it has value x(k). This signal is called a weighted delta
function because it is a (time shifted) delta function with a specified weight. Thus, any
discrete-time signal is a sum of weighted delta functions, much the way that the Fourier
series describes a signal as a sum of weighted complex exponential functions.

Example 9.3: The signal h in example 9.1 can be written in terms of Kronecker
delta functions,

∀ n ∈ Z, h(n) = (δ(n)+δ(n−1)+δ(n−2))/3.

This has the form of (9.10), and is illustrated in Figure 9.6. It is described as a sum
of signals where each signal contains only a single weighted impulse.

Equation (9.10) is sometimes called the sifting property of the Kronecker delta function
because it “sifts out” the value of a function x at some integer n. That is, the infinite
sum reduces to a single number. This property can often be used to eliminate infinite
summations in more complicated expressions.

The continuous-time version of this is similar, except that the sum becomes an integral
(integration, after all, is just sum over a continuum). Given any signal x : R→ R,

∀ t ∈ R, x(t) =
∞∫
−∞

x(τ)δ(t− τ)dτ. (9.11)

Although this is mathematically much more subtle than the discrete-time case, it is very
similar in structure. It describes a signal x as a sum (or more precisely, an integral) of
weighted Dirac delta functions.

Example 9.4: The signal h in Figure 9.3 and example 9.2 can be written as a sum
(an integral, actually) of weighted Dirac delta functions,

∀ t ∈ R, h(t) =
∫

∞

−∞

h(τ)δ(t− τ)dτ

=
∫ 3

0
(1/3)δ(t− τ)dτ.

374 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


9. FILTERING

This has the form of (9.11).

Equation (9.11) is sometimes called the sifting property of the Dirac delta function,
because it sifts out from the function x the value at a given time t. The sifting property
can often be used to eliminate integrals, since it replaces an integral with a single value.

9.1.4 Impulse response and convolution

Consider a discrete-time LTI system S : [Z→ R]→ [Z→ R]. Define its impulse re-
sponse h to be the output signal when the input signal is the Kronecker delta function (an
impulse), h = S(δ), that is,

∀ n ∈ Z, h(n) = (S(δ))(n).

Now let x be any input signal, and let y = S(x) be the corresponding output signal. In
(9.10), x is given as sum of components, where each component is a weighted delta func-
tion. Since S is LTI, the output can be given as a sum of the responses to these compo-
nents. Each component is a signal x(k)δ(n−k) for fixed k, and the response to this signal
is x(k)h(n−k). The response to a scaled and delayed impulse will be a scaled and delayed
impulse response. Thus, the overall output is

∀ n ∈ Z, y(n) =
∞

∑
k=−∞

x(k)h(n− k) = (x∗h)(n) = (h∗ x)(n).

Thus, the output of any discrete-time LTI system is given by the convolution of the input
signal and the impulse response.

Example 9.5: The three-point moving average system S of example 9.1 has im-
pulse response

∀ n ∈ Z, h(n) = (δ(n)+δ(n−1)+δ(n−2))/3.

This can be determined from (9.4) by just letting the input be x = δ. The impulse
response, after all, is defined to be the output when the input is an impulse. The
impulse response is shown in Figure 9.2.

Lee & Varaiya, Signals and Systems 375

http://LeeVaraiya.org


9.1. CONVOLUTION

Consider now a continuous-time LTI system S : [R→ R]→ [R→ R]. Define its impulse
response to be the output signal h when the input signal is the Dirac delta function, h =
S(δ), i.e.,

∀t ∈ R, h(t) = S(δ)(t).

Now let x be any input signal and let y = S(x), be the corresponding output signal. By the
sifting property we can express x as the sum (integral) of weighted delta functions,

x(t) =
∫

∞

−∞

x(τ)δ(t− τ)dτ.

Since S is LTI, the output is a sum (integral) of the responses to each of the components
(the integrand for fixed τ), or

∀ t ∈ R, y(t) =
∞∫
−∞

x(τ)h(t− τ)dτ = (x∗h)(t) = (h∗ x)(t). (9.12)

Thus,

The output of any continuous-time LTI system is given by the convolution of the input
signal and the impulse response.

Example 9.6: The length-three continuous-time moving average system S of ex-
ample 9.2 has impulse response

∀ t ∈ R, h(t) =
{

1/3 if t ∈ [0,3]
0 otherwise

This can be determined from (9.8) by just letting the input be x = δ and then using
the sifting property of the delta function. The impulse response, after all, is defined
to be the output when the input is an impulse. The impulse response is shown
in Figure 9.3. In general, a moving average has an impulse response with this
rectangular shape.

Example 9.7: Consider an M-step discrete-time delay system, as in example 8.9,
where the output y is given in terms of the input x by the difference equation

∀ n ∈ Z, y(n) = x(n−M). (9.13)

376 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


9. FILTERING

The impulse response can be found by letting x = δ, to get

h(n) = δ(n−M).

The output can be given as a convolution of the input and the impulse response,

y(n) =
∞

∑
k=−∞

x(k)δ(n−M− k) = x(n−M),

using the sifting property. Of course, this agrees with (9.13).

Example 9.8: Consider a T second continuous-time delay system, where the
output y is given in terms of the input x by the equation

∀ t ∈ R, y(t) = x(t−T ). (9.14)

The impulse response can be found by letting x = δ, to get

h(t) = δ(t−T ).

The output can be given as a convolution of the input and the impulse response,

y(t) =
∞∫
−∞

x(τ)δ(t−T − τ)dτ = x(t−T ),

using the sifting property. Of course, this agrees with (9.14).

Example 9.9: Suppose that we have two LTI systems (discrete or continuous time)
with impulse responses h1 and h2, and we connect them in a cascade structure as
shown in Figure 9.7. We can find the impulse response of the cascade composition
by letting the input be an impulse, x = δ. Then the output of the first system will be
its impulse response, w = h1. This provides the input to the second system, so its

Lee & Varaiya, Signals and Systems 377

http://LeeVaraiya.org


9.2. FREQUENCY RESPONSE AND IMPULSE RESPONSE

x

h

w
h1 h2

y

Figure 9.7: A cascade combination of two discrete-time LTI systems.

output will be y = h1 ∗h2. Thus, the overall impulse response is the convolution of
the two impulse responses,

h = h1 ∗h2.

We also know from the previous chapter that the frequency responses relate in a
very simple way, namely

H(ω) = H1(ω)H2(ω).

We will find that, in general, convolution in the time domain is equivalent to multi-
plication in the frequency domain.

9.2 Frequency response and impulse response

If a discrete-time LTI system has impulse response h, then the output signal y correspond-
ing to the input signal x is given by the convolution sum,

∀ n ∈ Z, y(n) =
∞

∑
m=−∞

h(m)x(n−m).

In particular, suppose the input is the complex exponential function

∀n ∈ Z, x(n) = eiωn,

for some real ω. Then the output signal is

∀ n ∈ Z, y(n) =
∞

∑
m=−∞

h(m)eiω(n−m) = eiωn
∞

∑
m=−∞

h(m)e−iωm.

378 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


9. FILTERING

Recall further that when the input is a complex exponential with frequency ω, then the
output is given by

∀ n ∈ Z, y(n) = H(ω)eiωn

where H(ω) is the frequency response. Comparing these two expressions for the output
we see that the frequency response is related to the impulse response by

∀ω ∈ R, H(ω) =
∞

∑
m=−∞

h(m)e−iωm. (9.15)

This expression allows us, in principle, to calculate the frequency response from the im-
pulse response. Equation (9.15) gives us a way to transform h, a time-domain function,
into H, a frequency domain function. Equation (9.15) is called a discrete-time Fourier
transform (DTFT). Equivalently, we say that H is the DTFT of h. So the frequency
response of a discrete-time system is the DTFT of its impulse response.

Example 9.10: Consider the M-step delay from example 9.7. Its impulse response
is

∀ n ∈ Z, h(n) = δ(n−M).

We can find the frequency response by calculating the DTFT,

∀ ω ∈ R, H(ω) =
∞

∑
m=−∞

h(m)e−iωm

=
∞

∑
m=−∞

δ(m−M)e−iωm

= e−iωM

where the last step follows from the sifting property. This same result was obtained
more directly in example 8.9. Note that the magnitude response is particularly
simple,

|H(ω)|= 1.

This is intuitive. An M-step delay does not change the magnitude of any complex
exponential input. It only shifts its phase.

Lee & Varaiya, Signals and Systems 379

http://LeeVaraiya.org


9.2. FREQUENCY RESPONSE AND IMPULSE RESPONSE

Notice from (9.15) that

If h is real-valued then H∗(−ω) = H(ω) (9.16)

(just conjugate both sides of (9.15) and evaluate at−ω). This property is called conjugate
symmetry. It implies

|H(−ω)|= |H(ω)|. (9.17)

This says that for any LTI system with a real-valued impulse response, a complex expo-
nential with frequency ω experiences the same amplitude change as a complex exponen-
tial with frequency −ω.

Notice further from (9.15) that

∀ ω ∈ R, H(ω+2π) = H(ω). (9.18)

I.e., the DTFT is periodic with period 2π. This says that a complex exponential with
frequency ω experiences the same amplitude and phase change as a complex exponential
with frequency ω+2π. This should not be surprising since the two complex exponentials
are in fact identical,

∀ n ∈ Z, ei(ω+2π)n = eiωnei2πn = eiωn,

because ei2πn = 1 for any integer n.

The continuous-time version proceeds in the same way. Let S be a continuous-time system
with impulse response h. Then the output signal y corresponding to an input signal x is
given by

∀ t ∈ R, y(t) =
∫

∞

−∞

x(t− τ)h(τ)dτ.

In particular, if the input signal is the complex exponential,

∀ t ∈ R, x(t) = eiωt ,

then the output signal is

y(t) =
∫

∞

−∞

eiω(t−τ)h(τ)dτ = eiωt
∫

∞

−∞

e−iωτh(τ)dτ.

The output is also given by y(t) = H(ω)eiωt where H(ω) is the frequency response, and
so we have

H(ω) =
∞∫
−∞

h(t)e−iωtdt. (9.19)

380 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


9. FILTERING

So, given its impulse response, we can calculate the frequency response of a continuous-
time LTI system by evaluating the integral (9.19). Like the DTFT, this integral transforms
a time-domain signal h into a frequency-domain signal H. It is called the continuous-
time Fourier transform (CTFT), or more commonly, simply the Fourier transform
(FT). Thus the frequency response H of a continuous-time LTI system is just the CTFT
of its impulse response h.

Example 9.11: Consider the T second delay from example 9.8. Its impulse re-
sponse is

h(t) = δ(t−T ).

We can find the frequency response by calculating the CTFT,

H(ω) =

∞∫
−∞

h(t)e−iωtdt

=

∞∫
−∞

δ(t−T )e−iωtdt

= e−iωT

where the last step follows from the sifting property. Note that the magnitude re-
sponse is particularly simple,

|H(ω)|= 1.

This is intuitive. A T second delay does not change the magnitude of any complex
exponential input. It only shifts its phase.

Notice from (9.19) that the CTFT is also conjugate symmetric if h is real,

H∗(−ω) = H(ω) (9.20)

|H(−ω)|= |H(ω)|. (9.21)

Lee & Varaiya, Signals and Systems 381

http://LeeVaraiya.org


9.3. CAUSALITY

9.3 Causality

A system is causal if the output value at a particular time depends only on the input values
at that time or before. For LTI systems, if we examine the convolution sum,

y(n) =
∞

∑
m=−∞

h(m)x(n−m),

for a causal system it must be true that h(m) = 0 for all m < 0. Were this not true, there
would be non-zero terms in the sum with m < 0, and those terms would involve a future
sample of the input, x(n−m). Conversely, if h(m) = 0 for all m < 0, then the system is
causal since the sum for y(n) will involve only previous input values, x(n),x(n−1),x(n−
2), · · · .
Causality is an important practical property of a system that receives its data in real time
(physical time). Such systems cannot possibly look ahead in time, at least not until some-
one invents a time machine. However, there are many situations where causality is irrele-
vant. A system that processes stored data, such as digital audio of a compact disk or audio
files in a computer, has no difficulty looking ahead in “time.”

9.4 Finite impulse response (FIR) filters

Consider an LTI system S : [Z→R]→ [Z→R] with impulse response h : Z→R that has
the properties

h(n) = 0 if n < 0, and h(n) = 0 if n≥ L,

where L is some positive integer. Such a system is called a finite impulse response (FIR)
system because the interesting part (the non-zero part) of the impulse response is finite in
extent. Because of that property, the convolution sum becomes a finite sum,

y(n) =
∞

∑
m=−∞

x(n−m)h(m) =
L−1

∑
m=0

x(n−m)h(m). (9.22)

L is the length of the impulse response.

This sum, since it is finite, is convenient to work with. It can be used to define a procedure
for computing the output of an FIR system given its input. This makes it easy to imple-
ment on a computer. We will see that it is also reasonably straightforward to implement
certain infinite impulse response (IIR) filters on a computer.

382 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


9. FILTERING

Probing Further: Causality

We can give a much more general and formal definition of causality that does not
require a system to be LTI. Consider a system S : [A→ B]→ [A→ B] that operates on
signals of type [A→ B]. Assume A is an ordered set and B is any ordinary set. An
ordered set is one with relations “<” and “>” where for any two elements a and b, one
of the following assertions must be true:

a = b, a > b, or a < b.

Examples of ordered sets are Z and R .
An example of a set that is not an ordered set is Z×Z where we define the ordering

relation “<” so that (a,b)< (c,d) if a< c and b< c, and we similarly define “>”. Under
these definitions, for the elements (1,2) and (2,1), none of the above assertions is true,
so the set is not ordered.

However, we could define the ordering relation “<” so that (a,b) < (c,d) if one of
the following is true:

a < c or

a = c, and b < c.

The relation “>” could be similarly defined. Under these definitions, the set is ordered.
Define a function Prefixt : [A→ B]→ [At → B] that extracts a portion of a signal up to

t ∈ A. Formally, At ⊂ A such that a ∈ At if a ∈ A and a≤ t. Then for all x ∈ [A→ B] and
for all t ∈ At , (Prefixt(x))(t) = x(t).

A system S is causal if for all t ∈ A and for all x,y ∈ [A→ B]

Prefixt(x) = Prefixt(y)⇒ Prefixt(S(x)) = Prefixt(S(y)).

The symbol “⇒” reads “implies.” In words, the system is causal if when two input
signals have the same prefix up to time t, it follows that the two corresponding output
signals have the same prefix up to time t.

Lee & Varaiya, Signals and Systems 383

http://LeeVaraiya.org


9.4. FINITE IMPULSE RESPONSE (FIR) FILTERS

A continuous-time finite impulse response could be defined, but in practice, continuous-
time systems rarely have finite impulse responses, so there is not as much motivation
for doing so. Moreover, even though the convolution integral acquires finite limits, this
does not make it any more computable. Computing integrals on a computer is a difficult
proposition whether the limits are finite or not.

Example 9.12: We have seen in example 9.1 a 3-point moving average. An L-
point moving average system with input x has output y given by

y(n) =
1
L

L−1

∑
m=0

x(n−m).

The output at index n is the average of the most recent L inputs. Such a filter is
widely used on Wall Street to try to detect trends in stock market prices. We can
study its properties. First, it is easy to see that it is an LTI system. In fact, it is an
FIR system with impulse response

h(n) =
{

1/L if 0≤ n < L
0 otherwise

To see this, just let x = δ. The frequency response is the DTFT,

H(ω) =
∞

∑
m=−∞

h(m)e−iωm =
1
L

L−1

∑
m=0

e−iωm.

We can write the frequency response as

H(ω) =
1
L

(
1− e−iωL

1− e−iω

)
where we have let a = e−iω, and we have used the useful identity

L−1

∑
m=0

am =
1−aL

1−a
(9.23)

You can verify the identity by multiplying both sides by 1− a. We can plot the
magnitude of the frequency response using Matlab as follows (for L = 4):

384 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


9. FILTERING

1 L = 4;
2 w = [-pi:pi/250:pi];
3 H = (1/L)*(1-exp(-i*w*L))./(1-exp(-i*w));
4 plot(w, abs(H));
5 xlabel(’frequency in radians/sample’);

This issues a “divide by zero” warning, but yields a correct plot nonetheless.
The magnitude of the frequency response at ω = 0 is 1, as you can verify using
L’Hôpital’s rule.

The plot is shown in Figure 9.8, together with plots for L = 8 and L = 16. Notice
that the plot shows only the frequency range −π < ω < π. Since the DTFT is
periodic with period 2π, this plot simply repeats outside this range.

Notice that in all three cases shown in Figure 9.8, the frequency response has a
lowpass characteristic. A constant component (zero frequency) in the input passes
through the filter unattenuated. Certain higher frequencies, such as π/2, are com-
pletely eliminated by the filter. However, if the intent was to design a lowpass filter,
then we have not done very well. Some of the higher frequencies are attenuated
only by a factor of about 1/10 (for the 16 point moving average) or 1/3 (for the
four point moving average). We can do better than that with more intelligent filter
design.

9.4.1 Design of FIR filters

The moving average system in example 9.12 exhibits a lowpass frequency response, but
not a particularly good lowpass frequency response. A great deal of intellectual energy
has historically gone into finding ways to choose the impulse response of an FIR filter.
The subject is quite deep. Fortunately, much of the work that has been done is readily
available in the form of easy-to-use software, so one does not need to be knowledgeable
about these techniques to be able to design good FIR filters.

Example 9.13: Matlab’s filter design facilities in its DSP toolbox provide some
well-studied algorithms for filter design. For example,

Lee & Varaiya, Signals and Systems 385

http://LeeVaraiya.org


9.4. FINITE IMPULSE RESPONSE (FIR) FILTERS

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

frequency in radians/sample

am
pl

itu
de

Figure 9.8: The magnitude response of the moving average filter with lengths
L = 4 (solid line), 8 (dotted line), and 16 (dashed line).

386 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


9. FILTERING

>> h = remez(7,[0,0.125,0.25,1],[1,1,0,0])

h =
Columns 1 through 6

0.0849 0.1712 0.1384 0.1912
0.1912 0.1384

Columns 7 through 8
0.1712 0.0849

This returns the impulse response of a length 8 FIR lowpass filter. The arguments
to the remez function specify the filter by outlining approximately the desired
frequency response. You can use Matlab’s on-line help to get the details, but in
brief, the arguments above define a passband (a region of frequency where the
gain is roughly 1) and a stopband (a region of frequency where the gain is roughly
0). The first argument, 7 specifies that the length of the filter should be 8 (you
will have to ask The MathWorks why this is off by one). The second argument,
[0,0.125,0.25,1], specifies that the first frequency band begins at 0 and ex-
tends to 0.125π radians/sample, and that the second band begins at 0.25π and ex-
tends to π radians/sample. (The π factor is left off.) The unspecified band, from
0.125π to 0.25π, is a “don’t care” region, a transition band that allows for a grad-
ual transition between the passband and the stopband.

The last argument, [1,1,0,0], specifies that the first band should have a magni-
tude frequency response of approximately 1, and that the second band should have
a magnitude frequency response of approximately 0.

The frequency response of this filter can be directly calculated and plotted using
the following (rather brute force) Matlab code:

1 w = [-pi:pi/250:pi];
2 H = h(1) + ...
3 h(2)*exp(-i*w) + ...
4 h(3)*exp(-i*2*w) + ...
5 h(4)*exp(-i*3*w) + ...
6 h(5)*exp(-i*4*w) + ...
7 h(6)*exp(-i*5*w) + ...
8 h(7)*exp(-i*6*w) + ...
9 h(8)*exp(-i*7*w);

Lee & Varaiya, Signals and Systems 387

http://LeeVaraiya.org


9.4. FINITE IMPULSE RESPONSE (FIR) FILTERS

10 plot(w, abs(H));

The result is shown in Figure 9.9, where it is plotted together with the magnitude
response of a moving average filter with the same length. Notice that the attenuation
in the stopband is better for the filter designed using the remez function than for
the moving average filter. Also notice that it is not zero, despite our request that it
be zero, and that the passband gain is not one, despite our request that it be one.

The remez function used in this example applies an optimization algorithm called the
Parks-McClellan algorithm, which is based on the Remez exchange algorithm (hence
the name of the function). This algorithm ensures that the sidelobes (the humps in the
stopband) are of equal size. This turns out to minimize their maximum size. The Parks-
McClellan algorithm is widely used for designing FIR filters.

In this example, the remez function is unable to deliver a filter that meets our request.
The gain in the stopband is not zero, and the gain in the passband is not one. Generally,
this is the problem with filter design (and much of the rest of life); we cannot have what
we want. We can get closer by using more resources (also as in much of life). In this case,
that means designing a filter with a longer impulse response. Since the impulse response
is longer, the filter will be more costly to implement. This is because the finite summation
in (9.22) will have more terms.

Example 9.14: Consider for example the impulse response returned by

h = remez(63,[0,0.125,0.25,1],[1,1,0,0]);

This has length 64. The magnitude frequency response of this can be calculated
using the following Matlab code (plotted in Figure 9.10):

1 H = fft(h, 1024);
2 magnitude = abs([H(513:1024),H(1:512)]);
3 plot([-pi:pi/512:pi-pi/1024], magnitude);

The frequency response achieved in this example appears in Figure 9.10 to exactly match
our requirements. However, this plot is somewhat deceptive. It suggests that the mag-

388 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


9. FILTERING

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

frequency in radians/sample

am
pl

itu
de

Figure 9.9: Magnitude response an FIR filter designed using the Parks-McClellan
algorithm (the Matlab remez function), compared to an ordinary moving average.

Lee & Varaiya, Signals and Systems 389

http://LeeVaraiya.org


9.4. FINITE IMPULSE RESPONSE (FIR) FILTERS

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

frequency (radians/sample)

am
pl

itu
de

Figure 9.10: Magnitude frequency response of a 64-point lowpass FIR filter de-
signed with the Parks-McClellan algorithm.

390 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


9. FILTERING

nitude frequency response in the stopband is in fact zero. However, it is not, except at
certain discrete frequencies. If you zoom in sufficiently on the plot, you will see that.
Instead of zooming such plots, engineers usually construct such plots using a logarithmic
vertical axis, as explained in the next subsection.

9.4.2 Decibels

The amplitude response of a filter is the magnitude of the frequency response. It specifies
the gain experienced by a complex exponential at that frequency. This gain is simply the
ratio of the output amplitude to the input amplitude. Since it is the ratio of two amplitudes
with same units, the gain itself is unitless.

It is customary in engineering to give gains in a logarithmic scale. Specifically, if the gain
of a filter at frequency ω is |H(ω)|, then we give instead

G(ω) = 20log10(|H(ω)|) . (9.24)

This has units of decibels, written dB. The multiplication by 20 and the use of base 10
logarithms is by convention (see box on page 394).

Example 9.15: The plot in Figure 9.10 is redone using the following Matlab
commands,

1 H = fft(h, 1024);
2 dB = 20*log10(abs([H(513:1024),H(1:512)]));
3 plot([-pi:pi/512:pi-pi/1024], dB);

After some adjustment of the axes, the yields the plot in Figure 9.11. Notice that
in the passband, the gain is 0 dB. This is because log10(1) = 0. Zero decibels
corresponds to a gain of unity. In the stopband, the gain is almost -70 dB, a very
respectable attenuation. If this were an audio signal, then frequency components
in the stopband would probably not be audible as long as there is some signal in
the passband to mask them. They are 70 dB weaker than the components in the
passband, which translates into a factor of 3162 smaller in amplitude, since

20log10(1/3162)≈−70.

Lee & Varaiya, Signals and Systems 391

http://LeeVaraiya.org


9.4. FINITE IMPULSE RESPONSE (FIR) FILTERS

We can find the gain given decibels by solving (9.24) for |H(ω)| in terms of G(ω)
to get

|H(ω)|= 10G(ω)/20.

In this case, in the stopband

|H(ω)|= 10−70/20 ≈ 1/3162.

Notice that 20log(0) = −∞. Thus, whenever the gain is zero, the gain in decibels
is −∞. The downward spikes in figure 9.11 occur at frequencies where the gain is
zero, or −∞ dB. The spikes do not necessarily precisely show this because the plot
does not necessarily evaluate the gain at precisely the frequency that yields zero,
hence the ragged bottoms.

392 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


9. FILTERING

−3 −2 −1 0 1 2 3
−100

−80

−60

−40

−20

0

20

frequency (radians/sample)

am
pl

itu
de

 (
in

 d
B

)

Figure 9.11: Magnitude frequency response in decibels of a 64-point lowpass FIR
filter designed with the Parks-McClellan algorithm.

Lee & Varaiya, Signals and Systems 393

http://LeeVaraiya.org


9.4. FINITE IMPULSE RESPONSE (FIR) FILTERS

Probing Further: Decibels

The term “decibel” is literally one tenth of a bel, which is named after Alexander Graham
Bell. This unit of measure was originally developed by telephone engineers at Bell
Telephone Labs to designate the ratio of the power of two signals.

Power is a measure of energy dissipation (work done) per unit time. It is measured in
watts for electronic systems. One bel is defined to be a factor of 10 in power. Thus, a
1000 watt hair dryer dissipates 1 bel, or 10 dB, more power than a 100 watt light bulb.
Let p1 = 1000 watts be the power of the hair dryer and p2 = 100 be the power of the
light bulb. Then the ratio is

log10(p1/p2) = 1 bel, or

10log10(p1/p2) = 10 dB.

Comparing against (9.24) we notice a discrepancy. There, the multiplying factor is 20,
not 10. That is because the ratio in (9.24) is a ratio of amplitudes, not powers. In
electronic circuits, if an amplitude represents the voltage across a resistor, then the power
dissipated by the resistor is proportional to the square of the amplitude. Let a1 and a2
be two such amplitudes. Then the ratio of their powers is

10log10(a
2
1/a2

2) = 20log10(a1/a2).

Hence the multiplying factor of 20 instead of 10. A 3 dB power ratio amounts to a
factor of 2 in power. In amplitudes, this is a ratio of

√
2. The edge of the passband of

a bandpass filter is often defined to be the frequency at which the power drops to half,
which is the frequency where the gain is 3 dB below the passband gain. The magnitude
frequency response here is 1/

√
2 times the passband gain.

In audio, decibels are used to measure sound pressure. A statement like “a jet engine
at 10 meters produces 120 dB of sound,” by convention, compares sound pressure to
a defined reference of 20 micropascals, where a pascal is a pressure of 1 newton per
square meter. For most people, this is approximately the threshold of hearing at 1 kHz.
Thus, a sound at 0 dB is barely audible. A sound at 10 dB has 10 times the power. A
sound at 100 dB has 1010 times the power. The jet engine, therefore, would probably
make you deaf without ear protection.

394 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


9. FILTERING

9.5 Infinite impulse response (IIR) filters

The equation for an FIR filter (9.22) is a difference equation relating the output at index
n to the inputs at indices n− L+ 1 through n. A more general form of this difference
equation includes more indices of the output,

∀ n ∈ Z, y(n) =
L−1

∑
m=0

x(n−m)b(m)+
M−1

∑
m=1

y(n−m)a(m) (9.25)

where L and M are positive integers, and b(m) and a(m) are filter coefficients, which are
usually real valued. If all the a coefficients are zero, then this reduces to an FIR filter
with impulse response b = h. However, if any a coefficient is non-zero, then the impulse
response of this filter will never completely die out, since the output keeps getting recycled
to affect future outputs. Such a filter is called an infinite impulse response or IIR filter, or
sometimes a recursive filter.

Example 9.16: Consider a causal LTI system defined by the difference equation

∀ n ∈ Z, y(n) = x(n)+0.9y(n−1).

We can find the impulse response by letting x = δ, the Kronecker delta function.
Since the system is causal, we know that h(n) = 0 for n < 0 (see page 382). Thus,

y(n) = 0 if n < 0

y(0) = 1

y(1) = 0.9

y(2) = 0.92

y(3) = 0.93

Noticing the pattern, we conclude that

y(n) = (0.9)nu(n),

where u is the unit step, seen before in (2.16),

u(n) =
{

1 if n≥ 0
0 otherwise

(9.26)

The output y and the magnitude of the frequency response (in dB) are plotted in
Figure 9.12. Notice that this filter has about 20 dB of gain at DC, dropping to about
-6 dB at π radians/sample.

Lee & Varaiya, Signals and Systems 395

http://LeeVaraiya.org


9.5. INFINITE IMPULSE RESPONSE (IIR) FILTERS

9.5.1 Designing IIR filters

Designing IIR filters amounts to choosing the a and b coefficients for (9.25). As with
FIR filters, how to choose these coefficients is a well-studied subject, and the results of
this study are (for the most part) available in easy-to-use software. There are four widely
used methods for calculating these coefficients, resulting in four types of filters called
Butterworth, Chebyshev 1, Chebyshev 2, and elliptic filters.

Example 9.17: We can design one of each of the four types of filters using the
Matlab commands butter, cheby1, cheby2, ellip. The arguments for each
of these specify either a cutoff frequency, which is the frequency at which the
filter achieves -3 dB gain, or in the case of cheby2, the edge of the stopband. For
example, to get lowpass filters with a gain of about 1 from 0 to π/8 radians/sample,
and a stopband at higher frequencies, we can use the following commands:

N = 5;
Wn = 0.125;
[B1, A1] = butter(N, Wn);
[B2, A2] = cheby1(N,1,Wn);
[B3, A3] = cheby2(N,70,0.25);
[B4, A4] = ellip(N,1,70,Wn);

The returned values are vectors containing the a and b coefficients of (9.25). The
magnitude frequency response of the resulting filters is shown in Figure 9.13. In
that figure, we show only positive frequencies, since the magnitude frequency re-
sponse is symmetric. We also only show the frequency range from 0 to π, since the
frequency response is periodic with period 2π. Notice that the Butterworth filter has
the most gradual rolloff from the passband to the stopband. Thus, for a given filter
order, a Butterworth filter yields the weakest lowpass characteristic of the four. The
elliptic filter has the sharpest rolloff. The Butterworth filter, on the other hand, has
the smoothest characteristic. The Chebyshev 1 filter has ripple in the passband,
the Chebyshev 2 filter has ripple in the stopband, and the elliptic filter has ripple in
both.

In the above Matlab commands, N is the filter order, equal to L and M in (9.25).
It is a constraint of these filter design techniques that L = M in (9.25). Wn is the
cutoff frequency, as a fraction of π radians/sample. A cutoff frequency of 0.125

396 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


9. FILTERING

−5 0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

discrete time index

−3 −2 −1 0 1 2 3
−10

0

10

20

30

frequency (radians/sample)

am
pl

itu
de

 (
in

 d
B

)

Figure 9.12: Impulse response (top) and magnitude frequency response in dB
(bottom) of a simple causal IIR filter.

Lee & Varaiya, Signals and Systems 397

http://LeeVaraiya.org


9.6. IMPLEMENTATION OF FILTERS

means 0.125π = π/8 radians/sample. The “1” argument in the cheby1 command
specifies the amount of passband ripple that we are willing to tolerate (in dB).
The 70 in the cheby2 and ellip commands specifies the amount of stopband
attenuation that we want (in dB). Finally, the 0.25 in the cheby2 line specifies the
edge of the stopband.

9.6 Implementation of filters

We now have several ways to describe an LTI system (a filter). We can give a state-space
description, a frequency response, an impulse response, or a difference equation such as
(9.25) or (9.22). All are useful. The state-space description and the difference equations
prove the most useful when constructing the filter.

A realization of a filter in hardware or software is called an implementation. Do not
confuse filter design with filter implementation. The term “filter design” is used in the
community to refer to the choice of frequency response, impulse response, or coefficients
for a difference equation, not to how the frequency response is implemented in hardware
or software. In this section, we talk about implementation.

The output y of an FIR filter with impulse response h and input x is given by (9.22).
The output of an IIR filter with coefficients a and b is given by (9.25). Each of these
difference equations defines a procedure for calculating the output given the input. We
discuss various ways of implementing these procedures.

9.6.1 Matlab implementation

If x is finite, and we can interpret it as an infinite signal that is zero outside the specified
range. Then we can compute the output of an FIR filter using Matlab’s conv function,
and the output of an IIR filter using filter.

Example 9.18: Consider an FIR filter with an impulse response of length L. If x
is a vector containing the P values of the input, and h is a vector containing the L
values of the impulse response, then

398 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


9. FILTERING

0 1 2 3
−100

−80

−60

−40

−20

0

20

frequency (radians/sample)

am
pl

itu
de

 (
dB

)

0 1 2 3
−100

−80

−60

−40

−20

0

20

frequency (radians/sample)

am
pl

itu
de

 (
dB

)
0 1 2 3

−100

−80

−60

−40

−20

0

20

frequency (radians/sample)

am
pl

itu
de

 (
dB

)

0 1 2 3
−100

−80

−60

−40

−20

0

20

frequency (radians/sample)

am
pl

itu
de

 (
dB

)

Figure 9.13: Four frequency responses for 5-th order IIR filters of type Butter-
worth (upper left), Chebyshev 1 (upper right), Chebyshev 2 (lower left), and Ellip-
tic (lower right).

Lee & Varaiya, Signals and Systems 399

http://LeeVaraiya.org


9.6. IMPLEMENTATION OF FILTERS

y = conv(x, h);

yields a vector containing L+P−1 values of the output.

This strategy, of course, only works for finite input data, since Matlab requires that the
input be available in a finite vector.

Discrete-time filters can be implemented using standard programming languages and us-
ing assembly languages on specialized processors (see boxes). These implementations do
not have the limitation that the input be finite.

9.6.2 Signal flow graphs

We can describe the computations in a discrete-time filter using a block diagram with
three visual elements, a unit delay, a multiplier, and an adder. In the convolution sum for
an FIR filter,

y(n) =
L−1

∑
m=0

h(m)x(n−m),

notice that at each n we need access to x(n), x(n−1), x(n−2), · · · , x(n−L+1). We can
maintain this set of values by cascading a set of unit delay elements to form a delay line,
as shown in figure 9.14.

For each integer n, the output sample is the values in the delay line scaled by h(0), h(1),
· · · , h(L−1). To obtain the values in the delay line, we simply tap the delay line, as shown
in Figure 9.15. The triangular boxes denote multipliers that multiply by a constant (h(m),
in this case). The circles with the plus signs denote adders. The structure in Figure 9.15
is called a tapped delay line description of an FIR filter.

Diagrams of the type shown in Figure 9.15 are called signal flow graphs because they
describe computations by focusing on the flow of signals between operators. Signal flow
graphs can be quite literal descriptions of digital hardware that implements a filter. But
what they really describe is the computation, irrespective of whether the implementation
is in hardware or software.

An IIR filter can also be described using a signal flow graph. Consider the difference
equation in (9.25). A signal flow graph description of this equation is shown in Figure
9.16. Notice that the left side is structurally equivalent to the tapped delay line, but stood

400 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


9. FILTERING

Probing Further: Java implementation of an FIR filter

The following Java class implements an FIR filter:

1 class FIR {
2 private int length, count = 0;
3 private double[] delayLine, impResp;
4 FIR(double[] coefs) {
5 length = coefs.length;
6 impResp = coefs;
7 delayLine = new double[length];
8 }
9 double getOutputSample(double inputSample) {

10 delayLine[count] = inputSample;
11 double result = 0.0;
12 int index = count;
13 for (int i=0; i<length; i++) {
14 result += impResp[i] * delayLine[index--];
15 if (index < 0) index = length-1;
16 }
17 if (++count >= length) count = 0;
18 return result;
19 }
20 }

A class in Java has both data members and methods. The methods are procedures
that operate on the data, and may or may not take arguments or return values. In this
case, there are two procedures, “FIR” and “getOutputSample.” The first, lines 4-8, is
a constructor, which is a procedure that is called to create an FIR filter. It takes one
argument, an array of double-precision floating-point numbers that specify the impulse
response of the filter. The second, lines 9-19, takes a new input sample as an argument
and returns a new output sample. It also updates the delay line using circular buffering,
where the “count” member is used to keep track of where each new input sample should
go. It gets incremented (line 17) each time the getOutputSample() method is
called. When it exceeds the length of the buffer, it gets reset to zero. At all times, it
contains the L most recently received input data samples. The most recent one is at
index count in the buffer. The second most recent is at count - 1, or if that is
negative, at length - 1. Line 15 makes sure that the variable index remains within
the buffer as we iterate through the loop.

Lee & Varaiya, Signals and Systems 401

http://LeeVaraiya.org


9.6. IMPLEMENTATION OF FILTERS

Probing Further: FIR filter in a programmable DSP

The following section of code is the assembly language for a programmable DSP, which
is a specialized microprocessor designed to implement signal processing functions ef-
ficiently in embedded systems (such as cellular telephones, digital cordless telephones,
digital audio systems, etc.). This particular code is for the Motorola DSP56000 family
of processors.

1 fir movep x:input,x:(r0)
2 clr a x:(r0)-,x0 y:(r4)+,y0
3 rep m0
4 mac x0,y0,a x:(r0)-,x0 y:(r4)+,y0
5 macr x0,y0,a (r0)+
6 movep a,x:output
7 jmp fir

This processor has two memory banks called x and y. The code assumes that each input
sample can be successively read from a memory location called input, and that the
impulse response is stored in y memory beginning at an address stored in register r4.
Moreover, it assumes that register r0 contains the address of a section of x memory to
use for storing input samples (the delay line), and that this register has been set up to
perform modulo addressing. Modulo addressing means that if it increments or decre-
ments beyond the range of its buffer, then the address wraps around to the other end
of the buffer. Finally, it assumes that the register m0 contains an integer specifying the
number of samples in the impulse response minus one.

The key line (the one that does most of the work) is line 4. It follows a rep
instruction, which causes that one line to be repeatedly executed the number of times
specified by register m0. Line 4 multiplies the data in register x0 by that in y0 and adds
the result to a (the accumulator). Such an operation is called a multiply and accumulate
or mac operation. At the same time, it loads x0 with an input sample from the delay
line, in x memory at a location given by r0. It also loads register y0 with a sample from
the impulse response, stored in y memory at a location given by r4. At the same time,
it increments r0 and decrements r4. This one-line instruction, which carries out several
operations in parallel, is obviously highly tuned to FIR filtering. Indeed, FIR filtering is
a major function of processors of this type.

402 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


9. FILTERING

unit
delay

unit
delay

unit
delay

x(n) x(n!1) x(n!2) x(n!L+1)
...

Figure 9.14: A delay line.

unit
delay

unit
delay

unit
delay

x(n) x(n!1) x(n!2) x(n!L+1)

h(L!1)h(2)h(1)h(0)

y(n)

...

...

Figure 9.15: A tapped delay line realization of an FIR filter, described as a signal
flow graph.

on end. The right side represents the feedback in the filter, or the recursion that makes it
an IIR filter rather than an FIR filter.

The filter structure in Figure 9.16 can be simplified somewhat by observing that since
the left and right sides are LTI systems, their order can be reversed without changing the
output. Once the order is reversed, the two delay lines can be combined into one, as shown
in Figure 9.17. There are many other structures that can be used to realize IIR filters.

The relative advantages of one structure over another is a fairly deep topic, depending
primarily on an understanding of the effects of finite precision arithmetic. It is beyond the
scope of this text.

9.7 Summary

The output of an LTI system does not contain any frequencies that are not also present
in the input. Because of this property, LTI systems are often called filters. This chapter
considers how filters might be implemented. The convolution sum (for discrete-time sys-
tems) and convolution integral (for continuous-time systems) give descriptions of how to

Lee & Varaiya, Signals and Systems 403

http://LeeVaraiya.org


9.7. SUMMARY

x(n)

x(n−1)

x(n−2)

b(L−1)

b(2)

b(1)

b(0) y(n)

unit
delay

unit
delay

...

unit
delay

y(n−1)

y(n−2)

a(M−1)

a(2)

a(1)
unit

delay

unit
delay

...

unit
delay

y(n−M+1)x(n−L+1)

......

Figure 9.16: A signal flow graph describing an IIR filter. This is called a direct
form 1 filter structure.

calculate an output given an input signal. This description highlights the usefulness of
the response that a system has to an idealized impulse, because the output is given by the
convolution of the input and the impulse response. The frequency response, moreover, is
shown to be Fourier transform of the impulse response, where the Fourier transform is a
generalization of the Fourier series considered in previous chapters. Fourier transforms
are considered in much more depth in the next chapter.

This chapter also considers the design of filters, by which we mean the selection of a
suitable frequency response. Engineers are, as usual, forced to compromise to get an
acceptable response at an acceptable computational cost. The response is assessed by
considering how effectively it performs the desired filtering operation, and the cost is
assessed by considering the arithmetic calculation that must be realized to implement the
filter. The chapter closes with a discussion of alternative ways of realizing the arithmetic
calculation.

404 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


9. FILTERING

x(n)

b(L!1)

b(2)

b(1)

b(0)
y(n)

unit 
delay

unit 
delay

...

unit 
delaya(M!1)

a(2)

a(1)
unit 

delay

unit 
delay

...

unit 
delay

x(n)

b(L!1)

b(2)

b(1)

b(0)
y(n)

a(M!1)

a(2)

a(1)
unit 

delay

unit 
delay

...

unit 
delay

(a)

(b)

... ...

......

Figure 9.17: (a) A signal flow graph equivalent to that in Figure 9.16, obtained
by reversing the left and right components. (b) A signal flow graph equivalent to
that in (a) obtained by merging the two delay lines into one. This is called a direct
form 2 filter structure.

Lee & Varaiya, Signals and Systems 405

http://LeeVaraiya.org


EXERCISES

Exercises

Each problem is annotated with the letter E, T, C which stands for exercise, requires some
thought, requires some conceptualization. Problems labeled E are usually mechanical,
those labeled T require a plan of attack, those labeled C usually have more than one
defensible answer.

1. E Consider an LTI discrete-time system Filter with impulse response

h(n) =
7

∑
k=0

δ(n− k),

where δ is the Kronecker delta function.

(a) Sketch h(n).

(b) Suppose the input signal x : Z→ R is such that ∀ n ∈ Z, x(n) = cos(ωn),
where ω = π/4 radians/sample. Give a simple expression for y = Filter(x).

(c) Give the value of H(ω) for ω = π/4, where H is the frequency response.

2. E Consider the continuous-time moving average system S, whose impulse response
is shown in Figure 9.3. Find its frequency response. The following fact from cal-
culus may be useful:

b∫
a

ecωcdω = ecb− eca

for real a and b and complex c. Use Matlab to plot the magnitude of this frequency
response over the range -5 Hz to 5 Hz. Note the symmetry of the magnitude re-
sponse, as required by (9.21).

3. E Consider a continuous-time LTI system with impulse response given by

∀ t ∈ R, h(t) = δ(t−1)+δ(t−2),

where δ is the Dirac delta function.

(a) Find a simple equation relating the input x and output y of this system.

(b) Find the frequency response of this system.

406 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


9. FILTERING

(c) Use Matlab to plot the magnitude frequency response of this system in the
range -5 to 5 Hz.

4. E Consider a discrete-time LTI system with impulse response h given by

∀ n ∈ Z, h(n) = δ(n)+2δ(n−1)

(a) Plot the impulse response.

(b) Find and sketch the output when the input is u, the unit step, given by (9.26).

(c) Find and sketch the output when the input is a ramp,

r(n) =
{

n if n≥ 0
0 otherwise

(d) Find the frequency response.

(e) Show that the frequency response is periodic with period 2π.

(f) Show that the frequency response is conjugate symmetric.

(g) Give a simplified expression for the magnitude response.

(h) Give a simplified expression for the phase response.

(i) Suppose that the input x is given by

∀ n ∈ Z, x(n) = cos(πn/2+π/6)+ sin(πn+π/3).

Find the output y.

5. E Consider the sawtooth signal shown in Figure 9.18. This is a periodic, continuous-
time signal. Suppose it is filtered by an LTI system with frequency response

H(ω) =

{
1 if |ω| ≤ 2.5 radians/second
0 otherwise

What is the output?

6. E Suppose that the following difference equation relates the input x and output y of
a discrete-time, causal LTI system S,

y(n)+αy(n−1) = x(n)+ x(n−1),

for some constant α.

Lee & Varaiya, Signals and Systems 407

http://LeeVaraiya.org


EXERCISES

x(t)

t
1

1 2
0

−1

Figure 9.18: A sawtooth signal.

(a) Find the impulse response h.

(b) Find the frequency response H.

(c) Find a sinusoidal input with non-zero amplitude such that the output is zero.

(d) Use Matlab to create a plot of the magnitude of the frequency response, as-
suming α =−0.9.

(e) Find a state-space description for this system (define the state s and find
A,b,cT ,d).

(f) Suppose α= 1. Find the impulse response and frequency response. Make sure
your answer makes sense (check it against the original difference equation).

7. T Each of the statements below refers to a discrete-time system S with input x and
output y. Determine whether the statement is true or false. The signal u below is
the unit step, given by (9.26). The signal δ below is the Kronecker delta function.

(a) Suppose you know that if x is a sinusoid then y is a sinusoid. Then you can
conclude that S is LTI.

(b) Suppose you know that S is LTI, and that if x(n) = cos(πn/2), then y(n) =
2cos(πn/2). Then you have enough information to determine the frequency
response.

(c) Suppose you know that S is LTI, and that if x(n) = δ(n), then

y(n) = (0.9)nu(n).

Then you have enough information to determine the frequency response.

(d) Suppose you know that S is LTI, and that if x(n)= u(n), then y(n)= (0.9)nu(n).
Then you have enough information to determine the frequency response.

408 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


9. FILTERING

(e) Suppose you know that S is causal, and that input x(n) = δ(n) produces output
y(n) = δ(n)+ δ(n− 1), and input x′(n) = δ(n− 2) produces output y′(n) =
2δ(n−2)+δ(n−3). Then you can conclude that S is not LTI.

(f) Suppose you know that S is causal, and that if x(n) = δ(n)+ δ(n− 2) then
y(n) = δ(n)+δ(n−1)+2δ(n−2)+δ(n−3). Then you can conclude that S
is not LTI.

8. T Consider the continuous-time systems Sk given by, ∀ t ∈ R,

(S1(x))(t) = x(t−2),

(S2(x))(t) = x(t +2),

(S3(x))(t) = x(t)−2,

(S4(x))(t) = x(2− t),

(S5(x))(t) = x(2t),

(S6(x))(t) = t2x(t),

(a) Which of these systems is linear?

(b) Which of these systems is time invariant?

(c) Which of these systems is causal?

9. T Consider an LTI discrete-time system Filter with impulse response

∀ n ∈ Z, h(n) = δ(n)+δ(n−2),

where δ is the Kronecker delta function.

(a) Sketch h.

(b) Find the output when the input is u, the unit step, given by (9.26).

(c) Find the output when the input is a ramp,

r(n) =
{

n if n≥ 0
0 otherwise

(d) Suppose the input signal x is such that

∀ n ∈ Z, x(n) = cos(ωn),

where ω = π/2 radians/sample. Give a simple expression for y = Filter(x).

Lee & Varaiya, Signals and Systems 409

http://LeeVaraiya.org


EXERCISES

(e) Give an expression for H(ω) that is valid for all ω , where H is the frequency
response.

(f) Sketch the magnitude of the frequency response. Can you explain your answer
in part (b)?

(g) Is there any other frequency at which a sinusoidal input with a non-zero am-
plitude will yield an output that is zero?

10. T Consider an LTI discrete-time system Filter with impulse response

h(n) = δ(n)−δ(n−1)

where δ is the Kronecker delta function.

(a) Sketch h(n).

(b) Suppose the input signal x : Z→ R is such that ∀ n ∈ Z, x(n) = 1. Give a
simple expression for y = Filter(x).

(c) Give an expression for H(ω) that is valid for all ω , where H is the frequency
response.

(d) Sketch the magnitude of the frequency response. Can you explain your answer
in part (b)?

11. T Consider a discrete-time LTI system with impulse response h given by

∀ n ∈ Z, h(n) = δ(n−1)/2+δ(n+1)/2

And consider the periodic discrete-time signal given by

∀ n ∈ Z, x(n) = 2+ sin(πn/2)+ cos(πn).

(a) Is the system causal?

(b) Find the frequency response of the system. Check that your answer is periodic
with period 2π.

(c) For the given signal x, find the fundamental frequency ω0 and the Fourier
series coefficients Xk in the Fourier series expansion,

x(n) =
∞

∑
k=−∞

Xkeiω0kn.

Give the units of the fundamental frequency.

410 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


9. FILTERING

(d) Assuming the input to the system is x as given, find the output.

12. T Consider a continuous-time LTI system S. Suppose that when the input is the
continuous-time unit step, given by

u(t) =
{

1, t ≥ 0
0, t < 0

(9.27)

then the output y = S(u) is given by

y(t) =
{

1, 0≤ t < 1
0, otherwise

This output y is called the step response because it is the response to a unit step.

(a) Express y in terms of sums and differences of u and D1(u), where D1 is the
delay operator.

(b) Give a signal flow graph that produces this result y = S(u) when the input is u.
Note: We know that if two LTI systems have the same impulse response, then
they are the same system. It is a fact, albeit a non-trivial one to demonstrate,
that if two LTI systems have the same step response, then they are also the
same system. Thus, your signal flow graph implements S.

(c) Use your signal flow graph to determine what the output y′ of S is when the
input is

x(t) =
{

1, 0≤ t ≤ 1
0, otherwise

Plot your answer.

(d) What is the frequency response H(ω) of S?

13. T Suppose a discrete-time LTI system S has impulse response

h(n) = u(n)/2n =

{
1/2n if n≥ 0
0 otherwise

where u is the unit step function (9.26).

(a) What is the step response of this system? The step response is defined to be
the output when the input is the unit step. Hint: The identity (9.23) might be
helpful.

Lee & Varaiya, Signals and Systems 411

http://LeeVaraiya.org


EXERCISES

x(n) y(n)
S+!

Figure 9.19: Feedback composition.

(b) What is the frequency response? Plot the magnitude and phase response (you
may use Matlab, or do it by hand). Hint: The following variant of the identity
(9.23) might be useful. If |a|< 1,

∞

∑
m=0

am =
1

1−a
.

This follows immediately from (9.23) by letting L go to infinity.

(c) Suppose S is put in cascade with another identical system. What is the fre-
quency response of the cascade composition?

(d) Suppose S is arranged in a feedback composition as shown in figure 9.19.
What is the frequency response of the feedback composition?

412 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


10
The Four Fourier Transforms

Contents
10.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
10.2 The Fourier series (FS) . . . . . . . . . . . . . . . . . . . . . . . . 415

Probing Further: Showing inverse relations . . . . . . . . . . . . . . 417
10.3 The discrete Fourier transform (DFT) . . . . . . . . . . . . . . . . 421
10.4 The discrete-Time Fourier transform (DTFT) . . . . . . . . . . . . 424
10.5 The continuous-time Fourier transform . . . . . . . . . . . . . . . 428
10.6 Fourier transforms vs. Fourier series . . . . . . . . . . . . . . . . 434

10.6.1 Fourier transforms of finite signals . . . . . . . . . . . . . . . 434
10.6.2 Fourier analysis of a speech signal . . . . . . . . . . . . . . . 435
10.6.3 Fourier transforms of periodic signals . . . . . . . . . . . . . 438

10.7 Properties of Fourier transforms . . . . . . . . . . . . . . . . . . . 444
10.7.1 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
10.7.2 Conjugate symmetry . . . . . . . . . . . . . . . . . . . . . . 449
10.7.3 Time shifting . . . . . . . . . . . . . . . . . . . . . . . . . . 450
10.7.4 Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
10.7.5 Constant signals . . . . . . . . . . . . . . . . . . . . . . . . 455
10.7.6 Frequency shifting and modulation . . . . . . . . . . . . . . 456

10.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
Probing Further: Multiplying signals . . . . . . . . . . . . . . . . . 459

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460

413



10.1. NOTATION

In chapter 7 we saw that the Fourier series describes a periodic signal as a sum of complex
exponentials. In chapter 8 we saw that if the input to an LTI system is a sum of complex
exponentials, then the frequency response of the LTI system describes its response to each
of the component exponentials. Thus we can calculate the system response to any periodic
input signal by combining the responses to the individual components.

In chapter 9 we saw that the response of the LTI system to any input signal can also be
obtained as the convolution of the input signal and the impulse response. The impulse
response and the frequency response give us the same information about the system, but
in different forms. The impulse response and the frequency response are related by the
Fourier transform, where in chapter 9 we saw both discrete time and continuous time
versions.

In this chapter, we will see that for discrete-time systems, the frequency response can
be described as a sum of weighted complex exponentials (the DTFT), where the weights
turn out to be the impulse response samples. We will see that the impulse response is, in
fact, a Fourier series representation of the frequency response, with the roles of time and
frequency reversed from the uses of the Fourier series that we have seen so far.

This reappearance of the Fourier series is not a coincidence. In this chapter, we explore
this pattern by showing that the Fourier series is a special case of a family of represen-
tations of signals that are collectively called Fourier transforms. The Fourier series
applies specifically to continuous-time, periodic signals. The discrete Fourier series ap-
plies to discrete-time, periodic signals. We complete the story with the continuous-time
Fourier transform (CTFT), which applies to continuous-time signals that are not periodic,
and the discrete-time Fourier transform (DTFT), which applies to discrete-time signals
that are not periodic.

10.1 Notation

We define the following four sets of signals:

• ContSignals= [R→C]. Since R is included in C , ContSignals includes continuous-
time signals whose range is R , and so we won’t need to consider these separately.

ContSignals includes continuous-time signals, but we are not insisting that the do-
main be interpreted as time. Indeed, sometimes the domain could be interpreted as

414 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


10. THE FOUR FOURIER TRANSFORMS

space, if we are dealing with images. In this chapter we will see that it is useful
sometimes to interpret the domain as frequency.

• DiscSignals = [Z→ C].

This includes discrete-time signals whose domain is time or sample number, but
again we are not insisting that the domain be interpreted as time.

• ContPeriodicp ⊂ ContSignals.

This set is defined to contain all continuous signals that are periodic with period p,
where p is a real number.

• DiscPeriodicp ⊂ DiscSignals.

This set is defined to contain all discrete signals that are periodic with period p,
where p is an integer.

Note that whenever we talk about periodic signals we could equally well talk about finite
signals, where the domain of the finite signal is that of one cycle of the periodic signal.

10.2 The Fourier series (FS)

A periodic signal x ∈ ContPeriodicp may be described as a weighted sum of complex
exponentials. This sum is the continuous-time Fourier series representation of x,

∀ t ∈ R, x(t) =
∞

∑
m=−∞

Xmeimω0t , (10.1)

where ω0 = 2π/p (radians/second). The Fourier series coefficients are given by

∀ m ∈ Z, Xm = 1
p

p∫
0

x(t)e−imω0tdt. (10.2)

Observe that the sequence of Fourier series coefficients given by (10.2) can be regarded
as a signal X ∈ DiscSignals, where

∀m ∈ Z, X(m) = Xm.

Lee & Varaiya, Signals and Systems 415

http://LeeVaraiya.org


10.2. THE FOURIER SERIES (FS)

InverseFourierSeriesp

X ∈ DiscSignals x ∈ ContPeriodicp

DFTp

X ∈ DiscPeriodicpx ∈ DiscPeriodicp

(b)

InverseDFTp

X ∈ DiscPeriodicp x ∈ DiscPeriodicp

(c)

DTFT
X ∈ ContPeriodic2πx ∈ DiscSignals

(d)

InverseDTFT
X ∈ ContPeriodic2π x ∈ DiscSignals

(e)

CTFT
X ∈ ContSignalsx ∈ ContSignals

(f)

InverseCTFT
X ∈ ContSignals x ∈ ContSignals

(g)

FourierSeriesp

X ∈ DiscSignalsx ∈ ContPeriodicp

(h)

(a)

Figure 10.1: Fourier transforms as systems.

So we can define a system FourierSeriesp with domain ContPeriodicp and range DiscSignals
such that if the input is the periodic signal x, the output is its Fourier series coefficients,
X . That is,

FourierSeriesp : ContPeriodicp→ DiscSignals.

This system is the first of four forms of the Fourier transform, and is depicted graphically
in Figure 10.1(a). Its inverse is a system

InverseFourierSeriesp : DiscSignals→ ContPeriodicp,

depicted in Figure 10.1(b).

The two systems, FourierSeriesp and InverseFourierSeriesp, are inverses of each other,
because (see box on page 417)

∀x ∈ ContPeriodicp, (InverseFourierSeriesp ◦FourierSeriesp)(x) = x (10.3)

∀X ∈ DiscSignals, (FourierSeriesp ◦ InverseFourierSeriesp)(X) = X (10.4)

416 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


10. THE FOUR FOURIER TRANSFORMS

Probing Further: Showing inverse relations

In this chapter, and in previous chapters, we have given formulas that describe time-
domain functions in terms of frequency-domain functions, and vice versa. By conven-
tion, a formula that gives the frequency-domain function in terms of the time-domain
function is called a Fourier transform, and the formula that gives the time-domain
function in terms of the frequency-domain function is called an inverse Fourier trans-
form. As shown in Figure 10.1, these transforms can be viewed as systems that take
as inputs signals in one domain and return signals in the other. We discuss four distinct
Fourier transforms and their corresponding inverses. In each case, it is possible to show
that the Fourier transform and its inverse are in fact inverses of one another, as stated in
(10.3) and (10.4). We prove the second relation, (10.4), to illustrate how this is done.
Similar proofs can be carried out for all four types of Fourier transforms, although some-
times these proofs require you to be adept at manipulating Dirac delta functions, which
requires significant mathematical skill.

Let X ∈ DiscSignals be the Fourier series for some x ∈ ContPeriodicp. That is, x =
InverseFourierSeriesp(X). Let Y = FourierSeriesp(x). We now show that Y = X , i.e.
Ym = Xm for all m.

Ym =
1
p

p∫
0

x(t)e−imω0tdt, by (10.2)

=
1
p

p∫
0

[
∞

∑
k=−∞

Xkeikω0t ]e−imω0tdt, by (10.1)

=
∞

∑
k=−∞

1
p

Xk

p∫
0

ei(k−m)ω0tdt

=
1
p

Xm

p∫
0

dt + ∑
k 6=m

1
p

Xk

∫ p

0
ei(k−m)ω0tdt

= Xm, since for k 6= m,∫ p

0
ei(k−m)ω0tdt = 0.

Lee & Varaiya, Signals and Systems 417

http://LeeVaraiya.org


10.2. THE FOURIER SERIES (FS)

x(t)

t
1

1 2

Figure 10.2: A square wave.

|Xm|

m

1/2
1/π

1/3π
1/5π 1/7π

Figure 10.3: Magnitude of the Fourier series coefficients of a square wave.

Example 10.1: Consider a square wave x ∈ ContPeriodic2, shown in Figure 10.2.
It is periodic with period p = 2, so its fundamental frequency is ω0 = 2π/2 = π

radians/second. We can find its continuous-time Fourier series coefficients using
(10.2) as follows,

Xm =
1
2

2∫
0

x(t)e−imπtdt

=
1
2

1∫
0

e−imπtdt.

Notice that when m = 0, this integral is easy to evaluate because e0 = 1, so

X0 = 1/2.

418 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


10. THE FOUR FOURIER TRANSFORMS

The following fact from calculus will help us solve the integral when m 6= 0,

b∫
a

ecωc dω = ecb− eca (10.5)

for real a and b and complex c. Letting c =−imπ, the integral becomes

Xm =
1
2c

1∫
0

ectc dt

=
−1

2imπ
(e−imπ− e0)

=
i

2mπ
(e−imπ−1)

where the last step follows from multiplying top and bottom by i, observing that
i2 =−1, and observing that e0 = 1. Notice that

e−imπ =

{
1 if m is even
−1 if m is odd

Thus, when m 6= 0,

Xm =

{
0 if m is even
−i/mπ if m is odd

The magnitude of these Fourier series coefficients is plotted in Figure 10.3. Notice
that the magnitudes of the coefficients decay rather slowly as m gets large (they
decay as 1/m). This accounts for the persistent overshoot (Gibbs phenomenon)
seen in Figure 7.7. Finite Fourier series approximations of this periodic square
wave are not particularly good because the size of the Fourier series coefficients
decays slowly.

Lee & Varaiya, Signals and Systems 419

http://LeeVaraiya.org


10.2. THE FOURIER SERIES (FS)

Signal Fourier Series Reference
∀ t ∈ R,

x(t) = eiω0t ,

where ω0 6= 0.

∀ m ∈ Z,

Xm =

{
1 if m = 1
0 otherwise

Exercise 2

∀ t ∈ R,

x(t) = cos(ω0t),

where ω0 6= 0.

∀ m ∈ Z,

Xm =

{
1/2 if |m|= 1
0 otherwise

Exercise 2

∀ t ∈ R,

x(t) = sin(ω0t),

where ω0 6= 0.

∀ m ∈ Z,

Xm =


1/2i if m = 1
−1/2i if m =−1
0 otherwise

Exercise 2

∀ t ∈ R,

x(t) = 1

∀ m ∈ Z,

Xm =

{
1 if m = 0
0 otherwise

Exercise 2

Square wave:

∀ t ∈ [0, p],

x(t) =
{

1 if t < T or t > p−T
0 otherwise

∀ m ∈ Z,

Xm =
sin(mω0T )

(mπ)

Exercise 3

Impulse train:

∀ t ∈ R,

x(t) =
∞

∑
n=−∞

δ(t−np)

∀ m ∈ Z,

Xm = 1/p

Exercise 4

Table 10.1: Fourier series coefficients of periodic signals. In all cases, ω0 = 2π/p,
where p is the period. We can obtain Fourier transforms for each of these signals
by using (10.16).

420 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


10. THE FOUR FOURIER TRANSFORMS

Other examples of Fourier series coefficients for various signals are given in table 10.1.

10.3 The discrete Fourier transform (DFT)

The discrete-time Fourier series (DFS) expansion for x ∈ DiscPeriodicp is (see (8.30))

∀ n ∈ Z, x(n) =
p−1

∑
k=0

Xkeikω0n, (10.6)

where ω0 = 2π/p (radians/sample). The Fourier series coefficients can be found using
the formula

∀ k ∈ Z, Xk =
1
p

p−1

∑
m=0

x(m)e−imkω0 . (10.7)

For historical reasons, the discrete Fourier transform (DFT) is the DFS with slightly
different scaling. It is defined by

∀ n ∈ Z, x(n) = 1
p

p−1
∑

k=0
X ′keikω0n, (10.8)

∀ k ∈ Z, X ′k =
p−1
∑

m=0
x(m)e−imkω0 . (10.9)

Obviously, the DFT coefficients are related to the DFS coefficients by

X ′k = pXk.

This scaling is somewhat unfortunate, since it means that the DFT coefficients do not have
the same units as the signal x, but the scaling is firmly established in the literature, so we
stick to it. We omit the prime when it is clear whether we are talking about the Fourier
transform instead of the Fourier series.

Lee & Varaiya, Signals and Systems 421

http://LeeVaraiya.org


10.3. THE DISCRETE FOURIER TRANSFORM (DFT)

Observe that X ′ = DFT p(x) is a discrete signal that is itself periodic with period p. To
verify this, note that for any integer N and for all integers k,

X ′k+N p =
p−1

∑
m=0

x(m)e−im(k+N p)ω0

=
p−1

∑
m=0

x(m)e−imkω0e−imN pω0

=
p−1

∑
m=0

x(m)e−imkω0e−imN2π, since ω0 = 2π/p

=
p−1

∑
m=0

x(m)e−imkω0

= X ′k.

Note that (10.9) looks like a discrete Fourier series expansion of the periodic function
X ′. That is, the periodic function is described as a sum of complex exponentials. The
only substantial difference, comparing with (10.6), is the sign of the exponent. This
sign difference can be easily removed with a change of variables. By doing so, you can
discover that x(−m) is the m-th Fourier series coefficient for the function X ′! The DFT is
rather special, therefore, in that both the time and frequency domain representations of a
function are Fourier series, and both are periodic.

The DFT therefore is the function

DFT p : DiscPeriodicp→ DiscPeriodicp,

given by (10.9). The inverse DFT is the function

InverseDFT p : DiscPeriodicp→ DiscPeriodicp,

given by (10.8). As in (10.3), (10.4), DFT p and InverseDFT p are inverses of each other.
This can be verified using methods similar to those in the box on page 417. The DFT and
its inverse are computed by systems that we can represent as shown in Figure 10.1(c) and
(d).

The DFT is the most useful form of the Fourier transform for computation, because the
system DFT p is easily implemented on a computer. Both summations (10.8) and (10.9)
are finite. Moreover, there is an algorithm called the fast Fourier transform (FFT) that

422 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


10. THE FOUR FOURIER TRANSFORMS

x(n)

n
1

Figure 10.4: A discrete square wave.

|X'k|

k

4

0

Figure 10.5: Magnitude of the DFT of a discrete square wave.

calculates these summations with far fewer arithmetic operations than the most direct
method. Moreover, because the sums are finite, the DFT always exists. There are no
mathematical problems with convergence.

Example 10.2: Consider a discrete square wave x ∈ DiscPeriodic8, shown in
Figure 10.4. It is periodic with period p = 8, so its fundamental frequency is ω0 =
2π/8 = π/4 radians/sample. We can find its DFT using (10.9) as follows,

X ′k =
7

∑
m=0

x(m)e−imkω0

=
3

∑
m=0

e−imkπ/4.

Notice that when k = 0, this sum is easy to evaluate because e0 = 1, so

X ′0 = 4.

Lee & Varaiya, Signals and Systems 423

http://LeeVaraiya.org


10.4. THE DISCRETE-TIME FOURIER TRANSFORM (DTFT)

Moreover, when k is any multiple of 8, we get X ′k = 4, as it should, since the DFT is
periodic with period 8. The following identity will help us simplify the summation
when k 6= 0 nor any multiple of 8,

N
∑

m=0
am = 1−aN+1

1−a . (10.10)

(To demonstrate the validity of this identity, just multiply both sides by 1− a.)
Letting N = 3 and a = e−ikπ/4, we get that for k 6= 0 nor any multiple of 8,

X ′k =
1− e−ikπ

1− e−ikπ/4 .

Notice that the numerator is particularly simple, since

1− e−ikπ =

{
0 if k is even
2 if k is odd

The magnitude of these DFT coefficients is plotted in figure 10.5.

Other examples of discrete Fourier transform coefficients for various signals are given in
table 10.2.

10.4 The discrete-Time Fourier transform (DTFT)

We have shown in Section 9.2 that the frequency response H of an LTI system is related
to the impulse response h by

∀ ω ∈ R, H(ω) =
∞

∑
m=−∞

h(m)e−iωm.

H is called the discrete-time Fourier transform (DTFT) of h. For any x ∈DiscSignals (not
just an impulse response), its DTFT is defined to be

∀ ω ∈ R, X(ω) =
∞

∑
m=−∞

x(m)e−iωm. (10.11)

424 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


10. THE FOUR FOURIER TRANSFORMS

Signal DFT Reference

∀ n ∈ Z,

x(n) = ei2π f n,

where f 6= 0.

∀ k ∈ Z,

X ′k =
{

p if k ∈ A
0 otherwise

Exercise 5

∀ n ∈ Z,

x(n) = cos(2π f n),

where f 6= 0.

∀ k ∈ Z,

X ′k =


p/2 if k ∈ A
p/2 if k ∈ B
0 otherwise

Exercise 5

∀ n ∈ Z,

x(n) = sin(i2π f n),

where f 6= 0.

∀ k ∈ Z,

X ′k =


p/2i if k ∈ A
−p/2i if k ∈ B
0 otherwise

Exercise 5

∀ n ∈ Z,

x(n) = 1

∀ k ∈ Z,

X ′k =
{

p if k ∈C
0 otherwise

Exercise 5

Square wave:

∀ n ∈ {0,1, · · · , p−1},

x(n) =
{

1 if n≤M or n≥ p−M
0 otherwise

∀ k ∈ Z,

X ′k =
sin(k(M+0.5)ω0)

sin(kω0/2)

Exercise 6

Impulse train:

∀ n ∈ Z,

x(n) =
∞

∑
k=−∞

δ(n− kp)

∀ k ∈ Z,

X ′k = 1

Exercise 7

Table 10.2: Discrete Fourier transform of periodic signals. The fundamental
frequency is ω0 = 2π/p, where p is the period. For the complex exponen-
tial and sinusoidal signals, the frequency f must be rational, and is related to
the period p by f = m/p for some integer m (see Section 7.6.1). The follow-
ing sets are used in this table: A = {· · ·m− 2p,m− p,m,m+ p,m+ 2p, · · ·}, B =
{· · ·−m−2p,−m− p,−m,−m+ p,−m+2p, · · ·}, and C = {· · ·−2p,−p,0, p,2p, · · ·}.

Lee & Varaiya, Signals and Systems 425

http://LeeVaraiya.org


10.4. THE DISCRETE-TIME FOURIER TRANSFORM (DTFT)

Of course, this definition is only valid for those x and those ω where the sum converges
(it is not trivial mathematically to characterize this).

Notice that the function X is periodic with period 2π. That is, X(ω) = X(ω+ 2πN) for
any integer N, because

e−iωt = e−i(ω+2πN)t

for any integer N. Thus, X ∈ ContPeriodic2π.

Note that (10.11) looks like a discrete Fourier series expansion of the periodic function
X . That is, the periodic function is described as a sum of complex exponentials. The
only substantial difference, comparing with (10.1), is the sign of the exponent. This
sign difference can be easily removed with a change of variables. By doing so, you can
discover that x(−n) is the n-th Fourier series coefficient for the function X!

The DTFT (10.11) has similar structure to the DFT (10.9). In fact, the DTFT can be
viewed as a generalization of the DFT to signals that are neither periodic nor finite. In
other words, as p approaches infinity, ω0 approaches zero, so instead of a discrete set of
frequencies spaced by ω0 we have a continuum.

The DTFT is a system

DTFT : DiscSignals→ ContPeriodic2π

and its inverse is

InverseDTFT : ContPeriodic2π→ DiscSignals.

The inverse is given by

∀ n ∈ Z, x(n) = 1
2π

2π∫
0

X(ω)eiωndω. (10.12)

Notice that because X is periodic, this can equivalently be written as

∀ n ∈ Z, x(n) =
1

2π

π∫
−π

X(ω)eiωndω.

We integrate over one cycle of the periodic function, so it does not matter where we start.
These are depicted graphically in Figure 10.1(e) and (f).

426 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


10. THE FOUR FOURIER TRANSFORMS

x(n)

n
1

Figure 10.6: A discrete rectangle signal.

|X(ω)|

ω

4

0
2πππ/2

Figure 10.7: Magnitude of the DTFT of a discrete rectangle.

Lee & Varaiya, Signals and Systems 427

http://LeeVaraiya.org


10.5. THE CONTINUOUS-TIME FOURIER TRANSFORM

DTFT and InverseDTFT are inverses of each other. This follows from the fact that
FourierSeriesp and InverseFourierSeriesp are inverses of each other.

Example 10.3: Consider a discrete rectangle x ∈ DiscSignals, shown in Figure
10.6. We can find its DTFT using (10.11) as follows,

X(ω) =
∞

∑
m=−∞

x(m)e−iωm

=
3

∑
m=0

e−iωm.

Notice that when ω = 0, this sum is easy to evaluate because e0 = 1, so

X(0) = 4.

Moreover, when ω is any multiple of 2π, we get X(ω) = 4, as it should, since the
DTFT is periodic with period 2π. We can again use the identity (10.10), Letting
N = 3 and a = e−iω, we get

X(ω) =
1− e−i4ω

1− e−iω .

The magnitude of this function is plotted in figure 10.5.

Other examples of DTFTs for various signals are given in table 10.3.

10.5 The continuous-time Fourier transform

The frequency response and impulse response of a continuous-time LTI system are re-
lated by the continuous-time Fourier transform (CTFT), more commonly called simply
the Fourier transform (FT),

∀ ω ∈ R, X(ω) =
∞∫
−∞

x(t)e−iωtdt. (10.13)

428 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


10. THE FOUR FOURIER TRANSFORMS

Signal DTFT Reference

∀ n ∈ Z, x(n) = δ(n) ∀ ω ∈ R, X(ω) = 1 Example
10.8

∀ n ∈ Z,
x(n) = δ(n−N)

∀ ω ∈ R, X(ω) = e−iωN Example
10.8

∀ n ∈ Z, x(n) = K ∀ ω ∈ R,
X(ω) = 2πK

∞

∑
k=−∞

δ(ω− k2π)

Section
10.7.5

∀ n ∈ Z,

x(n) = anu(n), |a|< 1

∀ ω ∈ R,

X(ω) =
1

1−ae−iω

Exercise 18

∀ n ∈ Z,

x(n) =
{

1 if |n| ≤M
0 otherwise

∀ ω ∈ R,

X(ω) =
sin(ω(M+0.5))

sin(ω/2)

Exercise 8

∀ n ∈ Z,

x(n) =
sin(Wn)

πn
, 0 <W < π

∀ ω ∈ [−π,π],

X(ω) =

{
1 if |ω| ≤W
0 otherwise

–

Table 10.3: Discrete time Fourier transforms of key signals. The function u is the
unit step, given by (2.16).

Lee & Varaiya, Signals and Systems 429

http://LeeVaraiya.org


10.5. THE CONTINUOUS-TIME FOURIER TRANSFORM

x(t)

t
1

1

Figure 10.8: A rectangular pulse.

|X(ω)|

ω

1

0 2π 4π

Figure 10.9: Magnitude of the Fourier transform of the rectangular pulse in Figure
10.8.

The CTFT can be defined for any function x ∈ ContSignals where the integral exists. It
need not be the impulse response of any system, and it need not be periodic or finite. The
inverse relation is

∀ t ∈ R, x(t) = 1
2π

∞∫
−∞

X(ω)eiωtdω. (10.14)

It is true but difficult to prove that the CTFT and the inverse CTFT are indeed inverses.

The CTFT can be viewed as a generalization of both the FS and DTFT where neither the
frequency domain nor the time domain signal needs to be periodic. Alternatively, it can
be viewed as the last remaining Fourier transform, where neither time nor frequency is
discrete. Graphically, the CTFT is a system as shown in Figure 10.1(g) and (h).

430 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


10. THE FOUR FOURIER TRANSFORMS

Example 10.4: Consider a rectangular pulse x ∈ ContSignals, shown in Figure
10.8. We can find its continuous-time Fourier transform using (10.13) as follows,

X(ω) =

∞∫
−∞

x(t)e−iωtdt

=

1∫
0

e−iωtdt.

Notice that when ω = 0, this integral is easy to evaluate because e0 = 1, so

X(0) = 1.

We can use (10.5) to solve the integral in general,

X(ω) =
i
ω

[
e−iω−1

]
.

We can get better intuition about this by manipulating it as follows,

X(ω) =
i
ω

e−iω/2
[
e−iω/2− eiω/2

]
= e−iω/2

[
sin(ω/2)

ω/2

]
.

The leading factor has unit magnitude, so we see that the magnitude can be written

|X(ω)|=
∣∣∣∣sin(ω/2)

ω/2

∣∣∣∣ .
This magnitude is plotted in Figure 10.9. Notice that the magnitude decays rather
slowly as ω gets large (as 1/ω).

Other examples of Fourier transforms for various signals are given in table 10.4. The four
Fourier transforms are summarized in table 10.5.

Lee & Varaiya, Signals and Systems 431

http://LeeVaraiya.org


10.5. THE CONTINUOUS-TIME FOURIER TRANSFORM

Signal CTFT Reference

∀ t ∈ R, x(t) = δ(t) ∀ ω ∈ R, X(ω) = 1 Example
10.7

∀ t ∈ R, x(t) = δ(t− τ), τ ∈ R ∀ ω ∈ R, X(ω) = e−iωτ Example
10.7

∀ t ∈ R, x(t) = K ∀ ω ∈ R, X(ω) = 2πKδ(ω) Section
10.7.5

∀ t ∈ R,

x(t) = atu(t), 0 < a < 1

∀ ω ∈ R,

X(ω) =
1

jω− ln(a)

–

∀ t ∈ R,

x(t) =
{

π/a if |t| ≤ a
0 otherwise

∀ ω ∈ R,

X(ω) =
2πsin(aω)

aω

Exercise 23

∀ t ∈ R,

x(t) =
sin(πt/T )

πt/T
,

∀ ω ∈ R,

X(ω) =

{
T if |ω| ≤ π/T
0 otherwise

Exercise 21

Table 10.4: Continuous time Fourier transforms of key signals. The function u is
the unit step, given by (9.27).

432 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


10. THE FOUR FOURIER TRANSFORMS

aperiodic time
continuous frequency

periodic time
discrete frequency

aperiodic
frequency

continuous
time

CTFT :
ContSignals→ ContSignals

X(ω) =

∞∫
−∞

x(t)e−iωtdt

InverseCTFT :
ContSignals→ ContSignals

x(t) =
1

2π

∞∫
−∞

X(ω)eiωtdω

FourierSeriesp :
ContPeriodicp→ DiscSignals

Xm =
1
p

p∫
0

x(t)e−imω0tdt

InverseFourierSeriesp :
DiscSignals→ ContPeriodicp

x(t) =
∞

∑
k=−∞

Xkeikω0t

periodic
frequency

discrete
time

DTFT :
DiscSignals→ ContPeriodic2π

X(ω) =
∞

∑
n=−∞

x(n)e−inω

InverseDTFT :
ContPeriodic2π→ DiscSignals

x(n) =
1

2π

π∫
−π

X(ω)eiωndω

DFT p :
DiscPeriodicp→ DiscPeriodicp

Xk =
p−1

∑
n=0

x(n)e−inkω0

InverseDFT p :
DiscPeriodicp→ DiscPeriodicp

x(n) =
1
p

p−1

∑
k=0

Xkeikω0n

Table 10.5: The four Fourier transforms summarized. The column and row titles
tell you when to use the specified Fourier transform and its inverse. The first row
applies to continuous-time signals, and the second column applies to periodic
signals. Thus, if you have a continuous-time periodic signal, you should use the
Fourier series at the upper right.

Lee & Varaiya, Signals and Systems 433

http://LeeVaraiya.org


10.6. FOURIER TRANSFORMS VS. FOURIER SERIES

10.6 Fourier transforms vs. Fourier series

For each of continuous and discrete-time signals, we have a Fourier transform and a
Fourier series (see table 10.5). The Fourier series applies only to periodic signals, while
the Fourier transforms apply to any signal. The Fourier transforms, therefore, must also
be applicable to periodic signals. Why do we need the Fourier series? Moreover, if we
have a finite signal, then we can find its Fourier series by considering it to be a periodic
signal, or we can find its Fourier transform by considering it to be zero outside its finite
domain. Which should we do?

10.6.1 Fourier transforms of finite signals

Consider a discrete-time signal y that is finite. Suppose it is defined for the domain [0, p−
1]⊂ Z. As we did in Section 7.4, we can define a related periodic signal x as

∀ n ∈ Z, x(n) =
∞

∑
m=−∞

y′(n−mp)

where

∀ n ∈ Z, y′(n) =

{
y(n) if n ∈ [0, p−1]
0 otherwise

The signal y′, of course, is an ordinary discrete-time signal, and hence posseses a DTFT.
The signal x is a periodic signal, and therefore posseses a DFT. The DTFT and DFT are
closely related. The DTFT is given by

∀ ω ∈ R, Y ′(ω) =
∞

∑
n=−∞

y′(n)e−inω

=
p−1

∑
n=0

y(n)e−inω.

The DFT is

∀ k ∈ Z, Xk =
p−1

∑
n=0

x(n)e−inkω0

=
p−1

∑
n=0

y(n)e−inkω0 .

434 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


10. THE FOUR FOURIER TRANSFORMS

am
pl

itu
de

-1

-0.5

0

0.5

time (in seconds)
0 0.4 0.8 1.2 21.6

Figure 10.10: Two seconds of speech.

Comparing these, we see that

∀ k ∈ Z, Xk = Y ′(kω0).

In words, the DFT of the periodic signal is equal to samples of the DTFT of the finite
signal with sampling interval ω0 = 2π/p. This fact proves extremely useful when doing
Fourier analysis of real-world signals, as we see in the next subsection.

10.6.2 Fourier analysis of a speech signal

Consider the speech signal shown in Figure 10.10. It is two seconds of sound sampled at 8
kHz, for a total of 16,000 samples. This is a finite signal, so we can find a DFT or DTFT, as
explained in the previous section. However, this would not be all that useful. As is evident
from the figure, the character of the signal changes several times in the two seconds. The
speech sound is one of the authors saying “this is the sound of my voice.” Usually, it is
more interesting to perform Fourier analysis on a single phoneme, or elemental sound.
Such analysis might be, for example, the first stage of a speech recognition system, which
attempts to automatically determine what was said.

Consider a much smaller segment of speech shown at the top in Figure 10.11. This is
approximately 64 msec of speech, or 512 samples at rate 8,000 samples/second. This

Lee & Varaiya, Signals and Systems 435

http://LeeVaraiya.org


10.6. FOURIER TRANSFORMS VS. FOURIER SERIES

m
ag

ni
tu

de
 D

FT

0

10

20

30

frequency (in Hz)
-4000 -2000 -1000 0 400020001000

am
pl

itu
de

-0.8

-0.4

0

0.4

time (in seconds)
0 0.01 0.02 0.03 0.060.050.04

Figure 10.11: A voiced segment of speech (top) and one cycle of the magnitude
of its DFT (bottom).

436 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


10. THE FOUR FOURIER TRANSFORMS

particular segment is the vowel sound in the word “sound.” Notice that the signal has
quite a bit of structure. Fourier analysis can reveal a great deal about that structure.

The first issue is to decide which of the four Fourier transforms to apply. This is easy,
since there is only one of the four that is computable, the DFT. Since we do not have an
analytic expression for the speech signal, we cannot algebraically determine the DTFT.
However, we know from the previous section that the DFT yields samples of the DTFT
of a finite signal, so calculating the DFT reveals the structure of the DTFT.

The DFT of these 512 samples is shown at the bottom in Figure 10.11, which shows
one cycle of the periodic DFT. The horizontal axis is labeled with the frequecies in Hz
rather than the index k of the DFT coefficient. Recall that the k-th coefficient of the
DFT represents a complex exponential with frequency kω0 = k2π/p radians/sample. To
convert this to Hertz, we watch the units,

(k2π/p)[radians/sample]× (1/T )[samples/second]× (1/2π)[cycles/radian]

= k/(pT )[cycles/second],

where T = 1/8000 is the sampling interval.

Although this plot shows the DFT, the plot can equally well be interpreted as a plot of
the DTFT. It shows 512 values of the DFT (one cycle of the periodic signal), and instead
of showing each individual value, it runs them together as a continuous curve. In fact,
since the DFT is samples of the DTFT, that continuous curve is a pretty good estimate
of the shape of the DTFT. Of course, the samples might not be close together enough to
accurately represent the DTFT, but probably they are. The next chapter will examine this
issue in considerable detail.

Notice that most of the signal is concentrated below 1 kHz. In Figure 10.12, we have
zoomed in to this region of the spectrum. Notice that the DFT is strongly peaked, with
the lowest frequency peak occurring at about 120 Hz. Indeed, this is not surprising,
because the time-domain signal at the top of Figure 10.11 looks somewhat periodic, with
a period of about 80 msec, roughly the inverse of 120 Hz. That is, it looks like a periodic
signal with fundamental frequency 120 Hz, and various harmonics. The weights of the
harmonics are proportional to the heights of the peaks in Figure 10.12.

The vowel in the word “sound” is created by vibrating the human vocal chords, and then
shaping the mouth into an acoustic cavity that alters the sound produced by the vocal
chords. A sound that uses the vocal chords is called by linguists a voiced sound. By
contrast, the “s” in “this” is an unvoiced sound. It is created without the help of the vocal
chords by forcing air through a narrow passage in the mouth to create turbulence.

Lee & Varaiya, Signals and Systems 437

http://LeeVaraiya.org


10.6. FOURIER TRANSFORMS VS. FOURIER SERIES

m
ag

ni
tu

de
 D

FT

0

10

20

30

frequency (in Hz)
-1000 -600 -200 0 1000600200

Figure 10.12: DFT of the voiced segment of speech, shown over a narrower
frequency range.

The “s” in “this” is shown in Figure 10.13. It is very different from the vowel sound in
10.11. In particular, it looks much less regular. There is no evident periodicity in the
signal, so the DFT does not reveal a fundamental frequency and harmonics. It is a noise-
like signal, where the DFT reveals that much of the noise is at low frequencies, below 500
Hz, but there are also significant components all the way out to 4 kHz.

The analysis we have done on the segments of speech is a typical use of Fourier analysis.
A long (even infinite) signal is divided into short segments, such as the two 512-sample
segments that we examined above. These segments are studied by calculating their DFT.
Since the DFT is a finite summation, it is easy to realize on a computer. Also, as men-
tioned before, there is a highly efficient algorithm called the fast Fourier transform or
FFT to calculate the DFT. The fft function in Matlab was used to calculate the DFTs
in figures 10.11 and 10.13. The DFT yields samples of the DTFT of the finite segment of
signal. The spectrogram for the signal in Figure 10.10 is shown in Figure 10.14.

10.6.3 Fourier transforms of periodic signals

In the previous two sections, we have seen the relationship between the DTFT of a finite
signal and the DFT of the periodic signal that is constructed by repeating the finite signal.

438 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


10. THE FOUR FOURIER TRANSFORMS

m
ag

ni
tu

de
 D

FT

0

2

4

6

frequency (in Hz)
-4000 -2000 -1000 0 400020001000

am
pl

itu
de

-0.2

-0.1

0

0.1

time (in seconds)
0 0.01 0.02 0.03 0.060.050.04

8

Figure 10.13: An unvoiced segment of speech (top) and one cycle of the magni-
tude of its DFT (bottom).

Lee & Varaiya, Signals and Systems 439

http://LeeVaraiya.org


10.6. FOURIER TRANSFORMS VS. FOURIER SERIES

4000

3000

2000

1000

0

Fr
eq

ue
nc

y

Time (seconds)

Samples

0 0.5 1 1.5 2 2.5

0

0.5

1

- 0.5

- 1
0 5,000 10,000 15,000 20,000

Figure 10.14: Spectrogram of the voice segment in Figure 10.10.

440 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


10. THE FOUR FOURIER TRANSFORMS

The periodic signal, however, also has a DTFT itself. In the interest of variety, we will
explore this concept in continuous time.

A periodic continuous-time signal has a Fourier transform. But, as we will see, that
Fourier transform has Dirac delta functions in it, which are mathematically tricky. Recall
that a Dirac delta function is an infinitely narrow and infinitely high pulse. The Fourier
series permits us to talk about the frequency domain representation of a periodic signal
without dealing with Dirac delta functions.

It is useful, certainly, to simplify the mathematics. Using a Fourier series whenever pos-
sible allows us to do that. Moreover, when working with signals computationally, ev-
erything must be discrete and finite. Computers cannot deal with infinitely narrow and
infinitely high pulses numerically. Computation, therefore, must be done with the only
transform that is completely discrete and finite, the DFS, or its scaled cousin, the DFT.

To be concrete, suppose a continuous-time signal x has Fourier transform

∀ ω ∈ R, X(ω) = 2πδ(ω−ω0) (10.15)

for some real value ω0. We can find x using the inverse CTFT (10.14),

∀ t ∈ R, x(t) =
1

2π

∞∫
−∞

2πδ(ω−ω0)eiωtdω.

Using the sifting rule, this evaluates to

x(t) = eiω0t .

This is a periodic function with period p = 2π/ω0. From table 10.1, we see that the
Fourier series for x is

∀ m ∈ Z, Xm =

{
1 if m = 1
0 otherwise

There is exactly one non-zero Fourier series coefficient, which corresponds to the exactly
one Dirac delta pulse in the Fourier transform (10.15).

More generally, suppose x has multiple Dirac delta pulses in its Fourier transform, each
with different weights,

∀ ω ∈ R, X(ω) = 2π
∞

∑
m=−∞

Xmδ(ω−mω0). (10.16)

Lee & Varaiya, Signals and Systems 441

http://LeeVaraiya.org


10.6. FOURIER TRANSFORMS VS. FOURIER SERIES

The inverse CTFT (10.14) tells us that

∀ t ∈ R, x(t) =
∞

∑
m=−∞

Xmeimω0t .

This is a periodic function with fundamental frequency ω0, and harmonics in various
weights. Its Fourier series coefficients, by inspection, are just Xm. Thus, for a periodic
signal, (10.16) relates the CTFT and the Fourier series. The Fourier series gives the
weights of a set of Dirac delta pulses in the Fourier transform, within a scaling factor of
2π.

Example 10.5: Consider x given by

∀ t ∈ R, x(t) = cos(ω0t).

From table 10.1, we see that the Fourier series for x is

∀ m ∈ Z, Xm =

{
1/2 if |m|= 1
0 otherwise

There are only two non-zero Fourier series coefficients. We can use (10.16) to write
down its Fourier transform,

∀ ω ∈ R, X(ω) = πδ(ω+ω0)+πδ(ω−ω0).

We sketch this as shown in Figure 10.15. See Exercise 9 at the end of the chapter
for a similar result for a sin function.

Example 10.6: Consider the square wave of example 10.1. The Fourier series
coefficients are

Xm =


1/2 if m = 0
0 if m is even and m 6= 0
−i/mπ if m is odd

The Fourier transform, therefore, has Dirac delta pulses with these weights at mul-
tiples of ω0, scaled by 2π, as shown in Figure 10.16.

442 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


10. THE FOUR FOURIER TRANSFORMS

X(ω)

ω

π

ω0

π

−ω0

Figure 10.15: Fourier transform of a cosine.

|X(ω)|

ω

π
2

2/3
2/5 2/7

ω0 3ω0

Figure 10.16: Fourier transform of a square wave.

Lee & Varaiya, Signals and Systems 443

http://LeeVaraiya.org


10.7. PROPERTIES OF FOURIER TRANSFORMS

The same concept applies in the discrete-time case, although some care is needed because
the DTFT and DFT are both periodic, and not every function of the form e jωn is periodic
(see Section 7.6.1). In fact, in Figure 10.11, the peaks in the spectrum hint at the Dirac
delta functions in the DTFT. The signal appears to be roughly periodic with period 120
Hz, so the DFT shows strong peaks at multiples of 120 Hz. If the signal were perfectly
periodic, and if we were plotting the DTFT instead of the DFT, then these peaks would
become infinitely narrow and infinitely high.

10.7 Properties of Fourier transforms

In this section, we give a number of useful properties of the various Fourier transforms,
together with a number of illustrative examples. These properties are summarized in
tables 10.6 through 10.9. The properties and examples can often be used to avoid solving
integrals or summations to find the Fourier transform of some signal, or to find an inverse
Fourier transform.

10.7.1 Convolution

Suppose a discrete-time LTI system has impulse response h and frequency response H.
We have seen that if the input to this system is a complex exponential, eiωn, then the output
is H(ω)eiωn. Suppose the input is instead an arbitrary signal x with DTFT X . Using the
inverse DTFT relation, we know that

∀ n ∈ Z, x(n) =
1

2π

2π∫
0

X(ω)eiωndω.

View this as a summation of exponentials, each with weight X(ω). An integral, after all,
is summation over a continuum. Each term in the summation is X(ω)eiωn. If this term
were an input by itself, then the output would be H(ω)X(ω)eiωn. Thus, by linearity, if the
input is x, the output should be

∀ n ∈ Z, y(n) =
1

2π

2π∫
0

H(ω)X(ω)eiωndω

444 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


10. THE FOUR FOURIER TRANSFORMS

Time domain Frequency domain Reference
∀ t ∈ R, x(t) is real ∀ m ∈ Z, Xm = X∗−m Section

10.7.2
∀ t ∈ R, x(t) = x∗(−t) ∀ m ∈ Z, Xm is real Section

10.7.2
∀ t ∈ R, y(t) = x(t− τ) ∀ m ∈ Z, Ym = e−imω0τXm Section

13
∀ t ∈ R, y(t) = eiω1tx(t)

where ω1 = Mω0, for some M ∈ Z
∀ m ∈ Z, Ym = Xm−M Section

13
∀ t ∈ R,

y(t) = cos(ω1t)x(t)
where ω1 = Mω0, for some M ∈ Z

∀ m ∈ Z,
Ym = (Xm−M +Xm+M)/2

Example
13

∀ t ∈ R,
y(t) = sin(ω1t)x(t)

where ω1 = Mω0, for some M ∈ Z

∀ m ∈ Z,
Ym = (Xm−M−Xm+M)/2i

Exercise
13

∀ t ∈ R,
y(t) = ax(t)+bw(t)

∀ m ∈ Z,
Ym = aXm +bWm

Section
10.7.4

∀ t ∈ R, y(t) = x∗(t) ∀ m ∈ Z, Ym = X∗−m –

Table 10.6: Properties of the Fourier series. All time-domain signals are assumed
to be periodic with period p, and fundamental frequency ω0 = 2π/p.

Lee & Varaiya, Signals and Systems 445

http://LeeVaraiya.org


10.7. PROPERTIES OF FOURIER TRANSFORMS

Time domain Frequency domain Reference
∀ n ∈ Z, x(n) is real ∀ k ∈ Z, X ′k = X ′∗−k Section

10.7.2
∀ n ∈ Z, x(n) = x∗(−n) ∀ k ∈ Z, X ′k is real Section

10.7.2
∀ n ∈ Z, y(n) = x(n−N) ∀ k ∈ Z, Y ′k = e−ikω0NX ′k –

∀ n ∈ Z, y(n) = eiω1nx(n)
where ω1 = Mω0, for some M ∈ Z

∀ k ∈ Z, Y ′k = X ′k−M –

∀ n ∈ Z,
y(n) = cos(ω1n)x(n)

where ω1 = Mω0, for some M ∈ Z

∀ k ∈ Z,
Y ′k = (X ′k−M +X ′k+M)/2

–

∀ n ∈ Z,
y(n) = sin(ω1n)x(n)

where ω1 = Mω0, for some M ∈ Z

∀ k ∈ Z,
Y ′k = (X ′k−M−X ′k+M)/2i

–

∀ n ∈ Z,
y(n) = ax(n)+bw(n)

∀ k ∈ Z,
Y ′k = aX ′k +bW ′k

Section
10.7.4

∀ n ∈ Z, y(n) = x∗(n) ∀ k ∈ Z, Yk = X∗−k –

Table 10.7: Properties of the DFT. All time-domain signals are assumed to be
periodic with period p, and fundamental frequency ω0 = 2π/p.

446 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


10. THE FOUR FOURIER TRANSFORMS

Time domain Frequency domain Reference
∀ n ∈ Z, x(n) is real ∀ ω ∈ R, X(ω) = X∗(−ω) Section

10.7.2
∀ n ∈ Z, x(n) = x∗(−n) ∀ ω ∈ R, X(ω) is real Section

10.7.2
∀ n ∈ Z, y(n) = x(n−N) ∀ ω ∈ R, Y (ω) = e−iωNX(ω) Section

10.7.3
∀ n ∈ Z, y(n) = eiω1nx(n) ∀ ω ∈ R, Y (ω) = X(ω−ω1) Section

10.7.6
∀ n ∈ Z,

y(n) = cos(ω1n)x(n)
∀ ω ∈ R,

Y (ω) = (X(ω−ω1)+X(ω+ω1))/2
Example

10.11
∀ n ∈ Z,

y(n) = sin(ω1n)x(n)
∀ ω ∈ R,

Y (ω) = (X(ω−ω1)−X(ω+ω1))/2i
Exercise

12
∀ n ∈ Z,

x(n) = ax1(n)+bx2(n)
∀ ω ∈ R,

X(ω) = aX1(ω)+bX2(ω)
Section
10.7.4

∀ n ∈ Z, y(n) = (h∗ x)(n) ∀ ω ∈ R, Y (ω) = H(ω)X(ω) Section
10.7.1

∀ n ∈ Z, y(n) = x(n)p(n) ∀ ω ∈ R,

Y (ω) = 1
2π

2π∫
0

X(Ω)P(ω−Ω)dΩ

Box on
page 459

∀ n ∈ Z,

y(n) =
{

x(n/N) n multiple of N
0 otherwise

∀ ω ∈ R,
Y (ω) = X(NΩ)

Exercise
14

Table 10.8: Properties of the DTFT.

Lee & Varaiya, Signals and Systems 447

http://LeeVaraiya.org


10.7. PROPERTIES OF FOURIER TRANSFORMS

Time domain Frequency domain Reference
∀ t ∈ R, x(t) is real ∀ ω ∈ R, X(ω) = X∗(−ω) Section

10.7.2
∀ t ∈ R, x(t) = x∗(−t) ∀ ω ∈ R, X(ω) is real Section

10.7.2
∀ t ∈ R, y(t) = x(t− τ) ∀ ω ∈ R, Y (ω) = e−iωτX(ω) Section

10.7.3
∀ t ∈ R, y(t) = eiω1tx(t) ∀ ω ∈ R, Y (ω) = X(ω−ω1) Section

10.7.6
∀ t ∈ R,

y(t) = cos(ω1t)x(t)
∀ ω ∈ R,

Y (ω) = (X(ω−ω1)+X(ω+ω1))/2
Example

10.11
∀ t ∈ Z,

y(t) = sin(ω1t)x(t)
∀ ω ∈ R,

Y (ω) = (X(ω−ω1)−X(ω+ω1))/2i
Exercise

12
∀ t ∈ R,

x(t) = ax1(t)+bx2(t)
∀ ω ∈ R,

X(ω) = aX1(ω)+bX2(ω)
Section
10.7.4

∀ t ∈ R, y(t) = (h∗ x)(t) ∀ ω ∈ R, Y (ω) = H(ω)X(ω) Section
10.7.1

∀ t ∈ R, y(t) = x(t)p(t) ∀ ω ∈ R,
Y (ω) = 1

2π

∞∫
−∞

X(Ω)P(ω−Ω)dΩ

–

∀ t ∈ R,
y(t) = x(at)

∀ ω ∈ R,
Y (ω) = 1

|a| X(Ω/a)
Exercise

11

Table 10.9: Properties of the CTFT.

448 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


10. THE FOUR FOURIER TRANSFORMS

Comparing to the inverse DTFT relation for y(n), we see that

∀ ω ∈ R, Y (ω) = H(ω)X(ω). (10.17)

This is the frequency-domain version of convolution

∀ n ∈ Z, y(n) = (h∗ x)(n).

Thus, the frequency response of an LTI system multiplies the DTFT of the input. This is
intuitive, since the frequency response gives the weight imposed by the system on each
frequency component of the input.

Equation (10.17) applies equally well to continuous-time systems, but in that case, H is
the CTFT of the impulse response, and X is the CTFT of the input.

10.7.2 Conjugate symmetry

We have already shown (see (8.29)) that for real-valued signals, the Fourier series coeffi-
cients are conjugate symmetric,

Xk = X∗−k.

In fact, all the Fourier transforms are conjugate symmetric if the time-domain function is
real. We illustrate this with the CTFT. Suppose x : R→ R is a real-valued signal, and
let X = CTFT(x). In general, X(ω) will be complex-valued. However, from (10.13), we
have

[X(−ω)]∗ =
∫

∞

−∞

[x(t)eiωt ]∗dt

=
∫

∞

−∞

x(t)e−iωtdt

= X(ω),

Thus,
X(ω) = X∗(−ω),

i.e. for real-valued signals, X(ω) and X(−ω) are complex conjugates of one another.

We can show that, conversely, if the Fourier transform is conjugate symmetric, then the
time-domain function is real. To do this, write the inverse CTFT

x(t) =
1

2π

∞∫
−∞

X(ω)eiωtdω

Lee & Varaiya, Signals and Systems 449

http://LeeVaraiya.org


10.7. PROPERTIES OF FOURIER TRANSFORMS

and then conjugate both sides,

x∗(t) =
1

2π

∞∫
−∞

X∗(ω)e−iωtdω.

By changing variables (replacing ω with−ω) and using the conjugate symmetry of X , we
can show that

x∗(t) = x(t),

which implies that x(t) is real for all t.

The inverse Fourier transforms can be used to show that if a time-domain function is
conjugate symmetric,

x(t) = x∗(−t),

then its Fourier transform is real. The same property applies to all four Fourier transforms.

In summary, if a function in one domain (time or frequency) is conjugate symmetric,
then the function in the other domain (frequency or time) is real.

10.7.3 Time shifting

Given a continuous-time function x and its Fourier transform X = CTFT(x), let y be
defined by

∀ t ∈ R, y(t) = x(t− τ)

450 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


10. THE FOUR FOURIER TRANSFORMS

for some real constant τ. This is called time shifting or delay. We can find Y = CTFT(y)
in terms of X as follows,

Y (ω) =

∞∫
−∞

y(t)e−iωtdt

=

∞∫
−∞

x(t− τ)e−iωtdt

=

∞∫
−∞

x(t)e−iω(t+τ)dt

= e−iωτ

∞∫
−∞

x(t)e−iωtdt

= e−iωτX(ω).

Thus, in summary,

y(t) = x(t− τ) ⇔ Y (ω) = e−iωτX(ω). (10.18)

The bidirectional arrow indicates that this relationship works both ways. If you know that
Y (ω) = e−iωτX(ω), then you can conclude that y(t) = x(t− τ).

Example 10.7: One of the simplest Fourier transforms to compute is that of x
when

x(t) = δ(t),

where δ is the Dirac delta function. Plugging into the formula,

X(ω) =

∞∫
−∞

x(t)e−iωtdt

=

∞∫
−∞

δ(t)e−iωtdt

= e−iω0

= 1,

Lee & Varaiya, Signals and Systems 451

http://LeeVaraiya.org


10.7. PROPERTIES OF FOURIER TRANSFORMS

where we have used the sifting property of the delta function. To see how the sifting
property works, note that the integrand is zero everywhere except where t = 0, at
which point the complex exponential evaluates to 1. Then the integral of the delta
function itself has value one.

The Fourier transform is a constant, 1. This indicates that the Dirac delta function,
interestingly, contains all frequencies in equal amounts.

Moreover, this result is intuitive if one considers an LTI system with impulse re-
sponse h(t) = δ(t). Such a system responds to an impulse by producing an impulse,
which suggests that any input will be simply passed through unchanged. Indeed,
its frequency response is H(ω) = 1 for all ω ∈ R, so given an input x with Fourier
transform X , the output y has Fourier transform

Y (ω) = H(ω)X(ω) = X(ω).

Since the output has the same Fourier transform as the input, the output is the same
as the input.

Using (10.18), we can now find the Fourier transform of another signal

x(t) = δ(t− τ),

for some constant τ ∈ R. It is

X(ω) = e−iωτ.

Note that, as required, this is conjugate symmetric. Moreover, it has magnitude 1.
Its phase is −ωτ, a linear function of ω.

Again, we can gain some intuition by considering an LTI system with impulse
response

h(t) = δ(t− τ). (10.19)

Such a system introduces a fixed time delay of τ. Its frequency response is

H(ω) = e−iωτ. (10.20)

Since this has magnitude 1 for all ω, it tells us that all frequencies get through the
delay system unattenuated, as expected. However, each frequency ω will experi-
ence a phase shift of −ωτ, corresponding to a time delay of τ.

452 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


10. THE FOUR FOURIER TRANSFORMS

Discrete-time signals are similar. Consider a discrete-time signal x with X = DTFT(x),
and let y be defined by

∀ t ∈ R, y(n) = x(n−N)

for some integer constant N. By similar methods, we can find that

y(n) = x(n−N) ⇔ Y (ω) = e−iωNX(ω). (10.21)

Example 10.8: Suppose we have a discrete-time signal x given by

x(n) = δ(n),

where δ is the Kronecker delta function. It is easy to show from the DTFT definition
that

X(ω) = 1.

Using (10.21), we can now find the Fourier transform of another signal

x(n) = δ(n−N),

for some constant N ∈ Z. It is

X(ω) = e−iωN .

Notice that if N = 0, this reduces to X(ω) = 1, as expected.

10.7.4 Linearity

Consider three discrete-time signals x, x1, x2, related by

∀ n ∈ Z, x(n) = ax1(n)+bx2(n).

Then it is easy to see from the definition of the DTFT that

∀ ω ∈ R, X(ω) = aX1(ω)+bX2(ω)

where X = DTFT(x), X1 = DTFT(x1), and X2 = DTFT(x2).

Lee & Varaiya, Signals and Systems 453

http://LeeVaraiya.org


10.7. PROPERTIES OF FOURIER TRANSFORMS

The same linearity property applies to the CTFT,

x(t) = ax1(t)+bx2(t) ⇔ X(ω) = aX1(ω)+bX2(ω)

Linearity of the Fourier transform is one of the most useful properties for avoiding evalu-
ation of integrals and summations.

Example 10.9: Consider for example the discrete-time signal x given by

x(n) = δ(n+1)+δ(n−1),

where δ is the Kronecker delta function. Using linearity, we know that the DTFT of
x is the sum of the DTFT of δ(n+1) and the DTFT of δ(n−1). From the previous
example, we know those two DTFTs, so

X(ω) = eiω + e−iω

because N is −1 and 1, respectively. Using Euler’s relation, we can simplify this to
get

X(ω) = 2cos(ω).

Interestingly, the DTFT of this example turns out to be real. This is because the
time-domain function is conjugate symmetric (the conjugate of something real is
itself). Moreover, since it is real in the time domain, the DTFT turns out to be
conjugate symmetric.

Linearity can also be used to find inverse Fourier transforms.

Example 10.10: Suppose you are told that a continuous-time signal has Fourier
transform

X(ω) = cos(ω).

How would you find the time-domain function? You could evaluate the inverse
CTFT, but the integration that you would have to perform is quite difficult. Instead,
use Euler’s relation to write

X(ω) = (eiω + e−iω)/2.

454 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


10. THE FOUR FOURIER TRANSFORMS

Then use linearity. The inverse Fourier transform of this sum will be the sum of the
inverse Fourier transforms of the terms. These we can recognize from (10.19) and
(10.20), so

x(t) = (δ(t +1)+δ(t−1))/2,

where δ is the Dirac delta function.

10.7.5 Constant signals

We have seen that the Fourier transform of a delta function is a constant. With the sym-
metries that we have observed between time and frequency, it should come as no surprise
that the Fourier transform of a constant is a delta function.

Consider first a continuous-time signal x given by

∀ t ∈ R, x(t) = K

for some real constant K. Its CTFT is

X(ω) = K
∞∫
−∞

e−iωtdt,

which is not easy to evaluate. This integral is mathematically subtle. The answer is

∀ ω ∈ R, X(ω) = 2πKδ(ω),

where δ is the Dirac delta function. What this says is that a constant in the time domain is
concentrated at zero frequency in the frequency domain (which should not be surprising).
Except for the multiplying constant of 2π, we probably could have guessed this answer.
We can verify this answer by evaluating the inverse CTFT,

x(t) =
1

2π

∞∫
−∞

X(ω)eiωtdω

= K
∞∫
−∞

δ(ω)eiωtdω

= K,

Lee & Varaiya, Signals and Systems 455

http://LeeVaraiya.org


10.7. PROPERTIES OF FOURIER TRANSFORMS

where the final step follows from the sifting property of the Dirac delta function. Thus, in
summary,

x(t) = K ⇔ X(ω) = 2πKδ(ω) (10.22)

The discrete-time case is similar, but there is one subtlety because the DTFT is periodic.
Let x be a discrete time signal where

∀ n ∈ Z, x(n) = K

for some real constant K. Its DTFT is

∀ ω ∈ [−π,π], X(ω) = 2πKδ(ω),

where δ is the Dirac delta function. This is easy to verify using the inverse DTFT. Again,
what this says is that a constant in the time domain is concentrated at zero frequency in
the frequency domain (which should not be surprising). However, recall that a DTFT is
periodic with period 2π, meaning that for all integers N,

X(ω) = X(ω+N2π).

Thus, in addition to a delta function at ω = 0, there must be one at ω = 2π, ω = −2π,
ω = 4π, etc. This can be written using a shift-and-add summation,

∀ ω ∈ R, X(ω) = 2πK
∞

∑
k=−∞

δ(ω− k2π).

Thus, in summary,

x(n) = K ⇔ X(ω) = 2πK
∞

∑
k=−∞

δ(ω− k2π). (10.23)

10.7.6 Frequency shifting and modulation

Suppose that x is a continuous-time signal with CTFT X . Let y be another continuous-time
signal defined by

y(t) = x(t)eiω0t

456 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


10. THE FOUR FOURIER TRANSFORMS

for some real constant ω0. The CTFT of y is easy to compute,

Y (ω) =

∞∫
−∞

y(t)e−iωtdt

=

∞∫
−∞

x(t)eiω0te−iωtdt

=

∞∫
−∞

x(t)e−i(ω−ω0)tdt

= X(ω−ω0).

Thus, the Fourier transform of y is the same as that of x, but shifted to the right by ω0. In
summary,

y(t) = x(t)eiω0t ⇔ Y (ω) = X(ω−ω0). (10.24)

This result can be used to determine the effect of multiplying a signal by a sinusoid, a
process called modulation (see Exercise 16).

Example 10.11: Suppose

y(t) = x(t)cos(ω0t).

Use Euler’s relation to rewrite this

y(t) = x(t)(eiω0t + e−iω0t)/2.

Then use (10.24) to get the CTFT,

Y (ω) = (X(ω−ω0)+X(ω+ω0))/2.

We can combine (10.24) with (10.22) to get the following facts:

x(t) = eiω0t ⇔ X(ω) = 2πδ(ω−ω0). (10.25)

Lee & Varaiya, Signals and Systems 457

http://LeeVaraiya.org


10.8. SUMMARY

This says that a complex exponential signal with frequency ω0 is concentrated in the
frequency domain at frequency ω0, which should not be surprising. Similarly,

x(t) = cos(ω0t) ⇔ X(ω) = π(δ(ω−ω0)+δ(ω+ω0)). (10.26)

We can get a similar set of results for discrete-time signals. We summarize the results
here, and leave their verification to the reader (see Exercise 14):

y(n) = x(n)eiω0n ⇔ Y (ω) = X(ω−ω0). (10.27)

y(n) = x(n)cos(ω0n) ⇔ Y (ω) = (X(ω−ω0)+X(ω+ω0))/2. (10.28)

x(n) = eiω0n ⇔ X(ω) = 2π
∞

∑
k=−∞

δ(ω−ω0− k2π). (10.29)

x(n) = cos(ω0n) ⇔ X(ω) = π
∞

∑
k=−∞

(δ(ω−ω0− k2π)+δ(ω+ω0− k2π)). (10.30)

Additional properties of Fourier transforms are explored in the exercises.

10.8 Summary

In previous chapters, we developed the result that signals can be represented as sums of
sinusoids. We used this representation to analyze the effect that a linear time invariant
system has on signals. We variously considered periodic and non-periodic signals and
impulse and frequency responses of LTI systems.

In this chapter, we unified all frequency domain discussion by showing that there are four
closely interrelated Fourier transforms. Two of these apply to discrete-time signals, and
two apply to continuous-time signals. Two of them apply to periodic signals, and two of
them apply to non-periodic signals.

The four Fourier transforms can be viewed as generalizations of the Fourier series. Conse-
quently, they share many properties that are rooted in the Fourier series. These properties
can be leveraged to analyze more complicated signals by using an analysis of simpler
signals.

458 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


10. THE FOUR FOURIER TRANSFORMS

Probing Further: Multiplying signals

We have seen that convolution in the time domain corresponds to multiplication in
the frequency domain. It turns out that this relationship is symmetric, in that multiplica-
tion in the time domain corresponds to a peculiar form of convolution in the frequency
domain. That is, given two discrete-time signals x and p with DTFTs X and P, if we
multiply them in the time domain,

∀ n ∈ Z, y(n) = x(n)p(n)

then in the frequency domain, Y (ω) = (X ∗�P)(ω), where the symbol “∗�” indicates cir-
cular convolution, defined by

∀ ω ∈ R, (X ∗�P)(ω) =
1

2π

2π∫
0

X(Ω)P(ω−Ω)dΩ.

To verify this, we can substitute into the above integral the definitions for the DTFTs
X(ω) and P(ω) to get

(X ∗�P)(ω) =
1

2π

2π∫
0

(
∞

∑
m=−∞

x(m)e−iΩm

)(
∞

∑
k=−∞

p(k)e−i(ω−Ω)k

)
dΩ

=
∞

∑
k=−∞

p(k)e−iωk
∞

∑
m=−∞

x(m)
1

2π

2π∫
0

e−iΩ(m−k)dΩ

=
∞

∑
k=−∞

p(k)x(k)e−iωk,

where the last equality follows from the observation that the integral in the middle ex-
pression is zero except when m= k, when it has value one. Thus, (X ∗�P)(ω) is the DTFT
of y = xp, as we claimed. The continuous-time case is somewhat simpler. If we have
∀ t ∈ R, y(t) = x(t)p(t) then in the frequency domain,

∀ ω ∈ R, Y (ω) =
1

2π
(X ∗P)(ω) =

1
2π

∞∫
−∞

X(Ω)P(ω−Ω)dΩ.

The ”∗” indicates ordinary convolution.

Lee & Varaiya, Signals and Systems 459

http://LeeVaraiya.org


EXERCISES

Exercises

Each problem is annotated with the letter E, T, C which stands for exercise, requires some
thought, requires some conceptualization. Problems labeled E are usually mechanical,
those labeled T require a plan of attack, those labeled C usually have more than one
defensible answer.

1. E Show that if two discrete-time systems with frequency responses H1(ω) and
H2(ω) are connected in cascade, that the DTFT of the output is given by Y (ω) =
H1(ω)H2(ω)X(ω), where X(ω) is the DTFT of the input.

2. E This exercise verifies some of the relations in table 10.1.

(a) Let x be given by
∀ t ∈ R, x(t) = eiω0t ,

where ω0 6= 0. Use (10.2) to verify that its Fourier series coefficients are

∀ m ∈ Z, Xm =

{
1 if m = 1
0 otherwise

(b) Let x be given by
∀ t ∈ R, x(t) = cos(ω0t),

where ω0 6= 0. Use part (a) and properties of the Fourier series to verify that
its Fourier series coefficients are

∀ m ∈ Z, Xm =

{
1/2 if |m|= 1
0 otherwise

(c) Let x be given by
∀ t ∈ R, x(t) = sin(ω0t),

where ω0 6= 0. Use part (a) and properties of the Fourier series to verify that
its Fourier series coefficients are

∀ m ∈ Z, Xm =


1/2i if m = 1
−1/2i if m =−1
0 otherwise

460 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


10. THE FOUR FOURIER TRANSFORMS

x(t)

t
1

T p−p −T

Figure 10.17: A symmetric square wave.

(d) Let x be given by
∀ t ∈ R, x(t) = 1.

Use (10.2) to verify that its Fourier series coefficients are

∀ m ∈ Z, Xm =

{
1 if m = 0
0 otherwise

Notice that the answer does not depend on your choice for p.

3. T Consider a symmetric square wave x ∈ ContPeriodicp, shown in Figure 10.17. It
is periodic with period p, and its fundamental frequency is ω0 = 2π/p radians/sec-
ond. Over one period, this is given by

∀ t ∈ [0, p], x(t) =
{

1 if t < T or t > p−T
0 otherwise

(a) Show that its Fourier series coefficients are given by

∀ m ∈ Z, Xm =

{
2T/p if m = 0
sin(mω0T )/(mπ) otherwise

You can use l’Hôpital’s rule (see page 65) to verify that sin(x)/x = 1 when
x = 0, so this can be written more simply as

∀ m ∈ Z, Xm =
sin(mω0T )

mπ
(10.31)

Note that this is real, as expected, since x is symmetric. Hint: The integration
formula (10.5) may be helpful.

Lee & Varaiya, Signals and Systems 461

http://LeeVaraiya.org


EXERCISES

x(n)

n
1

pM

Figure 10.18: A symmetric discrete square wave.

(b) Let T = 0.5, and use Matlab to plot the Fourier series coefficients as a stem
plot (using the stem commmand) for m ranging from -20 to 20. Note that
you will have to be careful to avoid a divide by zero error at m = 0. Construct
plots for p = 2, p = 4, and p = 8.

4. E Let x be a periodic impulse train, given by

∀ t ∈ R, x(t) =
∞

∑
n=−∞

δ(t−np)

where p > 0 is the period. This signal has a Dirac delta function at all multiples of
p. Use (10.2) to verify that its Fourier series coefficients are

∀ m ∈ Z, Xm = 1/p.

Note that there is a subtlety in using (10.2) here. There are impulses at each end of
the integration interval. This subtlety can be avoided by observing that (10.2) can,
in fact, integrate over any interval that covers one period. Thus, it can equally well
be written

∀ m ∈ Z, Xm =
1
p

p/2∫
−p/2

x(t)e−imω0tdt.

This simplifies the problem considerably.

5. E This exercise verifies some of the relations in table 10.2. In all cases, assume
that the frequency f is rational, and that it is related to the period p by f = m/p for
some integer m (see Section 7.6.1).

(a) Let x be given by
∀ n ∈ Z, x(n) = ei2π f n,

462 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


10. THE FOUR FOURIER TRANSFORMS

where f 6= 0. Use (10.9) to verify that its Fourier series coefficients are

∀ k ∈ Z, X ′k =
{

p if k ∈ {· · ·m−2p,m− p,m,m+ p,m+2p, · · ·}
0 otherwise

(b) Let x be given by
∀ n ∈ Z, x(n) = cos(2π f n),

where f 6= 0. Use part (a) and properties of the DFT to verify that its Fourier
series coefficients are

X ′k =


p/2 if k ∈ {· · ·m−2p,m− p,m,m+ p,m+2p, · · ·}
p/2 if k ∈ {· · ·−m−2p,−m− p,−m,−m+ p,−m+2p, · · ·}
0 otherwise

(c) Let x be given by
∀ n ∈ Z, x(n) = sin(i2π f n),

where f 6= 0. Use part (a) and properties of the DFT to verify that its Fourier
series coefficients are

X ′k =


p/2i if k ∈ {· · ·m−2p,m− p,m,m+ p,m+2p, · · ·}
−p/2i if k ∈ {· · ·−m−2p,−m− p,−m,−m+ p,−m+2p, · · ·}
0 otherwise

(d) Let x be given by
∀ n ∈ Z, x(t) = 1.

Use (10.9) to verify that its Fourier series coefficients are

Xm =

{
p if k ∈ {· · ·−2p,−p,0, p,2p, · · ·}
0 otherwise

Notice that this result depends on your choice for p. This is a consequence of
the unfortunate scaling that is used for the DFT, vs. the discrete Fourier series
(DFS).

6. T Consider a symmetric discrete square wave x ∈ DiscPeriodicp, shown in Figure
10.18. It is periodic with period p, and its fundamental frequency is ω0 = 2π/p
radians/sample. Over one period, this is given by

∀ n ∈ {0,1, · · · , p−1}, x(n) =
{

1 if n≤M or n≥ p−M
0 otherwise

where, in the figure, M = 2 and p = 8. For this problem, however, assume that M
and p can be any positive integers where p > 2M.

Lee & Varaiya, Signals and Systems 463

http://LeeVaraiya.org


EXERCISES

(a) Show that the DFT is given by

∀ k ∈ Z, X ′k =
{

2M+1, if k is a multiple of p
sin(k(M+0.5)ω0)/sin(kω0/2), otherwise

You can use l’Hôpital’s rule (see page 65) to verify that

sin(Kx)/sin(x) = K

when x = 0, so this can be written more simply as

∀ k ∈ Z, X ′k =
sin(k(M+0.5)ω0)

sin(kω0/2)
(10.32)

Note that this is real, as expected, since x is symmetric. Hint: The summation
identity formula (10.10) may be helpful.

(b) Let M = 2 and use Matlab to plot the Fourier series coefficients as a stem plot
(using the stem commmand) for m ranging from −p+1 to p−1. Note that
you will have to be careful to avoid a divide by zero error at k = 0. Construct
plots for p = 8, p = 16, and p = 32.

7. E Let x be a discrete periodic impulse train, given by

∀ n ∈ Z, x(n) =
∞

∑
m=−∞

δ(n−mp)

where p > 0 is the integer period. This signal has a Kronecker delta function at all
multiples of p. Use (10.9) to verify that its DFT coefficients are

∀ k ∈ Z, X ′k = 1.

8. T Consider a symmetric discrete rectangle x∈DiscSignals, shown in Figure 10.19.
This is given by

∀ n ∈ Z, x(n) =
{

1 if |n| ≤M
0 otherwise

(a) Show that its DTFT is given by

∀ ω ∈ R, X(ω) =
sin(ω(M+0.5))

sin(ω/2)

Hint: The summation identity formula (10.10) may be helpful.

464 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


10. THE FOUR FOURIER TRANSFORMS

x(n)

n

1

M−M

Figure 10.19: A symmetric discrete rectangle signal.

(b) Let M = 3 and use Matlab to plot the DTFT with ω ranging from −π to pi.

9. E Consider x given by
∀ t ∈ R, x(t) = sin(ω0t).

Show that the CTFT is given by

∀ ω ∈ R, X(ω) = (π/i)δ(ω−ω0)− (π/i)δ(ω+ω0).

10. C In Section 10.6 we explored the relationship between the CTFT of a periodic
continuous-time signal and its Fourier series. In this problem we do the same for
discrete-time signals.

(a) Consider a discrete-time signal x with DTFT given by

∀ ω ∈ [−π,π], X(ω) = 2πδ(ω−ω0)

where ω0 = 2π/p for some integer p. The DTFT above is given over one
cycle only, but note that since it is a DTFT, it is periodic. Use the inverse
DTFT to determine x.

(b) Is x in part (a) periodic? If so, what is the period, and what is its DFT?

(c) More generally, consider a discrete-time signal x with DTFT given by

∀ ω ∈ [−π,π], X(ω) = 2π

bp/2c
∑

k=−bp/2c
Xkδ(ω− kω0)

where ω0 = 2π/p for some integer p. For simplicity, assume that p is odd,
and let bp/2c be the largest integer less than p. Use the inverse DTFT to
determine x.

Lee & Varaiya, Signals and Systems 465

http://LeeVaraiya.org


EXERCISES

(d) Is x in part (c) periodic? If so, what is the period, and what is its DFT? Give
the DTFT in terms of the DFT coefficients.

11. T Consider a continuous-time signal x with Fourier transform X . Let y be such that

∀ t ∈ R, y(t) = x(at),

for some real number a. Show that its Fourier transform Y is such that

∀ ω ∈ R, Y (ω) =
1
|a|X(ω/a).

12. E Consider the discrete-time signal y given by

∀ n ∈ Z, y(n) = sin(ω1n)x(n).

Show that the DTFT is

∀ ω ∈ R, Y (ω) = (X(ω−ω1)−X(ω+ω1))/2i,

where X = DTFT(x).

13. E In this exercise, you verify various properties of the Fourier series in table 10.6.
In all parts below, x is a periodic continuous-time signal with period p and funda-
mental frequency ω0 = 2π/p.

(a) Let y be given by
∀ t ∈ R, y(t) = x(t− τ)

for some real number τ. Show that the Fourier series coefficients of y are
given by

∀ m ∈ R, Ym = e−imω0τXm,

where Xm are the Fourier series coefficients of x.

(b) Let y be given by
∀ t ∈ R, y(t) = eiω1tx(t)

where ω1 = Mω0, for some M ∈ Z. Show that the Fourier series coefficients
of y are given by

∀ m ∈ Z, Ym = Xm−M,

where Xm are the Fourier series coefficients of x.

466 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


10. THE FOUR FOURIER TRANSFORMS

(c) Let y be given by
∀ t ∈ R, y(t) = cos(ω1t)x(t)

where ω1 = Mω0, for some M ∈ Z. Show that the Fourier series coefficients
of y are given by

∀ m ∈ Z, Ym = (Xm−M +Xm+M)/2,

where Xm are the Fourier series coefficients of x.

(d) Let y be given by
∀ t ∈ R, y(t) = sin(ω1t)x(t)

where ω1 = Mω0, for some M ∈ Z. Show that the Fourier series coefficients
of y are given by

∀ m ∈ Z, Ym = (Xm−M−Xm+M)/2i,

where Xm are the Fourier series coefficients of x.

14. T Consider a discrete-time signal x with Fourier transform X . For each of the new
signals defined below, show that its Fourier transform is as shown.

(a) If y is such that

∀ n ∈ Z, y(n) =
{

x(n/N) if n is an integer multiple of N
0 otherwise

for some integer N, then its Fourier transform Y is such that

∀ ω ∈ R, Y (ω) = X(ωN).

(b) If w is such that
∀ n ∈ Z, w(n) = x(n)eiαn,

for some real number α, then its Fourier transform W is such that

∀ ω ∈ R, W (ω) = X(ω−α).

(c) If z is such that
∀ n ∈ Z, z(n) = x(n)cos(αn),

for some real number α, then its Fourier transform Z is such that

Z(ω) = (X(ω−α)+X(ω+α))/2.

Lee & Varaiya, Signals and Systems 467

http://LeeVaraiya.org


EXERCISES

15. T Consider the FIR system described by the following block diagram:

unit
delay

unit
delay

unit
delay

x(n) x(n-1) x(n-2) x(n-3)

b0

y(n)

b1 b2 b3

The notation here is the same as in Figure 9.15. Suppose that this system has
frequency response H. Define a new system with the identical structure as above,
except that each unit delay is replaced by a double delay (two cascaded unit delays).
Find the frequency response of that system in terms of H.

16. T This exercise discusses amplitude modulation or AM. AM is a technique that
is used to convert low frequency signals into high frequency signals for transmis-
sion over a radio channel. Conversion of the high frequency signal back to a low
frequency signal is called demodulation. The system structure is depicted below:

x(t)

cos (ωc t)

transmission medium (air)

H(ω)
y(t)

cos (ωc t)

y(t) w(t) z(t)

The circular components multiply their input signals. The transmission medium
(air, for radio signals) is approximated here as a medium that passes the signal y
unaltered.

Suppose your AM radio station is allowed to transmit signals at a carrier frequency
of 740 kHz (this is the frequency of KCBS in San Francisco). Suppose you want to
send the audio signal x : R→ R. The AM signal that you would transmit is given
by, for all t ∈ R,

y(t) = x(t)cos(ωct),

468 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


10. THE FOUR FOURIER TRANSFORMS

where ωc = 2π× 740,000 is the carrier frequency (in radians per second). Sup-
pose X(ω) is the Fourier transform of an audio signal with magnitude as shown
below:

|X(ω)|

ω

2π10,000

α

−2π10,000 0

(a) Show that the Fourier transform Y of y in terms of X is

Y (ω) = (X(ω−ωc)+X(ω+ωc))/2.

(b) Carefully sketch |Y (ω)| and note the important magnitudes and frequencies
on your sketch.
Note that if X(ω) = 0 for |ω|> 2π×10,000, then Y (ω) = 0 for ||ω|− |ωc||>
2π×10,000. In words, if the signal x being modulated is bandlimited to less
than 10 kHz, then the modulated signal is bandlimited to frequencies that are
withing 10 kHz of the carrier frequency. Thus, an AM radio station only needs
to occupy 20 kHz of the radio spectrum in order to transmit audio signals up
to 10 kHz.

(c) At the receiver, the problem is to recover the audio signal x from y. One way
is to demodulate by multiplying y by a sinewave at the carrier frequency to
obtain the signal w, where

w(t) = y(t)cos(ωct).

What is the Fourier transform W of w in terms of X? Sketch |W (ω)| and note
the important magnitudes and frequencies.

(d) After performing the demodulation of part (c), an AM receiver will filter the
received signal through a low-pass filter with frequency response H(ω) such
that H(ω) = 1 for |ω| ≤ 2π×10,000 and |H(ω)|= 0 for |ω|> 2π×20,000.
Let z be the filtered signal, as shown in the figure above. What is the Fourier
transform Z of z? What is the relationship between z and x?

Lee & Varaiya, Signals and Systems 469

http://LeeVaraiya.org


EXERCISES

17. T In the following parts, assume that x is a discrete-time signal given by

∀ n ∈ Z, x(n) = δ(n+1)+δ(n)+δ(n−1),

and that S is an LTI system with frequency response H given by

∀ ω ∈ R, H(ω) = e−iω.

(a) Find X = DTFT(x) and make a well-labeled sketch for ω ∈ [−π,π] in radian-
s/sample. Check that X is periodic with period 2π.

(b) Let y = S(x). Find Y = DTFT(y).

(c) Find y = S(x).

(d) Sketch x and y and comment on what the system S does.

18. T Consider a causal discrete-time LTI system S with input x and output y such that

∀ n ∈ Z, y(n) = x(n)+ay(n−1)

where a ∈ R is a given constant such that |a|< 1.

(a) Find the impulse response h of S.

(b) Find the frequency response of S by letting the input be eiωn and the output be
H(ω)eiωn, and solving for H(ω).

(c) Use your results in parts (a) and (b) and the fact that the DTFT of an impulse
response is the frequency response to show that h given by

∀ n ∈ Z, h(n) = anu(n)

has the discrete-time Fourier transform H = DTFT(h) given by

H(ω) =
1

1−ae−iω ,

where u(n) is the unit step, given by (2.16).

(d) Use Matlab to plot h(n) and |H(ω)| for a = −0.9 and a = 0.9. You may
choose the interval of n for your plot of h, but you should plot |H(ω)| in the
interval ω ∈ [−π,π]. Discuss the differences between these plots for the two
different values of a.

470 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


10. THE FOUR FOURIER TRANSFORMS

19. T Suppose a discrete-time signal x has DTFT given by

X(ω) = isin(Kω)

for some positive integer K. Note that X(ω) is periodic with period 2π, as it must
be to be a DTFT.

(a) Determine from the symmetry properties of X whether the time-domain signal
x is real.

(b) Find x. Hint: Use Euler’s relation and the linearity of the DTFT.

20. T Consider a periodic continuous-time signal x with period p and Fourier series
X : Z→ C. Let y be another signal given by

y(t) = x(t− τ)

for some real constant τ. Find the Fourier series coefficients of y in terms of those
of X .

21. T Consider the continuous-time signal given by

x(t) =
sin(πt/T )
(πt/T )

.

Show that its CTFT is given by

X(ω) =

{
T, if |ω| ≤ π/T
0, if |ω|> π/T

The fact from calculus (10.5) may be useful.

22. T If x is a continuous-time signal with CTFT X , then we can define a new time-
domain function y such that

∀ t ∈ R, y(t) = X(t).

That is, the new time domain function has the same shape as the frequency domain
function X . Then the CTFT Y of y is given by

∀ ω ∈ R, Y (ω) = 2πx(−ω).

That is, the frequency domain of the new function has the shape of the time domain
of the old, but reversed and scaled by 2π. This property is called duality because it
shows that time and frequency are interchangeable. Show that the property is true.

Lee & Varaiya, Signals and Systems 471

http://LeeVaraiya.org


EXERCISES

23. T Use the results of exercises 21 and 22 to show that a continuous time signal x
given by

x(t) =
{

π/a, if |t| ≤ a
0, if |t|> a

where a is a positive real number, has CTFT X given by

X(ω) = 2π
sin(aω)

(aω)
.

472 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


11
Sampling and Reconstruction

Contents
11.1 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474

11.1.1 Sampling a sinusoid . . . . . . . . . . . . . . . . . . . . . . 474
Basics: Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
11.1.2 Aliasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
11.1.3 Perceived pitch experiment . . . . . . . . . . . . . . . . . . . 477
11.1.4 Avoiding aliasing ambiguities . . . . . . . . . . . . . . . . . 481

11.2 Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
Probing Further: Anti-Aliasing for Fonts . . . . . . . . . . . . . . . . 482
11.2.1 A model for reconstruction . . . . . . . . . . . . . . . . . . . 483

11.3 The Nyquist-Shannon sampling theorem . . . . . . . . . . . . . . 488
Probing Further: Sampling . . . . . . . . . . . . . . . . . . . . . . . 492
Probing Further: Impulse Trains . . . . . . . . . . . . . . . . . . . . 493

11.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495

Digital hardware, including computers, take actions in discrete steps. So they can deal
with discrete-time signals, but they cannot directly handle the continuous-time signals
that are prevalent in the physical world. This chapter is about the interface between these
two worlds, one continuous, the other discrete. A discrete-time signal is constructed
by sampling a continuous-time signal, and a continuous-time signal is reconstructed by
interpolating a discrete-time signal.

473



11.1. SAMPLING

SamplerT

Figure 11.1: Sampler.

11.1 Sampling

A sampler for complex-valued signals is a system

SamplerT : [R→ C]→ [Z→ C], (11.1)

where T is the sampling interval (it has units of seconds/sample). The system is de-
picted in Figure 11.1. The sampling frequency or sample rate is fs = 1/T , in units
of samples/second (or sometimes, Hertz), or ωs = 2π/T , in units radians/second. If
y = SamplerT (x) then y is defined by

∀ n ∈ Z, y(n) = x(nT ). (11.2)

11.1.1 Sampling a sinusoid

Let x : R→ R be the sinusoidal signal

∀ t ∈ R, x(t) = cos(2π f t), (11.3)

where f is the frequency of the sinewave in Hertz. Let y = SamplerT (x). Then

∀ n ∈ Z, y(n) = cos(2π f nT ). (11.4)

Although this looks similar to the continuous-time sinusoid, there is a fundamental differ-
ence. Because the index n is discrete, it turns out that the frequency f is indistinguishable
from frequency f + fs when looking at the discrete-time signal. This phenomenon is
called aliasing.

474 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


11. SAMPLING AND RECONSTRUCTION

Basics: Units

Recall that frequency can be given with any of various units. The units of the f in (11.3)
and (11.4) are Hertz, or cycles/second. In (11.3), it is sensible to give the frequency as
ω = 2π f , which has units of radians/second. The constant 2π has units of radians/cy-
cle, so the units work out. Moreover, the time argument t has units of seconds, so the
argument to the cosine function, 2π f t, has units of radians, as expected.

In the discrete time case (11.4), it is sensible to give the frequency as 2π f T , which has
units of radians/sample. The sampling interval T has units of seconds/sample, so again
the units work out. Moreover, the integer n has units of samples, so again the argument
to the cosine function, 2π f nT , has units of radians, as expected.

In general, when discussing continuous-time signals and their sampled discrete-time
signals, it is important to be careful and consistent in the units used, or considerable
confusion can result. Many texts talk about normalized frequency when discussing
discrete-time signals, by which they simply mean frequency in units of radians/sample.
This is normalized in the sense that it does not depend on the sampling interval.

Lee & Varaiya, Signals and Systems 475

http://LeeVaraiya.org


11.1. SAMPLING

11.1.2 Aliasing

Consider another sinusoidal signal u given by

∀ t ∈ R, u(t) = cos(2π( f +N fs)t),

where N is some integer and fs = 1/T . If N 6= 0, then this signal is clearly different from
x in (11.3). Let

w = SamplerT (u).

Then for all n ∈ Z,

w(n) = cos(2π( f +N fs)nT ) = cos(2π f nT +2πNn) = cos(2π f nT ) = y(n),

because Nn is an integer. Thus, even though u 6= x, SamplerT (u) = SamplerT (x). Thus,
after being sampled, the signals x and u are indistinguishable. This phenomenon is called
aliasing, presumably because it implies that any discrete-time sinusoidal signal has many
continuous-time identities (its “identity” is presumably its frequency).

Example 11.1: A typical sample rate for voice signals is fs = 8000 samples/sec-
ond, so the sampling interval is T = 0.125 msec/sample. A continuous-time sinu-
soid with frequency 440 Hz, when sampled at this rate, is indistinguishable from
a continuous-time sinusoid with frequency 8,440 Hz, when sampled at this same
rate.

Example 11.2: Compact discs are created by sampling audio signals at fs =
44,100 Hz, so the sampling interval is about T = 22.7 µsec/sample. A continuous-
time sinusoid with frequency 440 Hz, when sampled at this rate, is indistinguishable
from a continuous-time sinusoid with frequency 44,540 Hz, when sampled at this
same rate.

The frequency domain analysis of the previous chapters relied heavily on complex expo-
nential signals. Recall that a cosine can be given as a sum of two complex exponentials,
using Euler’s relation,

cos(2π f t) = 0.5(ei2π f t + e−i2π f t).

476 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


11. SAMPLING AND RECONSTRUCTION

One of the complex exponentials is at frequency f , an the other is at frequency− f . Com-
plex exponential exhibit the same aliasing behavior that we have illustrated for sinusoids.

Let x : R→ C be
∀ t ∈ R, x(t) = ei2π f t

where f is the frequency in Hertz. Let y = SamplerT (x). Then for all n in Z ,

y(n) = ei2π f nT

Consider another complex exponential signal u,

u(t) = ei2π( f+N fs)t

where N is some integer. Let
w = SamplerT (u).

Then for all n ∈ Z,

w(n) = ei2π( f+N fs)nT = ei2π f nT ei2πN fsnT = ei2π f nT = y(n),

because ei2πN fsnT = 1. Thus, as with sinusoids, when we sample a complex exponential
signal with frequency f at sample rate fs, it is indistinguishable from one at frequency
f + fs (or f +N fs for any integer N).

There is considerably more to this story. Mathematically, aliasing relates to the periodicity
of the frequency domain representation (the DTFT) of a discrete-time signal. We will
also see that the effects of aliasing on real-valued signals (like the cosine, but unlike the
complex exponential) depend strongly on the conjugate symmetry of the DTFT as well.

11.1.3 Perceived pitch experiment

Consider the following experiment.1 Generate a discrete-time audio signal with an 8,000
samples/second sample rate according to the formula (11.4). Let the frequency f begin
at 0 Hz and sweep upwards through 4 kHz to (at least) 8 kHz. Use the audio output of
a computer to listen to the resulting sound. The result is illustrated in Figure 11.2. As
the frequency of the continuous-time sinusoid rises, so does the perceived pitch, until the
frequency reaches 4 kHz. At that point, the perceived pitch begins to fall rather than rise,
even as the frequency of the continuous-time sinusoid continues to rise. It will fall until

Lee & Varaiya, Signals and Systems 477

http://LeeVaraiya.org


11.1. SAMPLING

8 kHz

8 kHz

Continuous-time
signal

4 kHz

4 kHz

Frequency of the continuous-time sinusoid

Perceived
pitch

fre
qu

en
cy

sweep

Figure 11.2: As the frequency of a continuous signal increases beyond the
Nyquist frequency, the perceived pitch starts to drop.

the frequency reaches 8 kHz, at which point no sound is heard at all (the perceived pitch
is 0 Hz). Then the perceived pitch begins to rise again.

That the perceived pitch rises from 0 after the frequency f rises above 8000 Hz is not
surprising. We have already determined that in a discrete-time signal, a frequency of f
is indistinguishable from a frequency f + 8000, assuming the sample rate is 8,000 sam-
ples/second. But why does the perceived pitch drop when f rises above 4 kHz?

The frequency 4 kHz, fs/2, is called the Nyquist frequency, after Harry Nyquist, an
engineer at Bell Labs who, in the 1920s and 1930s, laid much of the groundwork for
digital transmission of information. The Nyquist frequency turns out to be a key threshold
in the relationship between discrete-time and continuous-time signals, more important
even than the sampling frequency. Intuitively, this is because if we sample a sinusoid
with a frequency below the Nyquist frequency (below half the sampling frequency), then
we take at least two samples per cycle of the sinusoid. It should be intuitively appealing
that taking at least two samples per cycle of a sinusoid has some key significance. The
two sample minimum allows the samples to capture the oscillatory nature of the sinusoid.

1This experiment can be performed at http://www.eecs.berkeley.edu/ẽal/eecs20/week13/aliasing.html.

478 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


11. SAMPLING AND RECONSTRUCTION

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
−3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time (seconds)

Figure 11.3: A sinusoid at 7.56 kHz and samples taken at 8 kHz.

Fewer than two samples would not do this. However, what happens when fewer than
two samples are taken per cycle is not necessarily intuitive. It turns out that the sinusoid
masquerades as one of another frequency.

Consider the situation when the frequency f of a continuous-time sinusoid is 7,560 Hz.
Figure 11.3 shows 4.5 msec of the continuous-time waveform, together with samples
taken at 8 kHz. Notice that the samples trace out another sinusoid. We can determine the
frequency of that sinusoid with the help of Figure 11.2, which suggests that the perceived
pitch will be 8000− 7560 = 440 Hz (the slope of the perceived pitch line is −1 in this
region). Indeed, if we listen to the sampled sinusoid, it will be an A-440.

Lee & Varaiya, Signals and Systems 479

http://LeeVaraiya.org


11.1. SAMPLING

8 kHz

8 kHz

indistinguishable
frequencies

4 kHz

4 kHz
perceived
pitch

fre
qu

en
cy

sweep

reconstructed
audio

0 kHz

-4 kHz

Figure 11.4: As the frequency of a continuous signal increases beyond the
Nyquist frequency, the perceived pitch starts to drop because the frequency of
the reconstructed continuous-time audio signal stays in the range − fs/2 to fs/2.

Recall that a cosine can be given as a sum of complex exponentials with frequencies that
are negatives of one another. Recall further that a complex exponential with frequency
f is indistinguishable from one with frequency f +N fs, for any integer N. A variant of
Figure 11.2 that leverages this representation is given in Figure 11.4.

In Figure 11.4, as we sweep the frequency of the continuous-time signal from 0 to 8
kHz, we move from left to right in the figure. The sinusoid consists not only of the
rising frequency shown by the dotted line in Figure 11.2, but also of a corresponding
falling (negative) frequency as shown in Figure 11.4. Moreover, these two frequencies
are indistinguishable, after sampling, from frequencies that are 8 kHz higher or lower,
also shown by dotted lines in Figure 11.4.

When the discrete-time signal is converted to a continuous-time audio signal, the hard-
ware performing this conversion can choose any matching pair of positive and negative
frequencies. By far the most common choice is to select the matching pair with lowest

480 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


11. SAMPLING AND RECONSTRUCTION

frequency, shown in Figure 11.4 by the solid lines behind dotted lines. These result in
a sinusoid with frequency between 0 and the Nyquist frequency, fs/2. This is why the
perceived pitch falls after sweeping past fs/2 = 4 kHz.

Recall that the frequency-domain representation (i.e. the DTFT) of a discrete-time signal
is periodic with period 2π radians/sample. That is, if X is a DTFT, then

∀ ω ∈ R, X(ω) = X(ω+2π).

In radians per second, it is periodic with period 2π fs. In Hertz, it is periodic with period
fs, the sampling frequency. Thus, in Figure 11.4, the dotted lines represent this peri-
odicity. This periodicity is another way of stating that frequencies separated by fs are
indistinguishable.

11.1.4 Avoiding aliasing ambiguities

Figure 11.4 suggests that even though a discrete-time signal has ambiguous frequency
content, it is possible to construct a uniquely defined continuous-time signal from the
discrete-time waveform by choosing the one unique frequency for each component that
is closest to zero. This will always result in a reconstructed signal that contains only
frequencies between zero and the Nyquist frequency.

Correspondingly, this suggests that when sampling a continuous-time signal, if that signal
contains only frequencies below the Nyquist frequency, then this reconstruction strategy
will perfectly recover the signal. This is an intuitive statement of the Nyquist-Shannon
sampling theorem.

If a continuous-time signal contains only frequencies below the Nyquist frequency fs/2,
then it can be perfectly reconstructed from samples taken at sampling frequency fs. This
suggests that prior to sampling, it is reasonable to filter a signal to remove components
with frequencies above fs/2. A filter that realizes this is called an anti-aliasing filter.

Example 11.3: In the telephone network, speech is sampled at 8000 samples per
second before being digitized. Prior to this sampling, the speech signal is lowpass
filtered to remove frequency components above 4000 Hz. This lowpass filtered
speech can then be perfectly reconstructed at the far end of the telephone connec-
tion, which receives a stream of samples at 8000 sample per second.

Lee & Varaiya, Signals and Systems 481

http://LeeVaraiya.org


11.2. RECONSTRUCTION

Before probing this further, let us examine in more detail what we mean by reconstruction.

11.2 Reconstruction

Consider a system that constructs a continuous-time signal x from a discrete-time signal
y,

DiscToContT : DiscSignals→ ContSignals.

Probing Further: Anti-Aliasing for Fonts

When rendering characters on a computer screen, it is common to use anti-aliasing to
make the characters look better. Consider the two figures below:

At the left is an image of the Greek letter omega. At the right is the result of sampling
that rendition by taking only one pixel out of every 100 pixels in the original (every
10-th pixel horizontally and vertically), and then rescaling the image so it has the same
size as the one on the left. The original image is discrete, and the resulting image is
a smaller discrete image (this process is known as subsampling). To the discerning
eye, the rendering can be improved considerably. The problem is that the character at
the upper left above has hard edges, and hence high (spatial) frequencies. Those high
frequencies result in aliasing distortion when subsampling. To improve the result, we
first lowpass filter the character (blurring it), and then subsample, as shown below:

The result looks better.

482 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


11. SAMPLING AND RECONSTRUCTION

DiscToContT

Figure 11.5: Discrete to continuous converter.

This is illustrated in Figure 11.5. Systems that carry out such ‘discrete-to-continuous’
conversion can be realized in any number of ways. Some common examples are illustrated
in Figure 11.6, and defined below:

• zero-order hold: This means simply that the value of the each sample y(n) is held
constant for duration T , so that x(t) = y(n) for the time interval from t = nT to
t = (n+1)T , as illustrated in figure 11.6(b). Let this system be denoted

ZeroOrderHoldT : DiscSignals→ ContSignals.

• linear interpolation: Intuitively, this means simply that we connect the dots with
straight lines. Specifically, in the time interval from t = nT to t = (n+1)T , x(t) has
values that vary along a straight line from y(n) to y(n+ 1), as illustrated in figure
11.6(c). Linear interpolation is sometimes called first-order hold. Let this system
be denoted

LinearInterpolatorT : DiscSignals→ ContSignals.

• ideal interpolation: It is not yet clear what this should mean, but intuitively, it
should result in a smooth curve that passes through the samples, as illustrated in
Figure 11.6(d). We will give a precise meaning below. Let this system be denoted

IdealInterpolatorT : DiscSignals→ ContSignals.

11.2.1 A model for reconstruction

A convenient mathematical model for reconstruction divides the reconstruction process
into a cascade of two systems, as shown in Figure 11.7. Thus

x = S(ImpulseGenT (y)),

Lee & Varaiya, Signals and Systems 483

http://LeeVaraiya.org


11.2. RECONSTRUCTION

y(n)

n......

x(t)

t......

x(t)

t......

x(t)

t......

(a)

(b)

(c)

(d)

w(t)

t......
(e)

Figure 11.6: A discrete-time signal (a), a continuous-time reconstruction using
zero-order hold (b), a reconstruction using linear interpolation (c), a reconstruc-
tion using ideal interpolation (d), and a reconstruction using weighted Dirac delta
functions (e).

484 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


11. SAMPLING AND RECONSTRUCTION

DiscToContT

ImpulseGenT LTI System S

Figure 11.7: A model for reconstruction divides it into two stages.

where S is an LTI system to be determined. The first of these two subsystems,

ImpulseGenT : DiscSignals→ ContSignals,

constructs a continuous-time signal, where for all t ∈ R,

w(t) =
∞

∑
k=−∞

y(k)δ(t− kT ).

This is a continuous-time signal that at each sampling instant kT produces a Dirac delta
function with weight equal to the sample value, y(k). This signal is illustrated in Figure
11.6(e). It is a mathematical abstraction, since everyday engineering systems do not ex-
hibit the singularity-like behavior of the Dirac delta function. Nonetheless, it is a useful
mathematical abstraction.

The second system in Figure 11.7, S, is a continuous-time LTI filter with an impulse
response that determines the interpolation method. The impulse responses that yield the
interpolation methods in figure 11.6(b-e) are shown in figure 11.8(b-e). If

∀ t ∈ R, h(t) =
{

1 0≤ t < T
0 otherwise

then the interpolation method is zero-order hold. If

∀ t ∈ R, h(t) =


1+ t/T −T < t < 0
1− t/T 0≤ t < T

0 otherwise

then the interpolation method is linear. If the impulse response is

∀ t ∈ R, h(t) =
sin(πt/T )

πt/T

Lee & Varaiya, Signals and Systems 485

http://LeeVaraiya.org


11.2. RECONSTRUCTION

h(t)

t(b)

(c)

(d)

h(t)

t(e)

1

T

h(t)

t
1

T−T

h(t)

t
1

T−T

1

Figure 11.8: The impulse responses for the LTI system S in figure 11.7 that yield
the interpolation methods in figure 11.6(b-e).

486 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


11. SAMPLING AND RECONSTRUCTION

then the interpolation method is ideal. The above impulse response is called a sinc func-
tion, and its Fourier transform, from table 10.4, is given by

∀ ω ∈ R, X(ω) =

{
T if |ω| ≤ π/T
0 otherwise

Notice that the Fourier transform is zero at all frequencies above π/T radians/second,
or fs/2 Hz, the Nyquist frequency. It is this characteristic that makes it ideal. It pre-
cisely performs the strategy illustrated in Figure 11.4, where among all indistinguishable
frequencies we select the ones between − fs/2 and fs/2.

If we let SincT denote the LTI system S when the impulse response is a sinc function, then

IdealInterpolatorT = SincT ◦ ImpulseGenT .

In practice, ideal interpolation is difficult to accomplish. From the expression for the sinc
function we can understand why. First, this impulse response is not causal. Second, it is
infinite in extent. More importantly, its magnitude decreases rather slowly as t increases or
decreases (proportional to 1/t only). Thus, truncating it at finite length leads to substantial
errors.

If the impulse response of S is
h(t) = δ(t),

where δ is the Dirac delta function, then the system S is a pass-through system, and the
reconstruction consists of weighted delta functions.

Lee & Varaiya, Signals and Systems 487

http://LeeVaraiya.org


11.3. THE NYQUIST-SHANNON SAMPLING THEOREM

11.3 The Nyquist-Shannon sampling theorem

We can now give a precise statement of the Nyquist-Shannon sampling theorem:

If x is a continuous-time signal with Fourier transform X and if X(ω) is zero outside the
range −π/T < ω < π/T radians/second, then

x = IdealInterpolatorT (SamplerT (x)).

We can state this theorem slightly differently. Suppose x is a continuous-time signal with
no frequency larger than some f0 Hertz. Then x can be recovered from its samples if
f0 < fs/2, the Nyquist frequency.

A formal proof of this theorem involves some technical difficulties (it was first given
by Claude Shannon of Bell Labs in the late 1940s). But we can get the idea from the
following three-step argument (see figure 11.9).

Step 1. Let x be a continuous-time signal with Fourier transform X . At this point we do
not require that X(ω) be zero outside the range −π/T < ω < π/T . We sample x with
sampling interval T to get the discrete-time signal

y = SamplerT (x).

It can be shown (see box on page 492 ) that the DTFT of y is related to the CTFT of x by

Y (ω) =
1
T

∞

∑
k=−∞

X
(

ω

T
− 2πk

T

)
.

This important relation says that the DTFT Y of y is the sum of the CTFT X with copies
of it shifted by multiples of 2π/T . Also, the frequency axis is normalized by dividing ω

by T . There are two cases to consider, depending on whether the shifted copies overlap.

First, if X(ω) = 0 outside the range −π/T < ω < π/T , then the copies will not overlap,
and in the range −π < ω < π,

Y (ω) =
1
T

X
(

ω

T

)
. (11.5)

In this range of frequencies, Y has the same shape as X , scaled by 1/T . This relationship
between X and Y is illustrated in figure 11.10, where X is drawn with a triangular shape.

In the second case, illustrated in figure 11.11, X does have non-zero frequency compo-
nents higher than π/T . Notice that in the sampled signal, the frequencies in the vicinity

488 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


11. SAMPLING AND RECONSTRUCTION

ω

X(ω)

1

π/T−π/T

t

x(t)

SamplerT

ImpulseGenT

n

y(n)

ω

Y(ω)

π−π

ω

W(ω)

1/T

π/T−π/T

t

w(t)

−2π

−2π/T

2π

2π/T

SincT

t

z(t)

ω

Z(ω)

1

π/T−π/T

x

y

w

z

Time Frequency

X = CTFT (x )

Y = DTFT (y )

W = CTFT (w )

Z = CTFT (z )

1/T

IdealInterpolatorT

Figure 11.9: Steps in the justification of the Nyquist-Shannon sampling theorem.

Lee & Varaiya, Signals and Systems 489

http://LeeVaraiya.org


11.3. THE NYQUIST-SHANNON SAMPLING THEOREM

ω

π−π

ω

X(ω)

Y(ω)

1

π/T−π/T

1/T
......

3π−3π

Figure 11.10: Relationship between the CTFT of a continuous-time signal and
the DTFT of its discrete-time samples. The DTFT is the sum of the CTFT and its
copies shifted by multiples of 2π/T , the sampling frequency in radians per second.
The frequency axis is also normalized.

ω

ω

−π π

X(ω)

Y(ω)

1

π/T−π/T

1/T

Figure 11.11: Relationship between the CTFT of a continuous-time signal and the
DTFT of its discrete-time samples when the continuous-time signal has a broad
enough bandwidth to introduce aliasing distortion.

490 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


11. SAMPLING AND RECONSTRUCTION

of π are distorted by the overlapping of frequency components above and below π/T in
the original signal. This distortion is called aliasing distortion.

We continue with the remaining steps, following the signals in figure 11.9.

Step 2. Let w be the signal produced by the impulse generator,

∀ t ∈ R, w(t) =
∞

∑
n=−∞

y(n)δ(t−nT ).

The Fourier Transform of w is W (ω) = Y (ωT ) (see box on page 492).

Step 3. Let z be the output of the IdealInterpolatorT . Its Fourier transform is simply

Z(ω) = W (ω)S(ω)

= Y (ωT )S(ω),

where S(ω) is the frequency response of the IdealInterpolatorT reconstruction filter. As
seen in exercise 21 of Chapter 10,

S(ω) =
{

T −π/T < ω < π/T
0 otherwise

(11.6)

Substituting for S and Y , we get

Z(ω) =

{
TY (ωT ) −π/T < ω < π/T
0 otherwise

=


∞

∑
k=−∞

X(ω−2πk/T ) −π/T < ω < π/T

0 otherwise

If X(ω) is zero for |ω| larger than the Nyquist frequency π/T , then we conclude that

∀ ω ∈ R, Z(ω) = X(ω).

That is, w is identical to x. This proves the Nyquist-Shannon result.

However, if X(ω) does have non-zero values for some |ω| larger than the Nyquist fre-
quency, then z will be different from x, as illustrated in figure 11.11.

Lee & Varaiya, Signals and Systems 491

http://LeeVaraiya.org


11.3. THE NYQUIST-SHANNON SAMPLING THEOREM

Probing Further: Sampling

We construct a mathematical model for sampling a pulse stream given by

∀ t ∈ R, p(t) =
∞

∑
k=−∞

δ(t− kT ),

where δ is the Dirac delta function. Let y(n) = x(nT ) be a sampling of the continuous-
time signal x with sampling period T . Construct first an intermediate continuous-time
signal w(t) = x(t)p(t). We can show that the CTFT of w is equal to the DTFT of y.
This gives us a way to relate the CTFT of x to the DTFT of its samples y. Recall that
multiplication in the time domain results in convolution in the frequency domain (see
table 10.9), so

W (ω) =
1

2π
X(ω)∗P(ω) =

1
2π

∞∫
−∞

X(Ω)P(ω−Ω)dΩ.

It can be shown (see box on page 493 that the CTFT of p(t) is

P(ω) =
2π

T

∞

∑
k=−∞

δ(ω− k
2π

T
), so

W (ω) =
1

2π

∞∫
−∞

X(Ω)
2π

T

∞

∑
k=−∞

δ(ω−Ω− k
2π

T
)dΩ

=
1
T

∞

∑
k=−∞

∞∫
−∞

X(Ω)δ(ω−Ω− k
2π

T
)dΩ

=
1
T

∞

∑
k=−∞

X(ω− k
2π

T
)

where the last equality follows from the sifting property (9.11). The next step is to
show that Y (ω) =W (ω/T ). We leave this as an exercise. From this, the basic Nyquist-
Shannon result follows,

Y (ω) =
1
T

∞

∑
k=−∞

X
(

ω−2πk
T

)
.

This relates the CTFT X of the signal being sampled x to the DTFT Y of the discrete-time
result y.

492 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


11. SAMPLING AND RECONSTRUCTION

Probing Further: Impulse Trains

Consider a signal p consisting of periodically repeated Dirac delta functions with period
T ,

∀ t ∈ R, p(t) =
∞

∑
k=−∞

δ(t− kT ).

This signal has the Fourier series expansion

∀ t ∈ R, p(t) =
∞

∑
m=−∞

1
T

eiω0mt ,

where the fundamental frequency is ω0 = 2π/T . This can be verified by applying the
formula from table 10.5. That formula, however, gives an integration range of 0 to the
period, which in this case is T . This integral covers one period of the periodic signal, but
starts and ends on a delta function in p. To avoid the resultant mathematical subtleties,
we can integrate from −T/2 to T/2, getting Fourier series coefficients

∀ m ∈ Z, Pm =
1
T

T/2∫
−T/2

[
∞

∑
k=−∞

δ(t− kT )

]
eiω0mtdt.

The integral is now over a range that includes only one of the delta functions. The kernel
of the integral is zero except when t = 0, so by the sifting rule, the integral evaluates to
1. Thus, all Fourier series coefficients are Pm = 1/T . Using the relationship between the
Fourier series and the Fourier Transform of a periodic signal (from Section 10.6.3), we
can write the continuous-time Fourier transform of p as

∀ ω ∈ R, P(ω) =
2π

T

∞

∑
k=−∞

δ

(
ω− 2π

T
k
)
.

Lee & Varaiya, Signals and Systems 493

http://LeeVaraiya.org


11.4. SUMMARY

11.4 Summary

The acts of sampling and reconstructing signals bridge the world of continuous-time phys-
ical signals with the discrete computational world. The periodicity of frequencies in the
discrete world implies that for each discrete-time sinusoidal signal, there are multiple
corresponding discrete-time frequencies. These frequencies are aliases of one another.
When a signal is sampled, these frequencies become indistinguishable, and aliasing dis-
tortion may result. The Nyquist-Shannon sampling theorem gives a simple condition
under which aliasing distortion is avoided. Specifically, if the signal contains no sinu-
soidal components with frequencies higher than half the sampling frequency, then there
will be no aliasing distortion. Half the sampling frequency is called the Nyquist frequency
because of this key result.

494 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


11. SAMPLING AND RECONSTRUCTION

Exercises

Each problem is annotated with the letter E, T, C which stands for exercise, requires some
thought, requires some conceptualization. Problems labeled E are usually mechanical,
those labeled T require a plan of attack, those labeled C usually have more than one
defensible answer.

1. E Consider the continuous-time signal

x(t) = cos(10πt)+ cos(20πt)+ cos(30πt).

(a) Find the fundamental frequency. Give the units.

(b) Find the Fourier series coefficients A0,A1, · · · and φ1,φ2, · · · .
(c) Let y be the result of sampling this signal with sampling frequency 10 Hz.

Find the fundamental frequency for y, and give the units.

(d) For the same y, find the discrete-time Fourier series coefficients, A0,A1, · · ·
and φ1, · · · .

(e) Find
w = IdealInterpolatorT (SamplerT (x))

for T = 0.1 seconds.

(f) Is there any aliasing distortion caused by sampling at 10 Hz? If there is,
describe the aliasing distortion in words.

(g) Give the smallest sampling frequency that avoids aliasing distortion.

2. E Verify that SamplerT defined by (11.1) and (11.2) is linear but not time invariant.

3. E A real-valued sinusoidal signal with a negative frequency is always exactly equal
to another sinusoid with positive frequency. Consider a real-valued sinusoid with a
negative frequency −440 Hz,

y(n) = cos(−2π440nT +φ).

Find a positive frequency f and phase θ such that

y(n) = cos(2π f nT +θ).

Lee & Varaiya, Signals and Systems 495

http://LeeVaraiya.org


EXERCISES

4. T Consider a continuous-time signal x where for all t ∈ R,

x(t) =
∞

∑
k=−∞

r(t− k).

where

r(t) =
{

1 0≤ t < 0.5
0 otherwise

.

(a) Is x(t) periodic? If so, what is the period?

(b) Suppose that T = 1. Give a simple expression for y = SamplerT (x).

(c) Suppose that T = 0.5. Give a simple expression for y = SamplerT (x) and
z = IdealInterpolatorT (SamplerT (x)).

(d) Find an upper bound for T (in seconds) such that

x = IdealInterpolatorT (SamplerT (x)),

or argue that no value of T makes this assertion true.

5. T Consider a continuous-time signal x with the following finite Fourier series ex-
pansion,

∀ t ∈ R, x(t) =
4

∑
k=0

cos(kω0t)

where ω0 = π/4 radians/second.

(a) Give an upper bound on T (in seconds) such that

x = IdealInterpolatorT (SamplerT (x)).

(b) Suppose that T = 4 seconds. Give a simple expression for y = SamplerT (x).

(c) For the same T = 4 seconds, give a simple expression for

w = IdealInterpolatorT (SamplerT (x)).

6. T Consider a continuous-time audio signal x with CTFT shown in Figure 11.12.
Note that it contains no frequencies beyond 10 kHz. Suppose it is sampled at 40
kHz to yield a signal that we will call x40. Let X40 be the DTFT of x40.

(a) Sketch |X40(ω)| and carefully mark the magnitudes and frequencies.

496 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


11. SAMPLING AND RECONSTRUCTION

H(2π f)

f (kHz)
1

10 -10 

Figure 11.12: CTFT of an audio signal considered in exercise 6.

(b) Suppose x is sampled at 20,000 samples/second. Let x20 be the resulting sam-
pled signal and X20 its DTFT. Sketch and compare x20 and x40.

(c) Now suppose x is sampled at 15,000 samples/second. Let x15 be the resulting
sampled signal and X15 its DTFT. Sketch and compare X20 and X15. Make
sure that your sketch shows aliasing distortion.

7. C Consider two continuous-time sinusoidal signals given by

x1(t) = cos(ω1t)

x2(t) = cos(ω2t),

with frequencies ω1 and ω2 radians/second such that

0≤ ω1 ≤ π/T and 0≤ ω2 ≤ π/T.

Show that if ω1 6= ω2 then

SamplerT (x1) 6= SamplerT (x2).

I.e., the two distinct sinusoids cannot be aliases of one another if they both have
frequencies below the Nyquist frequency. Hint: Try evaluating the sampled signals
at n = 1.

Lee & Varaiya, Signals and Systems 497

http://LeeVaraiya.org


EXERCISES

498 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


12
Stability

Contents
12.1 Boundedness and stability . . . . . . . . . . . . . . . . . . . . . . . 503

12.1.1 Absolutely summable and absolutely integrable . . . . . . . . 503
12.1.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
Probing Further: Stable systems and their impulse response . . . . . 507

12.2 The Z transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
12.2.1 Structure of the region of convergence . . . . . . . . . . . . . 511
12.2.2 Stability and the Z transform . . . . . . . . . . . . . . . . . . 516
12.2.3 Rational Z tranforms and poles and zeros . . . . . . . . . . . 517

12.3 The Laplace transform . . . . . . . . . . . . . . . . . . . . . . . . 521
12.3.1 Structure of the region of convergence . . . . . . . . . . . . . 523
12.3.2 Stability and the Laplace transform . . . . . . . . . . . . . . 527
12.3.3 Rational Laplace tranforms and poles and zeros . . . . . . . . 528

12.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532

The four Fourier transforms prove to be useful tools for analyzing signals and systems.
When a system is LTI, it is characterized by its frequency response H, and its input x and
output y are related simply by

∀ω ∈ R, Y (ω) = H(ω)X(ω),

where Y is the Fourier transform of y, and X is the Fourier transform of x.

499



However, we ignored a lurking problem. Any of the three Fourier transforms, X , Y , or
H, may not exist. Suppose for example that x is a discrete-time signal. Then its Fourier
transform (the DTFT) is given by

∀ ω ∈ R, X(ω) =
∞

∑
n=−∞

x(n)e−iωn. (12.1)

This is an infinite sum, properly viewed as the limit

∀ ω ∈ R, X(ω) = lim
N→∞

N

∑
n=−N

x(n)e−iωn. (12.2)

As with all such limits, there is a risk that it does not exist. If the limit does not exist
for any ω ∈ R, then the Fourier transform becomes mathematically treacherous at best
(involving, for example, Dirac delta functions), and mathematical nonsense at worst.

Example 12.1: Consider the sequence

x(n) =
{

0, n≤ 0
an−1, n > 0

,

where a > 1 is a constant. Plugging into (12.1), the Fourier transform should be

∀ ω ∈ R, X(ω) =
∞

∑
n=0

an−1e−iωn.

At ω = 0, it is easy to see that this sum is infinite (every term in the sum is greater
than or equal to one). At other values of ω, there are also problems. For example,
at ω = π, the terms of the sum alternate in sign and increase in magnitude as n gets
larger. The limit (12.2) clearly will not exist.

A similar problem arises with continuous-time signals. If x is a continuous-time signal,
then its Fourier transform (the CTFT) is given by

∀ ω ∈ R, X(ω) =

∞∫
−∞

x(t)e−iωtdt. (12.3)

500 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


12. STABILITY

M
body

tail

main rotor shaft

Figure 12.1: A highly simplified helicopter.

Again, there is a risk that this integral does not exist.

This chapter studies signals for which the Fourier transform does not exist. Such signals
prove to be both common and useful. The signal in example 12.1 gives the bank balance
of example 5.12 when an initial deposit of one dollar is made, and no further deposits or
withdrawals are made (thus, it is the impulse response of the bank account). This signal
grows without bound, and any signal that grows without bound will cause difficulties
when using the Fourier transform.

The bank account is said to be an unstable system, because its output can grow without
bound even when the input is always bounded. Such unstable systems are common, so it
is unfortunate that the frequency domain methods we have studied so far do not appear to
apply.

Example 12.2: A helicopter is intrinsically an unstable system, requiring an elec-
tronic or mechanical feedback control system to stabilize it. It has two rotors, one
above, which provides lift, and one on the tail. Without the rotor on the tail, the
body of the helicopter would start to spin. The rotor on the tail counteracts that spin.
However, the force produced by the tail rotor must perfectly counter the torque of
the main rotor, or the body will spin.

A highly simplified version of the helicopter is shown in figure 12.1. The body of
the helicopter is modeled as a horizontal arm with moment of intertia M. The tail
rotor goes on the end of this arm. The body of the helicopter rotates freely around

Lee & Varaiya, Signals and Systems 501

http://LeeVaraiya.org


the main rotor shaft. Due to Newton’s third law, the main rotor will tend to cause
the body to rotate by applying a torque as suggested by the curved arrow. The
tail rotor will have to counter that torque to keep the body of the helicopter from
spinning.

Let the input x to the system be the net torque on the tail of the helicopter, as a
function of time. That is, at time t, x(t) is the sum of the torque induced by the
main rotor shaft and the counteracting torque exerted by the tail rotor. Let the
output y be the velocity of rotation of the body. From basic physics, torque equals
moment of inertia times rotational acceleration. The rotational acceleration is ẏ, the
derivative of y, so

ẏ(t) = x(t)/M.

Integrating both sides, assuming that the initial velocity of rotation is zero, we get
the output as a function of the input,

∀ t ∈ R, y(t) =
1
M

t∫
0

x(τ)dτ.

It is now easy to see that this system is unstable. Let the input be x = u, where u is
the unit step, given by

∀ t ∈ R, u(t) =
{

0, t < 0
1, t ≥ 0

. (12.4)

This input is clearly bounded. It never exceeds one in magnitude. However, the
output grows without bound.

In practice, a helicopter uses a feedback system to determine how much torque to
apply at the tail rotor to keep the body of the helicopter straight. We will see how
to do this in Chapter 14.

In this chapter we develop the basics of modeling unstable systems in the frequency do-
main. We define two new transforms, called the Z transform and Laplace transform.
The Z transform is a generalization of the DTFT and applies to discrete-time signals. The
Laplace transform is a generalization of the CTFT and applies to continuous-time signals.
These generalizations support frequency-domain analysis of signals that do not have a
Fourier transform, and thus allow analysis of unstable systems.

502 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


12. STABILITY

In particular, let X̂ denote the Laplace or Z transform of x, depending on whether it is a
continuous or discrete-time signal. Then the Laplace or Z transform of the output of an
LTI system is given by Ŷ = ĤX̂ , where Ĥ is the Laplace or Z transform of the impulse
response. This relation applies even when the system is unstable. Thus, these transforms
take the place of the Fourier transform when the Fourier transform cannot be used. Ĥ is
called the transfer function of the LTI system, and it is a generalization of the frequency
response.

12.1 Boundedness and stability

In this section, we identify a simple condition for the existence of the DTFT, which is that
the signal be absolutely summable. We then define a stable system and show that an LTI
system is stable if and only if its impulse response is absolutely summable. Continuous-
time signals are slightly more complicated, requiring slightly more than that they be abso-
lutely integrable. The conditions for the existence of the CTFT are called the Dirichlet
conditions, and once again, if the impulse response of an LTI system satisfies these con-
ditions, then it is stable.

12.1.1 Absolutely summable and absolutely integrable

A discrete-time signal x is said to be absolutely summable if

∞

∑
n=−∞

|x(n)|

exists and is finite. The “absolutely” in “absolutely summable” refers to the absolute value
(or magnitude) in the summation. The sum is said to converge absolutely. The following
simple fact gives a condition for the existence of the DTFT:

If a discrete-time signal x is absolutely summable, then its DTFT exists and is finite for
all ω.

To see that this is true, note that the DTFT exists and is finite if and only if

∀ ω ∈ R, |X(ω)|=
∣∣∣∣∣ ∞

∑
n=−∞

x(n)e−iωn

∣∣∣∣∣
Lee & Varaiya, Signals and Systems 503

http://LeeVaraiya.org


12.1. BOUNDEDNESS AND STABILITY

exists and is finite. But ∣∣∣∣∣ ∞

∑
n=−∞

x(n)e−iωn

∣∣∣∣∣ ≤ ∞

∑
n=−∞

|x(n)e−iωn| (12.5)

=
∞

∑
n=−∞

|x(n)| · |e−iωn| (12.6)

=
∞

∑
n=−∞

|x(n)|. (12.7)

This follows from the following facts about complex (or real) numbers:

|a+b| ≤ |a|+ |b|,

which is known as the triangle inequality (and generalizes to infinite sums),

|ab|= |a| · |b|,

and
∀ θ ∈ R, |eiθ|= 1.

We can conclude from (12.5) that

∀ ω ∈ R, |X(ω)| ≤
∞

∑
n=−∞

|x(n)|.

This means that if x is absolutely summable, then the DTFT exists and is finite. It fol-
lows from the fact that if a sum converges absolutely, then it also converges (without the
absolute value).

A continuous-time signal x is said to be absolutely integrable if
∞∫
−∞

|x(t)|dt

exists and is finite. A similar argument to that above (with summations replaced by inte-
grals) suggests that if a continuous-time signal x is absolutely integrable, then its CTFT
should exist and be finite for all ω. However, caution is in order. Integrals are more
complicated than summations, and we need some additional conditions to ensure that the
integral is well defined. We can use essentially the same conditions given on page 297
for the convergence of the continuous-time Fourier series. These are called the Dirichlet
conditions, and require three things:

504 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


12. STABILITY

• x is absolutely integrable;

• in any finite interval, x is of bounded variation, meaning that there are no more
than a finite number of maxima or minima; and

• in any finite interval, x is continuous at all but a finite number of points.

Most any signal of practical engineering importance satisfies the last two conditions, so
the important condition is that it be absolutely integrable. We will henceforth assume
without comment that all continuous-time signals satisfy the last two conditions, so the
only important condition becomes the first one. Under this assumption, the following
simple fact gives a condition for the existence of the CTFT:

An absolutely integrable continuous-time signal x has a CTFT X , and its CTFT X(ω) is
finite for all ω ∈ R.

12.1.2 Stability

A system is said to be bounded-input bounded-output stable (BIBO stable or just
stable) if the output signal is bounded for all input signals that are bounded.

Consider a discrete-time system with input x and output y. An input is bounded if there
is a real number M < ∞ such that |x(k)| ≤M for all k ∈ Z. An output is bounded if there
is a real number N < ∞ such that |y(n)| ≤ N for all n ∈ Z. The system is stable if for any
input bounded by M, there is some bound N on the output.

Consider a discrete-time LTI system with impulse response h. The output y corresponding
to the input x is given by the convolution sum,

∀n ∈ Z, y(n) = (h∗ x)(n) =
∞

∑
m=−∞

h(m)x(n−m). (12.8)

Suppose that the input x is bounded with bound M. Then, applying the triangle inequality,
we see that

|y(n)| ≤
∞

∑
m=−∞

|h(m)||x(n−m)| ≤M
∞

∑
m=−∞

|h(m)|.

Thus, if the impulse response is absolutely summable, then the output is bounded with
bound

N = M
∞

∑
m=−∞

|h(m)|.

Lee & Varaiya, Signals and Systems 505

http://LeeVaraiya.org


12.1. BOUNDEDNESS AND STABILITY

Thus, if the impulse response of an LTI system is absolutely summable, then the system
is stable. The converse is also true, but more difficult to show. That is, if the system is
stable, then the impulse response is absolutely summable (see box on page 507). The
same argument applies for continuous-time signals, so in summary:

A discrete-time LTI system is stable if and only if its impulse response is absolutely
summable. A continuous-time LTI system is stable if and only if its impulse response is
absolutely integrable.

The following example makes use of the geometric series identity, valid for any real or
complex a where |a|< 1,

∞

∑
m=0

am =
1

1−a
. (12.9)

To verify this identity, just multiply both sides by 1−a to get

∞

∑
m=0

am−a
∞

∑
m=0

am = 1.

This can be written

a0 +
∞

∑
m=1

am−
∞

∑
m=1

am = 1.

Now note that a0 = 1 and that the two sums are identical. Since |a|< 1, the sums converge,
and hence they cancel, so the identity is true.

Example 12.3: As in example 12.1, the impulse response of the bank account of
example 5.12 is

h(n) =
{

0, n≤ 0
an−1, n > 0

,

where a > 1 is a constant that reflects the interest rate. This impulse response is not
absolutely summable, so this system is not stable. A system with the same impulse
response, but where 0 < a < 1, however, would be stable, as is easily verified using

506 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


12. STABILITY

Probing Further: Stable systems and their impulse response

Consider a discrete-time LTI system with real-valued impulse response h. In this box,
we show that if the system is stable, then its impulse response is absolutely summable.
To show this, we show the contrapositive.a That is, we show that if the impulse response
is not absolutely summable, then the system is not stable. To do this, suppose that the
impulse response is not absolutely summable. That is, the sum

∞

∑
n=−∞

|h(n)|

is not bounded. To show that the system is not stable, we need only to find one bounded
input for which the output either does not exist or is not bounded. Such an input is given
by

∀ n ∈ Z, x(n) =
{

h(−n)/|h(−n)|, h(n) 6= 0
0, h(n) = 0

This input is clearly bounded, with bound M = 1. Plugging this input into the convolu-
tion sum (12.8) and evaluating at n = 0 we get

y(0) =
∞

∑
m=−∞

h(m)x(−m)

=
∞

∑
m=−∞

(h(m))2/|h(m)|

=
∞

∑
m=−∞

|h(m)|,

where the last step follows from the fact that for real-valued h(m), (h(m))2 = |h(m)|2.
But since the impulse response is not absolutely summable, y(0) does not exist or is not
finite, so the system is not stable.

A nearly identical argument works for continuous-time systems.

aThe contrapositive of a statement “if p then q” is “if not q then not p.” The contrapositive is true if and
only if the original statement is true.

Lee & Varaiya, Signals and Systems 507

http://LeeVaraiya.org


12.1. BOUNDEDNESS AND STABILITY

(12.9). To use this identity, note that

∞

∑
n=−∞

|h(n)| =
∞

∑
n=1

an−1

=
∞

∑
m=0

am

=
1

1−a
,

where the second step results from a change of variables, letting m = n−1.

Example 12.4: Consider an LTI system with impulse response h(t) = atu(t), for
all t ∈ R. where a > 0 is a real number and u is the unit step, given by (12.4).
To determine whether this system is stable, we need to determine whether the im-
pulse response is absolutely integrable. That is, we need to determine whether the
following integral exists and is finite,

∞∫
−∞

|atu(t)|dt.

Since a > 0 and u is the unit step, this simplifies to

∞∫
0

atdt.

From calculus, we know that this integral is infinite if a ≥ 1, so the system is un-
stable if a≥ 1. The integral is finite if 0 < a < 1 and is equal to

∞∫
0

atdt =−1/ ln(a).

Thus, the system is stable if 0 < a < 1.

508 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


12. STABILITY

As we see, when all pertinent signals are absolutely summable (or absolutely integrable),
then we can use Fourier transform techniques with confidence. However, many useful
signals do not fall in this category (the unit step and sinusoidal signals, for example).
Moreover, many useful systems have impulse responses that are not absolutely summable
(or absolutely integrable). Fortunately, we can generalize the DTFT and CTFT to get the
Z transform and Laplace transform, which easily handle signals that are not absolutely
summable.

12.2 The Z transform

Consider a discrete-time signal x that is not absolutely summable. Consider the scaled
signal xr given by

∀ n ∈ Z, xr(n) = x(n)r−n, (12.10)

for some real number r ≥ 0. Often, this signal is absolutely summable when r is chosen
appropriately. This new signal, therefore, will have a DTFT, even if x does not.

Example 12.5: Continuing with example 12.3, the impulse response of the bank
account is

h(n) =
{

0, n≤ 0
an−1, n > 0

,

where a > 1. This system is not stable. However, the scaled signal

hr(n) = h(n)r−n

Lee & Varaiya, Signals and Systems 509

http://LeeVaraiya.org


12.2. THE Z TRANSFORM

is absolutely summable if r > a. Its DTFT is

∀r > a,∀ω ∈ R, Hr(ω) =
∞

∑
m=−∞

h(m)r−me−iωm

=
∞

∑
m=1

am−1(reiω)−m

=
∞

∑
n=0

an(reiω)−n−1

= (reiω)−1
∞

∑
n=0

(a(reiω)−1)n

=
(reiω)−1

1−a(reiω)−1 .

The second step is by change of variables, n = m−1, and the final step applies the
geometric series identity (12.9).

In general, the DTFT of the scaled signal xr in (12.10) is

∀ ω ∈ R, Xr(ω) =
∞

∑
m=−∞

x(m)(reiω)−m.

Notice that this is a function not just of ω, but also of r, and in fact, we are only sure it is
valid for values of r that yield an absolutely summable signal hr. If we define the complex
number

z = reiω

then we can write this DTFT as

∀ z ∈ RoC(x), X̂(z) =
∞

∑
m=−∞

x(m)z−m, (12.11)

where X̂ is a function called the Z transform of x,

X̂ : RoC(x)→ C

where RoC(x)⊂ C is given by

RoC(x) = {z = reiω ∈ C | x(n)r−n is absolutely summable.} (12.12)

510 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


12. STABILITY

The term RoC is shorthand for region of convergence.

Example 12.6: Continuing example 12.5, we can recognize from the form of
Hr(ω) that the Z transform of the impulse response h is

∀ z ∈ RoC(h), Ĥ(z) =
z−1

1−az−1 =
1

z−a
,

where the last step is the result of multiplying top and bottom by z. The RoC is

RoC(h) = {z = reiω ∈ C | r > a}

The Z tranform Ĥ of the impulse response h of an LTI system is called the transfer
function of the system.

12.2.1 Structure of the region of convergence

When a signal has a Fourier transform, then knowing the Fourier transform is equivalent
to knowing the signal. The signal can be obtained from its Fourier transform, and the
Fourier transform can be obtained from the signal. The same is true of a Z transform, but
there is a complication. The Z transform is a function X̂ : RoC→C, and it is necessary to
know the set RoC to know the function X̂ . The region of convergence is a critical part of
the Z transform. We will see that very different signals can have very similar Z transforms
that differ only in the region of convergence.

Given a discrete-time signal x, RoC(x) is defined to be the set of all complex numbers
z = reiω for which the following series converges:

∞

∑
m=−∞

|x(m)r−m|.

Notice that if this series converges, then so does

∞

∑
m=−∞

|x(m)z−m|

Lee & Varaiya, Signals and Systems 511

http://LeeVaraiya.org


12.2. THE Z TRANSFORM

Re z

Im zIm z

Re z

Im z

causal or right sided

Re z

anti-causaltwo-sided

RoC RoC
RoC

(a) (b) (c)

Figure 12.2: Three possible structures for the region of convergence of a Z trans-
form.

for any complex number z with magnitude r. This is because

|x(m)z−m|= |x(m)(reiω)−m|= |x(m)| · |r−m| · |e−iωm|= |x(m)| · |r−m|.

Thus, the set RoC could equally well be defined to be the set of all complex numbers z
such that x(n)z−n is absolutely summable.

Notice that whether this series converges depends only on r, the magnitude of the complex
number z = reiω, and not on ω, its angle. Thus, if any point z = reiω is in the set RoC,
then all points z′ with the same magnitude are also in RoC. This implies that the set RoC,
a subset of C, will have circular symmetry.

The set RoC turns out to have even more structure. There are only three possible patterns,
illustrated by the shaded areas in Figure 12.2. Each figure illustrates the complex plane,
and the shaded area is a region of convergence. Each possibility has circular symmetry,
in that whether a point is in the RoC depends only on its magnitude.

Figure 12.2(a) shows the RoC of a causal signal. A discrete-time signal x is causal if
x(n) = 0 for all n < 0. The RoC is the set of complex numbers z = reiω where following
series converges:

∞

∑
m=−∞

|x(m)r−m|.

But if x is causal, then
∞

∑
m=−∞

|x(m)r−m|=
∞

∑
m=0
|x(m)r−m|.

512 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


12. STABILITY

If this series converges for some given r, then it must also converge for any r̃ > r (because
for all m ≥ 0, r̃−m < r−m. Thus, if z ∈ RoC, then the RoC must include all points in the
complex plane on the circle passing through z and every point outside that circle.

Note further that not only must the RoC include every point outside the circle, but the
series must also converge in the limit as z goes to infinity. Thus, for example, H(z) = z
cannot be the Z transform of a causal signal because its RoC cannot possibly include
infinity (H(z) is not finite there).

Figure 12.2(c) shows the RoC of an anti-causal signal. A discrete-time signal x is anti-
causal if x(n) = 0 for all n > 0. By a similar argument, if z ∈ RoC, then the RoC must
include all points in the complex plane on the circle passing through z and every point
inside that circle.

Figure 12.2(b) shows the RoC of a signal that is neither causal nor anti-causal. Such a
signal is called a two-sided signal. Such a signal can always be expressed as a sum of
a causal signal and an anti-causal signal. The RoC is the intersection of the regions of
convergence for these two components. To see this, just note that the RoC is the set of
complex numbers z = reiω where following series converges:

∞

∑
m=−∞

|x(m)r−m|=
−1

∑
m=−∞

|x(m)r−m|+
∞

∑
m=0
|x(m)r−m|.

The first sum on the right corresponds to an anti-causal signal, and the second sum on the
right to a causal signal. For this series to converge, both sums must converge. Thus, for a
two-sided signal, the RoC has a ring structure.

Example 12.7: Consider the discrete-time unit step signal u, given by

u(n) =
{

0, n < 0
1, n≥ 0

. (12.13)

The Z transform is, using geometric series identity (12.9),

Û(z) =
∞

∑
m=−∞

u(m)z−m =
∞

∑
m=0

z−m =
1

1− z−1 =
z

z−1
,

with domain

RoC(u) = {z ∈ C |
∞

∑
m=1
|z|−m < ∞}= {z | |z|> 1}.

Lee & Varaiya, Signals and Systems 513

http://LeeVaraiya.org


12.2. THE Z TRANSFORM

This region of convergence has the structure of Figure 12.2(a), where the dashed
circle has radius one (that circle is called the unit circle). Indeed, this signal is
causal, so this structure makes sense.

Example 12.8: The signal v given by

v(n) =
{
−1, n < 0
0, n≥ 0

,

has Z transform

V̂ (z) =
∞

∑
m=−∞

v(m)z−m =−
1

∑
m=−∞

z−m =−z
∞

∑
k=0

zk =
z

z−1
,

with domain

RoC(v) = {z ∈ C |
1

∑
m=−∞

|z|−m < ∞}= {z | |z|< 1}.

This region of convergence has the structure of Figure 12.2(c), where the dashed
circle is again the unit circle. Indeed, this signal is anti-causal, so this structure
makes sense.

Notice that although the Z transform Û of u and V̂ of v have the same algebraic form,
namely, z/(z−1), they are different functions, because their domains are different. Thus
the Z transform of a signal comprises both the algebraic form of the Z transform as well
as its RoC.

A right-sided signal x is where for some integer N,

x(n) = 0, ∀ n < N.

Of course, if N ≥ 0, then this signal is also causal. However, if N < 0, then the signal is
two sided. Suppose N < 0. Then we can write the Z transform of x as

∞

∑
m=−∞

|x(m)r−m|=
−1

∑
m=N
|x(m)r−m|+

∞

∑
m=0
|x(m)r−m|.

514 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


12. STABILITY

The left summation on the right side is finite, and each term is finite for all z ∈ C, so
therefore it converges for all z∈C. Thus, the region of convergence is determined entirely
by the right summation, which is the Z transform of the causal part of x. Thus, the region
of convergence of a right-sided signal has the same form as that of a causal sequence, as
shown in figure 12.2(a). (However, if the signal is not causal, the Z transform does not
converge at infinity.)

A left-sided signal x is where for some integer N,

x(n) = 0, ∀ n > N.

Of course, if N ≤ 0, then this signal is also anti-causal. However, if N > 0, then the signal
is two sided. Suppose N > 0. Then we can write the Z transform of x as

∞

∑
m=−∞

|x(m)r−m|=
0

∑
m=−∞

|x(m)r−m|+
N

∑
m=1
|x(m)r−m|.

The right summation is finite, and therefore converges for all z ∈ C except z = 0, where
the individual terms of the sum are not finite. Thus, the region of convergence is that
of the left summation, except for the point z = 0. Thus, the region of convergence of a
left-sided signal has the same form as that of an anti-causal sequence, as shown in figure
12.2(c), except that the origin (z = 0) is excluded. This, of course, is simply the structure
of 12.2(b) where the inner circle has zero radius.

Some signals have no meaningful Z transform.

Example 12.9: The signal x with x(n) = 1, for all n, does not have a Z trans-
form. We can write x = u− v, where u and v are defined in the previous examples.
Thus, the region of convergence of x must be the intersection of the regions of con-
vergence of u and v. However, these two regions of convergence have an empty
intersection, so RoC(x) = /0.

Viewed another way, the set RoC(x) is the set of complex numbers z where

∞

∑
m=−∞

|x(m)z−m|=
∞

∑
m=−∞

|z−m|< ∞.

But there is no such complex number z.

Lee & Varaiya, Signals and Systems 515

http://LeeVaraiya.org


12.2. THE Z TRANSFORM

Note that the signal x in example 12.9 is periodic with any integer period p (because
x(n+ p) = x(n) for any p ∈ Z). Thus, it has a Fourier series representation. In fact, as
shown in Section 10.6.3, a periodic signal also has a Fourier transform representation, as
long as we are willing to allow Dirac delta functions in the Fourier transform. (Recall
that this means that there are values of ω where X(ω) will not be finite.) With periodic
signals, the Fourier series is by far the simplest frequency-domain tool to use. The Fourier
transform can also be used if we allow Dirac delta functions. The Z transform, however,
is more problematic, because the region of convergence is empty.

12.2.2 Stability and the Z transform

If a discrete-time signal x is absolutely summable, then it has a DTFT X that is finite for
all ω ∈ R. Moreover, the DTFT is equal to the Z transform evaluated on the unit circle,

∀ ω ∈ R, X(ω) = X̂(z)|z=eiω = X̂(eiω).

The complex number z = eiω has magnitude one, and therefore lies on the unit circle. Re-
call that an LTI system is stable if and only if its impulse response is absolutely summable.
Thus,

A discrete-time LTI system with impulse response h is stable if and only if the transfer
function Ĥ, which is the Z transform of h, has a region of convergence that includes the
unit circle.

Example 12.10: Continuing example 12.6, the transfer function of the bank ac-
count system has region of convergence given by

RoC(h) = {z = reiω ∈ C | r > a},

where a > 1. Thus, the region of convergence includes only complex numbers with
magnitude greater than one, and therefore does not include the unit circle. The bank
account system is therefore not stable.

516 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


12. STABILITY

12.2.3 Rational Z tranforms and poles and zeros

All of the Z transforms we have seen so far are rational polynomials in z. A rational
polynomial is simply the ratio of two finite-order polynomials. For example, the bank
account system has transfer function

Ĥ(z) =
1

z−a

(see example 12.6). The unit step of example 12.7 and its anti-causal cousin of example
12.8 have Z transforms given by

Û(z) =
z

z−1
, V̂ (z) =

z
z−1

,

albeit with different regions of convergence.

In practice, most Z transforms of practical interest can be written as the ratio of two finite
order polynomials in z,

X̂(z) =
A(z)
B(z)

.

The order of the polynomial A or B is the power of the highest power of z. For the unit
step, the numerator polynomial is A(z) = z, a first-order polynomial, and the denominator
is B(z) = z−1, also a first-order polynomial.

Recall from algebra that a polynomial of order N has N (possibly complex-valued) roots,
which are values of z where the polynomial evaluates to zero. The roots of the numerator
A are called the zeroes of the Z transform, and the roots of the denominator B are called
the poles of the Z transform. The term “zero” refers to the fact that the Z transform
evaluates to zero at a zero. The term “pole” suggests an infinitely high tent pole, where
the Z transform evaluates to infinity. The locations in the complex plane of the poles and
zeros turn out to yield considerable insight about a Z transform. A plot of these locations
is called a pole-zero plot. The poles are shown as crosses and the zeros as circles.

Example 12.11: The unit step of example 12.7 and its anti-causal cousin of exam-
ple 12.8 have pole-zero plots shown in Figure 12.3. In each case, the Z transform
has the form

z
z−1

=
A(z)
B(z)

,

Lee & Varaiya, Signals and Systems 517

http://LeeVaraiya.org


12.2. THE Z TRANSFORM

|z|=1

Re z

Im z

RoC(u) |z|=1

Re z

Im z

RoC(v)

Figure 12.3: Pole-zero plots for the unit step u and its anti-causal cousin v. The
regions of convergence are the shaded area in the complex plane, not including
the unit circle. Both Z tranforms, Û and V̂ , have one pole at z = 1 and one zero at
z = 0.

where A(z) = z and B(z) = z− 1. A(z) has only one root, at z = 0, so the Z trans-
forms each have one zero, at the origin in the complex plane. B(z) also has only
one root, at z = 1, so the Z transform has one pole, at z = 1.

These plots also show the unit circle, with a dashed line, and the regions of conver-
gence for the two examples, as shaded areas. Note that RoC(u) has the form of a
region of convergence of a causal signal, as it should, and RoC(v) has the form of a
region of convergence of an anti-causal signal, as it should (see Figure 12.2). Note
that neither RoC includes the unit circle, so if these signals were impulse responses
of LTI systems, then these systems would be unstable.

Consider a rational Z transform

X̂(z) =
A(z)
B(z)

.

The denominator polynomial B evaluates to zero at a pole. That is, if there is a pole at
location z = p (a complex number), then B(p) = 0. Assuming that A(p) 6= 0, then X̂(p) is
not finite. Thus, the region of convergence cannot include any pole p that is not cancelled
by a zero. This fact, combined with the fact that a causal signal always has a RoC of the
form of the left one in Figure 12.2, leads to the following simple stability criterion for
causal systems:

518 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


12. STABILITY

|z|=1

Re z

Im z

RoC(x)

22

Figure 12.4: Poles and zeros with multiplicity greater than one are indicated by a
number next to the cross or circle.

A discrete-time causal system is stable if and only if all the poles of its transfer function
lie inside the unit circle.

A subtle fact about rational Z transforms is that the region of convergence is always bor-
dered by the pole locations. This is evident in Figure 12.3, where the single pole at z = 1
lies on the boundary of the two possible regions of convergence. In fact, the rational
polynomial

z
z−1

can be associated with only three possible Z transforms, two of which have the two regions
of convergence shown in Figure 12.3, plus the one not shown where RoC = /0.

Although a polynomial of order N has N roots, these roots are not necessarily distinct.
Consider the (rather trivial) polynomial

A(z) = z2.

This has order 2, and hence two roots, but both roots are at z = 0. Consider a Z transform
given by

∀ z ∈ RoC(x), X̂(z) =
z2

(z−1)2 .

This has two zeros at z = 0, and two poles at z = 1. We say that the zero at z = 0 has
multiplicity two. Similarly, the pole at z = 1 has multiplicity two. This multiplicity is
indicated in a pole-zero plot by a number adjacent to the pole or zero, as shown in Figure
12.4.

Lee & Varaiya, Signals and Systems 519

http://LeeVaraiya.org


12.2. THE Z TRANSFORM

Example 12.12: Consider a signal x that is equal to the delayed Kronecker delta
function,

∀ n ∈ Z, x(n) = δ(n−M),

where M ∈ Z is a constant. Its Z transform is easy to find using the sifting rule,

∀ z ∈ RoC(x), X̂(z) =
∞

∑
m=−∞

δ(m−M)z−m = z−M = 1/zM.

If M > 0, then this converges absolutely for any z 6= 0. Thus, if M > 0,

RoC(x) = {z ∈ C | z 6= 0}.

This Z transform has M poles at z = 0. Notice that this region of convergence,
appropriately, has the form of that of a causal signal, Figure 12.2(a), but where the
circle has radius zero.

If M < 0, then the region of convergence is the entire set C, and the Z transform
has M zeros at z = 0. This signal is anti-causal, and its RoC matches the structure
of 12.2(c), where the radius of the circle is infinite. Note that this Z transform does
not converge at infinity, which it would have to do if the signal were causal.

If M = 0, then X̂(z) = 1 for all z ∈ C, so RoC = C, and there are no poles or zeros.
This is a particularly simple Z transform.

Recall that for a causal signal, the Z transform must converge as z→ ∞. The region
of convergence must include everything outside some circle, including infinity.1 This
implies that for a causal signal with a rational Z transform, the Z transform must be
proper. A rational polynomial is proper when the order of the numerator is smaller than
or equal to the order of the denominator. For example, if M =−1 in the previous example,
then x(n) = δ(n+1) and Ĥ(z) = z, which has numerator order one and denominator order
zero. It is not proper, and indeed, it does not converge as z→∞. Any rational polynomial
that has a denominator of higher order than the numerator will not converge as z goes to
infinity, and hence cannot be the Z transform of a causal signal.

1Some texts consider poles and zeros at infinity, in which case a causal signal cannot have a pole at
infinity.

520 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


12. STABILITY

In the following chapter, table 13.1 gives many common Z tranforms, all of which are
rational polynomials. Together with the properties discussed in the that chapter, we can
find the Z transforms of many signals.

12.3 The Laplace transform

Consider a continuous-time signal x that is not absolutely integrable. Consider the scaled
signal xσ given by2

∀ t ∈ R, xσ(t) = x(t)e−σt , (12.14)

for some real number σ. Often, this signal is absolutely integrable when σ is chosen
appropriately. This new signal, therefore, will have a CTFT, even if x does not.

Example 12.13: Consider the impulse response of the simplified helicopter system
described in example 12.2. The output as a function of the input is given by

∀ t ∈ R, y(t) =
1
M

t∫
0

x(τ)dτ.

The impulse response is found by letting the input be a Dirac delta function and
using the sifting rule to get

∀ t ∈ R, h(t) = u(t)/M,

where u is the continuous-time unit step in (12.4). This is not absolutely integrable,
so this system is not stable. However, the scaled signal

∀ t ∈ R, hσ(t) = h(t)e−σt

2The reason that this is different from the scaling by r−n used to get the Z transform is somewhat subtle.
The two methods are essentially equivalent, if we let r = eσ. But scaling by e−σt turns out to be more
convenient for continuous-time systems, as we will see.

Lee & Varaiya, Signals and Systems 521

http://LeeVaraiya.org


12.3. THE LAPLACE TRANSFORM

is absolutely integrable if σ > 0. Its CTFT is

∀ σ > 0,∀ω ∈ R, Hσ(ω) =

∞∫
−∞

h(t)e−σte−iωtdt

=
1
M

∞∫
0

e−σte−iωtdt

=
1
M

∞∫
0

e−(σ+iω)tdt

=
1

M(σ+ iω)
.

The last step in example 12.13 uses the following useful fact from calculus,

b∫
a

ectdt =
1
c
(ecb− eca) , (12.15)

for any c ∈ C and a,b ∈ R∪{−∞,∞} where ecb and eca are finite.

In general, the CTFT of the scaled signal xσ in (12.14) is

∀ ω ∈ R, Xσ(ω) =
∫

∞

−∞

x(t)e−(σ+iω)tdt.

Notice that this is a function not just of ω, but also of σ. We are only sure it is valid for
values of σ that yield an absolutely integrable signal hσ.

Define the complex number
s = σ+ iω.

Then we can write this CTFT as

∀ s ∈ RoC(x), X̂(s) =
∞∫
−∞

x(t)e−stdt, (12.16)

where X̂ is a function called the Laplace transform of x,

X̂ : RoC(x)→ C

522 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


12. STABILITY

where RoC(x)⊂ C is given by

RoC(x) = {s = σ+ iω ∈ C | x(t)e−σt is absolutely integrable.} (12.17)

The Laplace tranform Ĥ of the impulse response h of an LTI system is called the transfer
function of the system, just as with discrete-time systems.

Example 12.14: Continuing example 12.13, we can recognize from the form of
Hσ(ω) that the transfer function of the helicopter system is

∀ s ∈ RoC(h), Ĥ(s) =
1

Ms
.

The RoC is
RoC(h) = {s = σ+ iω ∈ C | σ < 0}

12.3.1 Structure of the region of convergence

As with the Z transform, the region of convergence is an essential part of a Laplace trans-
form. It gives the domain of the function X̂ . Whether a complex number s is in the RoC
depends only on σ, not on ω, as is evident in the definition (12.17). Since s = σ+ iω,
whether a complex number is in the region of convergence depends only on its real part.
Once again, there are only three possible patterns for the region of convergence, shown
in Figure 12.5. Each figure illustrates the complex plane, and the shaded area is a region
of convergence. Each possibility has vertical symmetry, in that whether a point is in the
RoC depends only on its real part.

Figure 12.5(a) shows the RoC of a causal or right-sided signal. A continuous-time signal
x is right-sided if x(t) = 0 for all t < T for some T ∈ R. The RoC is the set of complex
numbers s = σ+ iω where following integral converges:

∞∫
−∞

|x(t)e−σt |dt.

Lee & Varaiya, Signals and Systems 523

http://LeeVaraiya.org


12.3. THE LAPLACE TRANSFORM

Re s

Im sIm s

Re s

Im s

causal or right-sided

Re s

anti-causal or left-sidedtwo-sided

RoC RoC RoC

(a) (b) (c)

Figure 12.5: Three possible structures for the region of convergence of a Laplace
transform.

But if x is right-sided, then

∞∫
−∞

|x(t)e−σt |dt =
∞∫

T

|x(t)e−σt |dt.

If T ≥ 0 and this integral converges for some given σ, then it must also converge for any
σ̃ > σ because for all t ≥ 0, e−σ̃t < e−σt . Thus, if s = σ+ iω ∈ RoC(x), then the RoC(x)
must include all points in the complex plane on the vertical line passing through s and
every point to the right of that line.3

If T < 0, then
∞∫

T

|x(t)e−σt |dt =
0∫

T

|x(t)e−σt |dt +
∞∫

0

|x(t)e−σt |dt,

then the finite integral exists and is finite for all σ, so the same argument applies.

Figure 12.5(c) shows the RoC of a left-sided signal. A continuous-time signal x is left-
sided if x(t) = 0 for all t > T for some T ∈ R. By a similar argument, if s = σ+ iω ∈
RoC(x), then the RoC(x) must include all points in the complex plane on the vertical line
passing through s and every point to the left of that line.

3It is convenient but coincidental that the region of convergence is the right half of a plane when the
sequence is right sided.

524 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


12. STABILITY

Figure 12.5(b) shows the RoC of a signal that is a two-sided signal. Such a signal can
always be expressed as a sum of a right-sided signal and left-sided signal. The RoC is the
intersection of the regions of convergence for these two components.

Example 12.15: Using the same methods as in examples 12.13 and 12.14 we can
find the Laplace transform of the continuous-time unit step signal u, given by

∀ t ∈ R, u(t) =
{

0, t < 0
1, t ≥ 0

. (12.18)

The Laplace transform is

∀ s ∈ RoC(u), Û(s) =

∞∫
−∞

u(t)e−stdt

=

∞∫
0

e−stdt

=
1
s
,

where again we have used (12.15). The domain of Û is

RoC(u) = {s ∈ C | Re{s}> 0}.

This region of convergence has the structure of Figure 12.5(a), where the dashed
line sits exactly on the imaginary axis. The region of convergence, therefore, is
simply the right half of the complex plane.

Example 12.16: The signal v given by

∀ t ∈ R, v(t) =−u(−t) =
{
−1, t < 0
0, t ≥ 0

,

Lee & Varaiya, Signals and Systems 525

http://LeeVaraiya.org


12.3. THE LAPLACE TRANSFORM

has Laplace transform

∀ s ∈ RoC(v), V̂ (s) =

∞∫
−∞

v(t)e−stdt

= −
0∫

−∞

e−stdt

=
1
s

with domain RoC(v) = {s ∈C | Re{s}< 0}. This region of convergence looks like
Figure 12.5(c), where the dashed line coincides with the imaginary axis.

Notice that although the Laplace transforms Û and V̂ have the same algebraic form,
namely, 1/s, they are in fact different functions, because their domains are different.

Some signals have no meaningful Laplace transform.

Example 12.17: The signal x with x(t) = 1, for all t ∈ R, does not have a Laplace
transform. We can write x = u− v, where u and v are defined in the previous
examples. Thus, the region of convergence of x must be the intersection of the
regions of convergence of u and v. However, these two regions have an empty
intersection, so RoC(x) = /0.

Viewed another way, the set RoC(x) is the set of complex numbers s where

∞∫
−∞

|x(t)e−st |dt =
∞∫
−∞

|e−st |dt < ∞.

But there is no such complex number s.

Note that the signal x in example 12.17 is periodic with any period p ∈ R (because x(t +
p) = x(t) for any p ∈ R). Thus, it has a Fourier series representation. In fact, as shown in
Section 10.6.3, a periodic signal also has a Fourier transform representation, as long as we

526 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


12. STABILITY

are willing to allow Dirac delta functions in the Fourier transform. (Recall that this means
that there are values of ω where X(ω) will not be finite.) In the continuous-time case as
in the discrete-time case, with periodic signals, the Fourier series is by far the simplest
frequency-domain tool to use. The Fourier transform can also be used if we allow Dirac
delta functions. The Laplace transform, however, is more problematic, because the region
of convergence is empty.

12.3.2 Stability and the Laplace transform

If a continuous-time signal x is absolutely integrable, then it has a CTFT X that is finite
for all ω ∈ R. Moreover, the CTFT is equal to the Laplace transform evaluated on the
imaginary axis,

∀ ω ∈ R, X(ω) = X̂(s)|s=iω = X̂(iω).

The complex number s = iω is pure imaginary, and therefore lies on the imaginary axis.
Recall that an LTI system is stable if and only if its impulse response is absolutely inte-
grable. Thus

A continuous-time LTI system with impulse response h is stable if an only if the trans-
fer function Ĥ, which is the Laplace transform of h, has a region of convergence that
includes the imaginary axis.

Example 12.18: Consider the exponential signal h given by

∀ t ∈ R, h(t) = e−atu(t),

Lee & Varaiya, Signals and Systems 527

http://LeeVaraiya.org


12.3. THE LAPLACE TRANSFORM

for some real or complex number a, where, as usual, u is the unit step. The Laplace
transform is

∀ s ∈ RoC(h), Ĥ(s) =

∞∫
−∞

h(t)e−stdt

=

∞∫
0

e−ate−stdt

=

∞∫
0

e−(s+a)tdt

=
1

s+a
,

where again we have used (12.15). It is evident from (12.15) that for this integral
to be valid, the domain of Ĥ must be

RoC(h) = {s ∈ C | Re{s}>−Re{a}}.

This region of convergence has the structure of Figure 12.5(a), where the vertical
dashed line passes through a.

Now suppose that h is the impulse response of an LTI system. That LTI system is
stable if an only if Re{a} > 0. Indeed, if Re{a} < 0, then the impulse response
grows without bound, because e−at grows without bound as t gets large.

12.3.3 Rational Laplace tranforms and poles and zeros

All of the Laplace transforms we have seen so far are rational polynomials in s. In
practice, most Laplace transforms of interest can be written as the ratio of two finite order
polynomials in s,

X̂(s) =
A(s)
B(s)

.

An exception is illustrated in the following example.

528 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


12. STABILITY

Example 12.19: Consider a signal x that is equal to the delayed Dirac delta func-
tion,

∀ t ∈ R, x(t) = δ(t− τ),

where τ ∈ R is a constant. Its Laplace transform is easy to find using the sifting
rule,

∀ s ∈ RoC(x), X̂(s) =
∞∫
−∞

δ(t− τ)e−stdt = e−sτ.

This has no finite-order rational polynomial representation.

Unlike the discrete-time case, pure time delays turn out to be rather difficult to realize
in many physical systems that are studied using Laplace transforms, so we need not be
overly concerned with them. We focus henceforth on rational Laplace transforms.

For a rational Laplace transform, the order of the polynomial A or B is the power of
the highest power of s. For the exponential of example 12.18, the numerator polynomial
is A(s) = 1, a zero-order polynomial, and the denominator is B(s) = s+ a, a first-order
polynomial. As with the Z transform, the roots of the numerator polynomial are called the
zeros of the Laplace transform, and the roots of the denominator polynomial are called
the poles.

Example 12.20: The exponential of example 12.18 has a single pole at s = −a,
and no zeros. Note that as s approaches infinity, this Laplace transform approaches
zero, and hence we could say that there is a zero at infinity. Equivalently, we might
say that this Laplace transform has no finite zeros.

A pole-zero plot is shown in Figure 12.6, where we assume that a is a complex
number with a positive real part. The region of convergence includes the imaginary
axis, so this signal is absolutely integrable.

As with Z transforms, the region of convergence of a rational Laplace transform bordered
by the pole locations. Hence,

Lee & Varaiya, Signals and Systems 529

http://LeeVaraiya.org


12.4. SUMMARY

Im s

Re s

RoC

s = ! a

Figure 12.6: Pole-zero plot for the exponential signal of example 12.18, assuming
a has a positive real part.

A continuous-time causal system is stable if and only if all the poles of its transfer
function lie in the left half of the complex plane. That is, all the poles must have negative
real parts.

Table 13.3 in the following chapter gives many common Laplace tranforms.

12.4 Summary

Many useful signals have no Fourier transform. A sufficient condition for a signal to
have a Fourier transform that is finite at all frequencies is that the signal be absolutely
summable (if it is a discrete-time signal) or absolutely integrable (if it is a continuous-
time system).

Many useful systems are not stable, which means that even with a bounded input, the
output may be unbounded. An LTI system is stable if and only if its impulse response is
absolutely summable (discrete-time) or absolutely integrable (continuous-time).

Many signals that are not absolutely summable (integrable) can be scaled by an exponen-
tial to get a new signal that is absolutely summable (integrable). The DTFT (CTFT) of
the scaled signal is called the Z transform (Laplace transform) of the signal.

The Z transform (Laplace transform) is defined over a region of convergence, where the
structure of the region of convergence depends on whether the signal is causal, anti-causal,
or two-sided. The Z transform (Laplace transform) of the impulse response is called the
transfer function of an LTI system. The region of convergence includes the unit circle
(imaginary axis), if and only if the system is stable.

530 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


12. STABILITY

A rational Z transform (Laplace transform) has poles and zeros, and the poles bound the
region of convergence. The locations of the poles and zeros yield considerable informa-
tion about the system, including whether it is stable.

Lee & Varaiya, Signals and Systems 531

http://LeeVaraiya.org


EXERCISES

Exercises

Each problem is annotated with the letter E, T, C which stands for exercise, requires some
thought, requires some conceptualization. Problems labeled E are usually mechanical,
those labeled T require a plan of attack, those labeled C usually have more than one
defensible answer.

1. E Consider the signal x given by

∀ n ∈ Z, x(n) = anu(−n),

where a is a complex constant.

(a) Find the Z transform of x. Be sure to give the region of convergence.

(b) Where are the poles and zeros?

(c) Under what conditions on a is x absolutely summable?

(d) Assuming that x is absolutely summable, find its DTFT.

2. T Consider the signal x given by

∀ n ∈ Z, x(n) =
{

1, |n| ≤M
0, otherwise

,

for some integer M > 0.

(a) Find the Z transform of x. Simplify so that there remain no summations. Be
sure to give the region of convergence.

(b) Where are the poles and zeros? Do not give poles and zeros that cancel each
other out.

(c) Under what conditions is x absolutely summable?

(d) Assuming that x is absolutely summable, find its DTFT.

3. T Consider the unit ramp signal w given by

∀ n ∈ Z, w(n) = nu(n),

where u is the unit step. The following identity will be useful,
∞

∑
m=0

(m+1)am = (
∞

∑
m=0

am)2 =
1

(1−a)2 . (12.19)

532 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


12. STABILITY

This is a generalization of the geometric series identity, given by (12.9). This series
converges for any complex number a with |a|< 1, because

∞

∑
m=0

(m+1)|a|m = 1+2|a|+3|a|2 + · · ·

= (1+ |a|+ |a|2 + · · ·)(1+ |a|+ |a|2 + · · ·)

= (
∞

∑
m=0
|a|m)2

< ∞.

(a) Use the given identity to find the Z transform of the unit ramp. Be sure to give
the region of convergence. Check your answer against that given on page 597.

(b) Sketch the pole-zero plot of the Z transform.

(c) Is the unit ramp absolutely summable?

4. E Sketch the pole-zero plots and regions of convergence for the Z transforms of the
following impulse responses, and indicate whether a discrete-time LTI system with
these impulse responses is stable:

(a) h1(n) = δ(n)+0.5δ(n−1).

(b) h2(n) = (0.5)nu(n).

(c) h3(n) = 2nu(n).

5. E Consider the anti-causal continuous-time exponential signal x given by

∀ t ∈ R, x(t) =−e−atu(−t),

for some real or complex number a, where, as usual, u is the unit step.

(a) Show that the Laplace transform of x is

X̂(s) =
1

s+a

with region of convergence

RoC(x) = {s ∈ C | Re{s}<−Re{a}}.

(b) Where are the poles and zeros?

Lee & Varaiya, Signals and Systems 533

http://LeeVaraiya.org


EXERCISES

(c) Under what conditions on a is x absolutely integrable?

(d) Assuming that x is absolutely integrable, find its CTFT.

6. E This exercise demonstrates that the Laplace transform is linear. Show that if x
and y are continuous-time signals, a and b are complex (or real) constants, and w is
given by

∀ t ∈ R, w(t) = ax(t)+by(t),

then the Laplace transform is

∀ s ∈ RoC(w), Ŵ (s) = aX̂(s)+bŶ (s),

where
RoC(w)⊃ RoC(x)∩RoC(y).

7. T Let the causal sinusoidal signal y be given by

∀ t ∈ R, y(t) = cos(ω0t)u(t),

where ω0 is a real number and u is the unit step.

(a) Show that the Laplace transform is

∀ s ∈ {s | Re{s}> 0}, Ŷ (s) =
s

s2 +ω2
0
.

Hint: Use linearity, demonstrated in exercise 6, and Euler’s relation.

(b) Sketch the pole-zero plot and show the region of convergence.

8. E Consider a discrete-time LTI system with impulse response

∀n, h(n) = an cos(ω0n)u(n),

for some ω0 ∈ R. Determine for what values of a this system is stable.

9. T The continuous-time unit ramp signal w is given by

∀t ∈ R, x(t) = tu(t),

where u is the unit step.

534 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


12. STABILITY

(a) Find the Laplace transform of the unit ramp, and give the region of conver-
gence.
Hint: Use integration by parts in (12.16) and the fact that

∫
∞

0 te−σtdt < ∞ for
σ > 0.

(b) Sketch the pole-zero plot of the Laplace transform.

10. E Let h and g be the impulse response of two stable systems. They may be discrete-
time or continuous-time. Let a and b be two complex numbers. Show that the
system with impulse response ah+bg is stable.

11. T Consider a series composition of two (continuous- or discrete-time) systems with
impulse response h and g. The output v of the first system is related to its input
x by v = h ∗ x. The output y of the second system (and of the series composition)
is y = g ∗ v. Suppose both systems are stable. Show that the series composition is
stable.
Hint: Use the definition of stability.

12. T Let h be the impulse response of a stable discrete-time system, so it is absolutely
summable, and denote

‖h‖=
∞

∑
n=−∞

|h(n)|.

(‖h‖ is called the norm of the impulse response.)

(a) Suppose the input signal x is bounded by M, i.e. ∀n, |x(n)| ≤ M. Show that
the output y = h∗ x is bounded by ‖h‖M.

(b) Consider the input signal x where

∀n ∈ Z, x(n) =
{

h(−n)/|h(−n)|, h(n) 6= 0
0, h(n) = 0.

Show that ‖h‖ is the smallest bound of the output y = h∗ x.

(c) Let g be the impulse response of another stable system with norm ‖g‖. Show
that the norm satisfies the triangle inequality,

‖h+g‖ ≤ ‖h‖+‖g‖.

(d) Suppose the two systems are placed in series. The composition has the im-
pulse response h∗g. Show that

‖h∗g‖ ≤ ‖h‖×‖g‖.

Lee & Varaiya, Signals and Systems 535

http://LeeVaraiya.org


EXERCISES

x y
h1

h2 g2

g1

+

Figure 12.7: System composition for Exercise 13.

13. E Show that the series-parallel composition of Figure 12.7 is stable if the four
component systems are stable. Let h be the impulse response of the composition.
Express h in terms of the component impulse responses and then estimate ‖h‖ in
terms of the norms of the components.

14. E Let x be a discrete-time signal of finite duration, i.e. x(n) = 0 for n<M and n>N
where M and N are finite integers (positive or negative). Let X̂ be its Z transform.

(a) Show that all its poles (if any) are at z = 0.

(b) Show that if x is causal it has N poles at z = 0.

15. T This problem relates the Z and Laplace transforms. Let x be a discrete-time signal
with Z transform X̂ : RoC(x)→C. Consider the continuous-time signal y related to
x by

∀t ∈ R, y(t) =
∞

∑
n=−∞

x(n)δ(t−nT ).

Here T > 0 is a fixed period. So y comprises delta functions located at t = nT of
magnitude x(n).

(a) Use the sifting property and the definition (12.16) to find the Laplace trans-
form Ŷ of y. What is RoC(y)?

(b) Show that Ŷ (s) = X̂(esT ), where X̂(esT ) is X̂(z) evaluated at s = esT .

(c) Suppose X̂(z) = 1
z−1 with RoC(x) = {z | |z|> 1}. What are Ŷ and RoC(y)?

536 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


13
Laplace and Z Transforms

Contents
13.1 Properties of the Z tranform . . . . . . . . . . . . . . . . . . . . . 538

13.1.1 Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
13.1.2 Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544
13.1.3 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
13.1.4 Conjugation . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
13.1.5 Time reversal . . . . . . . . . . . . . . . . . . . . . . . . . . 547
13.1.6 Multiplication by an exponential . . . . . . . . . . . . . . . . 548
13.1.7 Causal signals and the initial value theorem . . . . . . . . . . 548

13.2 Frequency response and pole-zero plots . . . . . . . . . . . . . . . 550
13.3 Properties of the Laplace transform . . . . . . . . . . . . . . . . . 552

13.3.1 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
13.3.2 Sinusoidal signals . . . . . . . . . . . . . . . . . . . . . . . 555
13.3.3 Differential equations . . . . . . . . . . . . . . . . . . . . . . 556

13.4 Frequency response and pole-zero plots . . . . . . . . . . . . . . . 557
13.5 The inverse transforms . . . . . . . . . . . . . . . . . . . . . . . . 559

13.5.1 Inverse Z transform . . . . . . . . . . . . . . . . . . . . . . . 559
13.5.2 Inverse Laplace transform . . . . . . . . . . . . . . . . . . . 568

13.6 Steady state response . . . . . . . . . . . . . . . . . . . . . . . . . 570
13.7 Linear difference and differential equations . . . . . . . . . . . . . 573

13.7.1 LTI differential equations . . . . . . . . . . . . . . . . . . . . 579
13.8 State-space models . . . . . . . . . . . . . . . . . . . . . . . . . . . 584

13.8.1 Continuous-time state-space models . . . . . . . . . . . . . . 590
13.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596

Probing Further: Derivatives of Z transforms . . . . . . . . . . . . . 597
Probing Further: Inverse transform as an integral . . . . . . . . . . . 600
Probing Further: (Continued) Inverse transform . . . . . . . . . . . . 601

537



13.1. PROPERTIES OF THE Z TRANFORM

Probing Further: Differentiation and Laplace transforms . . . . . . . 602
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603

In the previous chapter, we defined Laplace and Z transforms to deal with signals that
are not absolutely summable and systems that are not stable. The Z transform of the
discrete-time signal x is given by

∀ z ∈ RoC(x), X̂(z) =
∞

∑
m=−∞

x(m)z−m,

where RoC(x) is the region of convergence, the region in which the sum above converges
absolutely.

The Laplace transform of the continuous-time signal x is given by

∀ s ∈ RoC(x), X̂(s) =
∞∫
−∞

x(t)e−stdt,

where RoC(x) is again the region of convergence, the region in which the integral above
converges absolutely.

In this chapter, we explore key properties of the Z and Laplace transforms and give ex-
amples of transforms. We will also explain how, given a rational polynomial in z or s,
plus a region of convergence, one can find the corresponding time-domain function. This
inverse transform proves particularly useful, because compositions of LTI systems, stud-
ied in the next chapter, often lead to rather complicated rational polynomial descriptions
of a transfer function.

Z transforms of common signals are given in table 13.1. Properties of the Z transform are
summarized in table 13.2 and elaborated in the first section below.

13.1 Properties of the Z tranform

The Z transform has useful properties that are similar to those of the four Fourier trans-
forms. They are summarized in table 13.2 and elaborated in this section.

538 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


13. LAPLACE AND Z TRANSFORMS

Discrete-time signal
∀ n ∈ Z

Z transform
∀ z ∈ RoC(x)

Roc(x)⊂ C Reference

x(n) = δ(n−M) X̂(z) = z−M C Example
12.12

x(n) = u(n) X̂(z) =
z

z−1
{z | |z|> 1} Example

12.7

x(n) = anu(n) X̂(z) =
z

z−a
{z | |z|> |a|} Example

13.3

x(n) = anu(−n) X̂(z) =
1

1−a−1z
{z | |z|< |a|} Exercise 1

in Chapter
12

x(n) = cos(ω0n)u(n) X̂(z) =
z2− zcos(ω0)

z2−2zcos(ω0)+1

{z | |z|> 1} Example
13.3

x(n) = sin(ω0n)u(n) X̂(z) =
zsin(ω0)

z2−2zcos(ω0)+1
,

{z | |z|> 1} Exercise 1

x(n) =
1

(N−1)!
(n−1) · · ·(n−N +1)

an−Nu(n−N)

X̂(z) =
1

(z−a)N {z | |z|> |a|} ( 13.13)

x(n) =
(−1)N

(N−1)!
(N−1−n) · · ·(1−n)

an−Nu(−n)

X̂(z) =
1

(z−a)N {z | |z|< |a|} (13.14)

Table 13.1: Z transforms of key signals. The signal u is the unit step (12.13), δ is
the Kronecker delta, a is any complex constant, ω0 is any real constant, M is any
integer constant, and N > 0 is any integer constant.

Lee & Varaiya, Signals and Systems 539

http://LeeVaraiya.org


13.1. PROPERTIES OF THE Z TRANFORM

Time domain
∀ n ∈ Z

Frequency
domain
∀ z ∈ RoC

RoC Name
(reference)

w(n) = ax(n)+by(n) Ŵ (z) =
aX̂(z)+bŶ (z)

RoC(w)⊃
RoC(x)∩RoC(y)

Linearity
(Section 13.1.1)

y(n) = x(n−N) Ŷ (z) = z−N X̂(z) RoC(y) = RoC(x) Delay
(Section 13.1.2)

y(n) = (x∗h)(n) Ŷ (z) = X̂(z)Ĥ(z) RoC(y)⊃
RoC(x)∩RoC(h)

Convolution
(Section 13.1.3)

y(n) = x∗(n) Ŷ (z) = [X̂(z∗)]∗ RoC(y) = RoC(x) Conjugation
(Section 13.1.4)

y(n) = x(−n) Ŷ (z) = X̂(z−1) RoC(y) =
{z | z−1 ∈ RoC(x)}

Time reversal
(Section 13.1.5)

y(n) = nx(n) Ŷ (z) =−z
d
dz

X̂(z) RoC(y) = RoC(x) Scaling by n
(page 597)

y(n) = a−nx(n) Ŷ (z) = X̂(az) RoC(y) =
{z | az ∈ RoC(x)}

Exponential
scaling

(Section 13.1.6)

Table 13.2: Properties of the Z transform. In this table, a,b are complex constants,
and N is an integer constant.

540 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


13. LAPLACE AND Z TRANSFORMS

13.1.1 Linearity

Suppose x and y have Z transforms X̂ and Ŷ , that a,b are two complex constants, and that

w = ax+by.

Then the Z transform of w is

∀ z ∈ RoC(w), Ŵ (z) = aX̂(z)+bŶ (z).

This follows immediately from the definition of the Z transform,

Ŵ (z) =
∞

∑
m=−∞

w(m)z−m

=
∞

∑
m=−∞

(ax(m)+by(m))z−m

= aX̂(z)+bŶ (z).

The region of convergence of w must include at least the regions of convergence of x and y,
since if x(n)r−n and y(n)r−n are absolutely summable, then certainly (ax(n)+by(n))r−n

is absolutely summable. Conceivably, however, the region of convergence may be larger.
Thus, all we can assert in general is

RoC(w)⊃ RoC(x)∩RoC(y). (13.1)

Linearity is extremely useful because it makes it easy to find the Z transform of compli-
cated signals that can be expressed a linear combination of signals with known Z trans-
forms.

Example 13.1: We can use the results of example 12.12 plus linearity to find, for
example, the Z transform of the signal x given by

∀ n ∈ Z, x(n) = δ(n)+0.9δ(n−4)+0.8δ(n−5).

This is simply
X̂(z) = 1+0.9z−4 +0.8z−5.

Lee & Varaiya, Signals and Systems 541

http://LeeVaraiya.org


13.1. PROPERTIES OF THE Z TRANFORM

We can identify the poles by writing this as a rational polynomial in z (multiply top
and bottom by z5),

X̂(z) =
z5 +0.9z+0.8

z5 ,

from which we see that there are 5 poles at z = 0. The signal is causal, so the region
of convergence is the region outside the circle passing through the pole with the
largest magnitude, or in this case,

RoC(x) = {z ∈ C | z 6= 0}.

Example 13.1 illustrates how to find the transfer function of any finite impulse response
(FIR) filter. It also suggests that the transfer function of an FIR filter always has a region
of convergence that includes the entire complex plane, except possibly z = 0. The region
of convergence will also not include z = ∞ if the FIR filter is not causal.

Linearity can also be used to invert a Z transform. That is, given a rational polynomial and
a region of convergence, we can find the time-domain function that has this Z transform.
The general method for doing this will be considered in the next chapter, but for certain
simple cases, we just have to recognize familiar Z transforms.

Example 13.2: Suppose we are given the Z transform

∀ z ∈ {z ∈ C | z 6= 0}, X̂(z) =
z5 +0.9z+0.8

z5 .

We can immediately recognize this as the Z transform of a causal signal, because
it is a proper rational polynomial and the region of convergence includes the entire
complex plane except z = 0 (thus, it has the form of Figure 12.2(a)).

If we divide through by z5, this becomes

∀ z ∈ {z ∈ C | z 6= 0}, X̂(z) = 1+0.9z−4 +0.8z−5.

By linearity, we can see that

∀ n ∈ Z, x(n) = x1(n)+0.9x2(n)+0.8x3(n),

542 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


13. LAPLACE AND Z TRANSFORMS

where x1 has Z transform 1, x2 has Z transform z−4, and x3 has Z transform z−5.
The regions of convergence for each Z transform must be at least that of x, or at
least {z ∈ C | z 6= 0}. From example 12.12, we recognize these Z transforms, and
hence obtain

∀ n ∈ Z, x(n) = δ(n)+0.9δ(n−4)+0.8δ(n−5).

Another application of linearity uses Euler’s relation to deal with sinusiodal signals.

Example 13.3: Consider the exponential signal x given by

∀ n ∈ Z, x(n) = anu(n),

where a is a complex constant. Its Z transform is

X̂(z) =
∞

∑
m=−∞

x(m)z−m =
∞

∑
m=0

amz−m =
1

1−az−1 =
z

z−a
, (13.2)

where we have used the geometric series identity (12.9). This has a zero at z = 0
and a pole at z = a. The region of convergence is

RoC(x) = {z ∈ C |
∞

∑
m=0
|a|m|z|−m < ∞}= {z | |z|> |a|}, (13.3)

the region of the complex plane outside the circle that passes through the pole. A
pole-zero plot is shown in Figure 13.1(a).

We can use this result plus linearity of the Z transform to determine the Z transform
of the causal sinusoidal signal y given by

∀ n ∈ Z, y(n) = cos(ω0n)u(n).

Euler’s relation implies that

y(n) =
1
2
{eiω0nu(n)+ e−iω0nu(n)}.

Lee & Varaiya, Signals and Systems 543

http://LeeVaraiya.org


13.1. PROPERTIES OF THE Z TRANFORM

Re z

Im z

RoC(x) |z|=1

Re z

Im z

RoC(y)

a

|z|=|a|

eiω0

e-iω0

(a) (b)

Figure 13.1: Pole-zero plots for the exponential signal x and the sinusoidal signal
y of example 13.3.

Using (13.2) and linearity,

Ŷ (z) =
1
2

{
z

z− eiω0
+

z
z− e−iω0

}
=

1
2

2z2− z(eiω0 + e−iω0)

(z− eiω0)(z− e−iω0)

=
z(z− cos(ω0))

z2−2zcos(ω0)+1
.

This has a zero at z = 0, another zero at z = cos(ω0), and two poles, one at z = eiω0

and the other at z = e−iω0 . Both of these poles lie on the unit circle. A pole-zero
plot is shown in Figure 13.1(b), where we assume that ω0 = π/4. We know from
(13.1) and (13.3) that the region of convergence is at least the area outside the unit
circle. In this case, we can conclude that it is exactly the area outside the unit circle,
because it must be bordered by the poles, and it must have the form of a region of
convergence of a causal signal.

13.1.2 Delay

For any integer N (positive or negative) and signal x, let y = DN(x) be the signal given by

∀n ∈ Z, y(n) = x(n−N).

544 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


13. LAPLACE AND Z TRANSFORMS

Suppose x has Z transform X̂ with domain RoC(x). Then RoC(y) = RoC(x) and

∀z ∈ RoC(y), Ŷ (z) =
∞

∑
m=−∞

y(m)z−m =
∞

∑
m=−∞

x(m−N)z−m = z−NX̂(z). (13.4)

Thus

If a signal is delayed by N samples, its Z transform is multiplied by z−N .

13.1.3 Convolution

Suppose x and h have Z transforms X̂ and Ĥ. Let

y = x∗h.

Then
∀z ∈ RoC(y), Ŷ (z) = X̂(z)Ĥ(z). (13.5)

This follows from using the definition of convolution,

∀n ∈ Z, y(n) =
∞

∑
m=−∞

x(m)h(n−m),

in the definition of the Z transform,

Ŷ (z) =
∞

∑
n=−∞

y(n)z−n =
∞

∑
n=−∞

∞

∑
m=−∞

x(m)z−mh(n−m)z−(n−m)

=
∞

∑
l=−∞

∞

∑
m=−∞

x(m)z−mh(l)z−l = X̂(z)Ĥ(z).

The Z transform of y converges absolutely at least at values of z where both X̂ and Ĥ
converge absolutely. Thus,

RoC(y)⊃ RoC(x)∩RoC(h).

This is true because the double sum above can be written as

∞

∑
n=−∞

y(n)z−n =

(
∞

∑
m=−∞

x(m)z−m

)(
∞

∑
l=−∞

h(l)z−l

)
.

Lee & Varaiya, Signals and Systems 545

http://LeeVaraiya.org


13.1. PROPERTIES OF THE Z TRANFORM

This obviously converges absolutely if each of the two factors converges absolutely. Note
that the region of convergence may actually be larger than RoC(x)∩RoC(h). This can
occur, for example, if the product (13.5) results in zeros of X̂(z) cancelling poles of Ĥ(z)
(see Exercise 3).

If h is the impulse response of an LTI system, then its Z transform is called the transfer
function of the system. The result (13.5) tells us that the Z transform of the output is the
product of the Z transform of the input and the transfer function. The transfer function,
therefore, serves the same role as the frequency response. It converts convolution into
simple multiplication.

13.1.4 Conjugation

Suppose x is a complex-valued signal. Let y be defined by

∀ n ∈ Z, y(n) = [x(n)]∗.

Then
∀ z ∈ RoC(y), Ŷ (z) = [X̂(z∗)]∗,

where
RoC(y) = RoC(x).

This follows because

∀ z ∈ RoC(x), Ŷ (z) =
∞

∑
n=−∞

y(n)z−n

=
∞

∑
n=−∞

x∗(n)z−n

=

[
∞

∑
n=−∞

x(n)(z∗)−n

]∗
= [X̂(z∗)]∗.

If x happens to be a real signal, then y = x, so Ŷ = X̂ , so

X̂(z) = [X̂(z∗)]∗.

The key consequence is:

546 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


13. LAPLACE AND Z TRANSFORMS

For the Z transform of a real-valued signal, poles and zeros occur in complex-conjugate
pairs. That is, if there is a zero at z = q, then there must be a zero at z = q∗, and if there
is a pole at z = p, then there must be a pole at z = p∗.

This is because

0 = X̂(q) = (X̂(q∗))∗

Similarly, if there is a pole at z = p, then there must also be a pole at z = p∗.

Example 13.4: Example 13.3 gave the Z transform of a signal of the form x(n) =
anu(n), where a is allowed to be complex, and the Z tranform of a signal of the
form y(n) = cos(ω0n)u(n), which is real-valued. The pole-zero plots are shown
in Figure 13.1. In that figure, the complex signal has a pole at z = a, and none at
z = a∗. But the real signal has a pole at z = eiω0 and a matching pole at the complex
conjugate, z = e−iω0 .

13.1.5 Time reversal

Suppose x has Z transform X̂ and y is obtained from x by reversing time, so that

∀ n ∈ Z, y(n) = x(−n).

Then

∀z ∈ {z ∈ C | z−1 ∈ Roc(x)}, Ŷ (z) = X̂(z−1).

This is evident from the definition of the Z transform, which implies that

Ŷ (z) =
∞

∑
m=−∞

x(−m)z−m =
∞

∑
n=−∞

x(n)(z−1)−n = X̂(z−1),

where X̂(z−1) is X̂ evaluated at z−1.

//

Lee & Varaiya, Signals and Systems 547

http://LeeVaraiya.org


13.1. PROPERTIES OF THE Z TRANFORM

13.1.6 Multiplication by an exponential

Suppose x has Z transform X̂ , a is a complex constant, and y(n) = a−nx(n) for all n. Then

∀z ∈ {z ∈ C | az ∈ RoC(x)}, Ŷ (z) = X̂(az),

where X̂(az) is X̂ evaluated at az. This is because

Ŷ (z) =
∞

∑
m=−∞

y(m)z−m =
∞

∑
m=−∞

x(m)(az)−m = X̂(az).

Note that if X̂ has a pole at p (or a zero at q), then Ŷ has a pole at p/a (or a zero at q/a).

Example 13.5: Suppose x is given by

∀ n ∈ Z, x(n) = anu(n).

Then we know from example 13.3 that

∀ z ∈ {z | |z|> |a|}, X̂(z) =
z

z−a
.

This has a pole at z = a. Now let y(n) = a−nx(n) = u(n). The Z transform is

Ŷ (z) = X̂(az) =
az

az−a
=

z
z−1

,

as expected. Moreover, this has a pole at z = a/a = 1, as expected, and the region
of convergence is indeed given by

{z ∈ C | az ∈ RoC(x)}= {z ∈ C | |z|> 1}.

13.1.7 Causal signals and the initial value theorem

Consider a causal discrete-time signal x. Its Z transform is

∀ z ∈ {z ∈ C | |z|> r}, X̂(z) =
∞

∑
m=0

x(m)z−m,

548 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


13. LAPLACE AND Z TRANSFORMS

for some r (the largest magnitude of a pole). Then

lim
z→∞

∞

∑
m=0

x(m)z−m = x(0)+ lim
z→∞

∞

∑
m=1

x(m)z−m = x(0).

This is because as z goes to ∞, each term x(m)z−m goes to zero. Thus

If x is causal, x(0) = lim
z→∞

X̂(z) .

This is called the initial value theorem.

Example 13.6: The Z transform of the unit step x(n) = u(n) is X̂(z) = z/(z− 1),
so, as expected,

x(0) = lim
z→∞

X̂(z) = lim
z→∞

z
z−1

= lim
z→∞

1
1− z−1 = 1,

because
lim
z→∞

z−1 = 0.

Suppose a Z transform X̂ is the rational polynomial

X̂(z) =
aMzM +aM−1zM−1 · · ·+a0

zN +bN−1zN−1 + · · ·+b0
.

If x is causal, then this rational polynomial must be proper. Were this not the case, if
M > N, then by the initial value theorem, we would have

x(0) = lim
z→∞

X̂(z) = ∞,

which is certainly not right.

Example 13.7: Consider the Z transform

∀ z ∈ C, X̂(z) = z.

Lee & Varaiya, Signals and Systems 549

http://LeeVaraiya.org


13.2. FREQUENCY RESPONSE AND POLE-ZERO PLOTS

This is not a proper rational polynomial (the numerator has order 1 and the denomi-
nator, which is 1, has order 0). From example 12.12, we know that this corresponds
to

∀ n ∈ Z, x(n) = δ(n+1).

This is not a causal signal.

13.2 Frequency response and pole-zero plots

A pole-zero plot can be used to get a quick estimate of key properties of an LTI system.
We have already seen that it reveals whether the system is stable. It also reveals key
features of the frequency response, such as whether the system is highpass or lowpass.

Consider a stable discrete-time LTI system with impulse response h, frequency response
H, and rational transfer function Ĥ. We know that the frequency response and transfer
function are related by

∀ω ∈ R, H(ω) = Ĥ(eiω).

That is, the frequency response is equal to the Z transform evaluated on the unit circle.
The unit circle is in the region of convergence because the system is stable.

Assume that Ĥ is a rational polynomial, in which case we can express it in terms of the
first-order factors of the numerator and denominator polynomials,

Ĥ(z) =
(z−q1) · · ·(z−qM)

(z− p1) · · ·(z− pN)
,

with zeros at q1, · · · ,qM and poles at p1, · · · , pN . The zeros and poles may be repeated
(i.e., they may have multiplicity greater than one). The frequency response is therefore

∀ ω ∈ R, H(ω) =
(eiω−q1) · · ·(eiω−qM)

(eiω− p1) · · ·(eiω− pN)
.

The magnitude response is

∀ ω ∈ R, |H(ω)|= |e
iω−q1| · · · |eiω−qM|
|eiω− p1| · · · |eiω− pN |

.

550 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


13. LAPLACE AND Z TRANSFORMS

Each of these factors has the form

|eiω−b|

where b is the location of either a pole or a zero. The factor |eiω−b| is just the distance
from eiω to b in the complex plane.

Of course, eiω is a point on the unit circle. If that point is close to a zero at location q, then
the factor |eiω−q| is small, so the magnitude response will be small. If that point is close
to a pole at p, then the factor |eiω− p| is small, but since this factor is in the denominator,
the magnitude response will be large. Thus,

The magnitude response of a stable LTI system may be estimated from the pole-zero
plot of its transfer function. Starting at ω = 0, trace counterclockwise around the unit
circle as ω increases. If you pass near a zero, then the magnitude response should dip.
If you pass near a pole, then the magnitude response should rise.

Example 13.8: Consider the causal LTI system of example 9.16, which is defined
by the difference equation

∀ n ∈ Z, y(n) = x(n)+0.9y(n−1).

We can find the transfer function by taking Z transforms on both sides, using lin-
earity, to get

Ŷ (z) = X̂(z)+0.9z−1Ŷ (z).

The transfer function is

Ĥ(z) =
Ŷ (z)
X̂(z)

=
1

1−0.9z−1 =
z

z−0.9
.

This has a pole at z = 0.9, which is closest to z = 1 on the unit circle, and a zero at
z= 0, which is equidistant from all points on the unit circle. The zero, therefore, has
no effect on the magnitude response. The pole is closest to z= 1, which corresponds
to ω = 0, so the magnitude response peaks at ω = 0, as shown in Figure 9.12.

Lee & Varaiya, Signals and Systems 551

http://LeeVaraiya.org


13.3. PROPERTIES OF THE LAPLACE TRANSFORM

Example 13.9: Consider a legnth-4 moving average. Using methods like those in
example 9.12, we can show that the transfer function is

∀ z ∈ {z ∈ C | z 6= 0}, Ĥ(z) =
1
4
· 1− z−4

1− z−1 =
1
4

z4−1
z3(z−1)

.

The numerator polynomial has roots at the four roots of unity, which are z = 1,
z = eiπ/2, z =−1, and z = ei3π/2. Thus, we can write this transfer function as

∀ z ∈ {z ∈ C | z 6= 0},

Ĥ(z) =
1
4
(z−1)(z− eiπ/2)(z+1)(z− ei3π/2)

z3(z−1)

=
1
4
(z− eiπ/2)(z+1)(z− ei3π/2)

z3 .

The (z− 1) factors in the numerator and denominator cancel (fortunately, or we
would have a pole at z = 1, on the unit circle, and we would have to conclude that
the system was unstable). A pole-zero plot is shown in Figure 13.2.

The magnitude response is shown in Figure 9.8. Relating that figure to the pole-
zero plot, we see that the frequency response peaks at z= 1, and as we move around
the unit circle, we pass through zero at ω = π/2, or z = eiπ/2, and again through
zero at ω = π. The magnitude response is periodic with period 2π, so the zero at
z = e3iπ/2 is also a zero at z = e−iπ/2, corresponding to a frequency of ω =−π/2.

13.3 Properties of the Laplace transform

The Laplace transform has useful properties that are similar to those of the Z transform.
They are summarized in table 13.4 and elaborated mostly in the exercises at the end of
this chapter. In this section, we elaborate on one of the properties that is not shared by the
Z transform, namely integration, and then use the properties to develop some examples.
Key Laplace transforms are given in table 13.3.

552 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


13. LAPLACE AND Z TRANSFORMS

Continuous-time
signal
∀ t ∈ R

Laplace
transform
∀ s ∈ RoC(x)

Roc(x) Reference

x(t) = δ(t− τ) X̂(s) = e−sτ C Exercise
12.19

x(t) = u(t) X̂(s) = 1/s {s ∈ C | Re{s}> 0} Example
12.15

x(t) = e−atu(t) X̂(s) =
1

s+a
{s ∈ C | Re{s}>
−Re{a}}

Example
12.18

x(t) =−e−atu(−t) X̂(s) =
1

s+a
{s ∈ C | Re{s}<
−Re{a}}

Exercise 5

x(t) = cos(ω0t)u(t) X̂(s) =
s

s2 +ω2
0

{s | Re{s}> 0} Exercise 7

x(t) = sin(ω0t)u(t) X̂(s) =
ω0

s2 +ω2
0

{s | Re{s}> 0} Example
13.10

x(t) =
tN−1

(N−1)!
e−atu(t)

X̂(z) =
1

(s+a)N {s ∈ C | Re{s}>
−Re{a}}

—

x(t) =

− tN−1

(N−1)!
e−atu(−t)

X̂(z) =
1

(s+a)N {s ∈ C | Re{s}<
−Re{a}}

—

Table 13.3: Laplace transforms of key signals. The signal u is the unit step
(12.18), δ is the Dirac delta, a is any complex constant, ω0 is any real constant, τ

is any real constant, and N is a positive integer.

Lee & Varaiya, Signals and Systems 553

http://LeeVaraiya.org


13.3. PROPERTIES OF THE LAPLACE TRANSFORM

Time domain
∀ t ∈ R

s domain
∀ s ∈ RoC

RoC Name
(reference)

w(t) = ax(t)+by(t) Ŵ (s) =
aX̂(s)+bŶ (s)

RoC(w)⊃
RoC(x)∩RoC(y)

Linearity
(Exercise 6)

y(t) = x(t− τ) Ŷ (s) = e−sτX̂(s) RoC(y) = RoC(x) Delay
(Exercise 7)

y(t) = (x∗h)(r) Ŷ (s) = X̂(s)Ĥ(s) RoC(y)⊃
RoC(x)∩RoC(h)

Convolution
(Exercise 8)

y(t) = x∗(t) Ŷ (s) = [X̂(s∗)]∗ RoC(y) = RoC(x) Conjugation
(Exercise 9)

y(t) = x(ct) Ŷ (s) = X̂(s/c)/|c| RoC(y) =
{s | s/c ∈ RoC(x)}

Time scaling
(Exercise 10)

y(t) = tx(t)

Ŷ (s) =− d
ds

X̂(s)

RoC(y) = RoC(x) Scaling by t
—

y(t) = eatx(t) Ŷ (s) = X̂(s−a) RoC(y) =
{s | s−a ∈ RoC(x)}

Exponential
scaling

(Exercise 11)

y(t) =
t∫
−∞

x(τ)dτ Ŷ (s) = X̂(s)/s RoC(y)⊃
RoC(x)∩{s | Re{s}> 0}

Integration
(Section 13.3.1)

y(t) =
d
dt

x(t)

Ŷ (s) = sX̂(s) RoC(y)⊃ RoC(x) Differentiation
(page 13.5.2)

Table 13.4: Properties of the Laplace transform. In this table, a,b are complex
constants, c and τ are real constants.

554 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


13. LAPLACE AND Z TRANSFORMS

13.3.1 Integration

Let y be defined by

∀ t ∈ R, y(t) =
t∫

−∞

x(τ)dτ.

The Laplace tranform is

∀ s ∈ RoC(y), Ŷ (s) = X̂(s)/s,

where
RoC(y)⊃ RoC(x)∩{s | Re{s}> 0}.

This follows from the convolution property in table 13.4. We recognize that

y(t) = (x∗u)(t),

where u is the unit step. Hence, from the convolution property,

Ŷ (s) = X̂(s)Û(s)

and
RoC(y)⊃ RoC(x)∩RoC(u).

Û and RoC(u) are given in example 12.15, from which the property follows.

13.3.2 Sinusoidal signals

Sinusoidal signals have Laplace transforms with poles on the imaginary axis, as illustrated
in the following example.

Example 13.10: Let the causal sinusoidal signal y be given by

∀ t ∈ R, y(t) = sin(ω0t)u(t),

where ω0 is a real number and u is the unit step. Euler’s relation implies that

y(t) =
1
2i
[eiω0tu(t)− e−iω0tu(t)].

Lee & Varaiya, Signals and Systems 555

http://LeeVaraiya.org


13.3. PROPERTIES OF THE LAPLACE TRANSFORM

Using (12.18) and linearity,

Ŷ (s) =
1
2i

{
1

s+ iω0
− 1

s− iω0

}
=

ω0

s2 +ω2
0
.

This has no finite zeros and two poles, one at s = iω0 and the other at s = −iω0.
Both of these poles lie on the imaginary axis, as shown in Figure 13.3. The region
of convergence is the right half of the complex plane. Note that if this were the
impulse response of an LTI system, that system would not be stable. The region of
convergence does not include the imaginary axis.

13.3.3 Differential equations

We can use the differentiation property in table 13.4 to solve differential equations with
constant coefficients.

Example 13.11: In the tuning fork example of example 2.16, the displacement y
of a tine is related to the acceleration of the tine by

ÿ(t) =−ω
2
0y(t),

where ω0 is a real constant. Let us assume that the tuning fork is initially at rest,
and an external input x (representing say, a hammer strike) adds to the acceleration
as follows,

ÿ(t) =−ω
2
0y(t)+ x(t).

We can use Laplace transforms to find the impulse response of this LTI system.
Taking Laplace transforms on both sides, using linearity and the differentiation
property,

∀ s ∈ RoC(y)∩RoC(x), s2Ŷ (s) =−ω
2
0Ŷ (s)+ X̂(s).

From this, we can find the transfer function of the system,

Ĥ(s) =
Ŷ (s)
X̂(s)

=
1

s2 +ω2
0
.

556 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


13. LAPLACE AND Z TRANSFORMS

Comparing this with example 13.10, we see that this differs only by a scaling by ω0
from the Laplace transform in that example. Thus, the pole-zero plot of the tuning
fork is shown in Figure 13.3, and the impulse response is given by

∀ t ∈ R, h(t) = sin(ω0t)u(t)/ω0.

Interestingly, this implies that the tuning fork is not stable. This impulse response
is not absolutely integrable. However, this model of the tuning fork is idealized. It
fails to account for loss of energy due to friction. A more accurate model would be
stable.

The above example can be easily generalized to find the transfer function of any LTI
system described by a differential equation. In fact, Laplace transforms offer a powerful
and effective way to solve differential equations.

In the previous example, we inverted the Laplace transform by recognizing that it matched
the example before that. In the next chapter, we will give a more general method for
inverting a Laplace transform.

13.4 Frequency response and pole-zero plots

Just as with Z transforms, the pole-zero plot of a Laplace transform can be used to get a
quick estimate of key properties of an LTI system. Consider a stable continuous-time LTI
system with impulse response h, frequency response H, and rational transfer function Ĥ.
We know that the frequency response and transfer function are related by

∀ω ∈ R, H(ω) = Ĥ(iω).

That is, the frequency response is equal to the Laplace transform evaluated on the imag-
inary axis. The imaginary axis is in the region of convergence because the system is
stable.

Assume that Ĥ is a rational polynomial, in which case we can express it in terms of the
first-order factors of the numerator and denominator polynomials,

Ĥ(s) =
(s−q1) · · ·(s−qM)

(s− p1) · · ·(s− pN)
,

Lee & Varaiya, Signals and Systems 557

http://LeeVaraiya.org


13.4. FREQUENCY RESPONSE AND POLE-ZERO PLOTS

with zeros at q1, · · · ,qM and poles at p1, · · · , pN . The zeros and poles may be repeated
(i.e., they may have multiplicity greater than one). The frequency response is therefore

∀ ω ∈ R, H(ω) =
(iω−q1) · · ·(iω−qM)

(iω− p1) · · ·(iω− pN)
.

The magnitude response is

∀ ω ∈ R, |H(ω)|= |iω−q1| · · · |iω−qM|
|iω− p1| · · · |iω− pN |

.

Each of these factors has the form
|iω−b|

where b is the location of either a pole or a zero. The factor |iω− b| is just the distance
from iω to b in the complex plane.

Of course, iω is a point on the imaginary axis. If that point is close to a zero at location
q, then the factor |iω−q| is small, so the magnitude response will be small. If that point
is close to a pole at p, then the factor |iω− p| is small, but since this factor is in the
denominator, the magnitude response will be large. Thus,

The magnitude response of a stable LTI system may be estimated from the pole-zero
plot of its transfer function. Starting at iω = 0, trace upwards and downwards along the
imaginary axis to increase or decrease ω. If you pass near a zero, then the magnitude
response should dip. If you pass near a pole, then the magnitude response should rise.

Example 13.12: Consider an LTI system with transfer function given by

∀ s ∈ {s | Re{s}> Re{a}}, H(s) =
s

(s−a)(s−a∗)
.

Suppose that a = c + iω0. Figure 13.4 shows three pole-zero plots for ω0 = 1
and three values of c, namely c = −1, c = −0.5, and c = −0.1. The magnitude
frequency responses can be calculated and plotted using the following Matlab code:

1 w = [-10:0.05:10];
2 a1 = -1.0 + i;
3 H1 = i*w./((i*w - a1).*(i*w-conj(a1)));
4 a2 = -0.5 + i;

558 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


13. LAPLACE AND Z TRANSFORMS

5 H2 = i*w./((i*w - a2).*(i*w-conj(a2)));
6 a3 = -0.1 + i;
7 H3 = i*w./((i*w - a3).*(i*w-conj(a3)));
8 plot(w, abs(H1), w, abs(H2), w, abs(H3));

The plots are shown together at the bottom of Figure 13.4. The plot with the higher
peaks corresponds to the pole-zero plot with the poles closer to the imaginary axis.

13.5 The inverse transforms

There are two inverse transforms. The inverse Z transform recovers the discrete-time sig-
nal x from its Z transform X̂ . The inverse Laplace transform recovers the continuous-time
signal x from its Laplace transform X̂ . We study the inverse Z transform in detail. The
inverse Laplace transform is almost identical. The general approach is to break down
a complicated rational polynomial into a sum of simple rational polynomials whose in-
verse transforms we recognize. We consider only the case where X̂ can be expressed as a
rational polynomial.

13.5.1 Inverse Z transform

The procedure is to construct the partial fraction expansion of X̂ , which breaks it down
into a sum of simpler rational polynomials.

Example 13.13: Consider a Z transform given by

∀ z ∈ RoC(x), X̂(z) =
1

(z−1)(z−2)
=
−1

z−1
+

1
z−2

. (13.6)

This sum is called the partial fraction expansion of X̂ , and we will see below how
to find it systematically. We can write this as

∀ z ∈ RoC(x), X̂(z) = X̂1(z)+ X̂2(z),

Lee & Varaiya, Signals and Systems 559

http://LeeVaraiya.org


13.5. THE INVERSE TRANSFORMS

where X̂1(z) =−1/(z−1) and X̂2(z) = 1/(z−2) are the two terms.

To determine the inverse Z transforms of the two terms, we need to know their
regions of convergence. Recall from the linearity property that RoC(x) includes the
intersection of the regions of convergence of the two terms,

RoC(x)⊃ RoC(x1)∩RoC(x2). (13.7)

Once we know these two regions of convergence, we can use table 13.1 to obtain
the inverse Z transform of each term. By the linearity property the sum of these
inverses is the inverse Z transform of X̂ .

X̂ given by (13.6) has one pole at z = 1 and one pole at z = 2. From section 12.2.3
we know that RoC(x) is bordered by these poles, so it has one of three forms:

1. RoC(x) = {z ∈ C | |z|< 1},
2. RoC(x) = {z ∈ C | 1 < |z|< 2}, or

3. RoC(x) = {z ∈ C | |z|> 2}.

Suppose we have case (1), which implies that x is anti-causal. From (13.7), the
region of convergence of the term −1/(z− 1) must be {z ∈ C | |z| < 1}. The
only other possibility is {z ∈ C | |z| > 1}, which would violate (13.7) unless the
intersection is empty (which would not be an interesting case). Thus, from table
13.1, the inverse Z transform of the first term must be the anti-causal signal x1(n) =
u(−n), for all n ∈ Z.

For the second term, 1/(z− 2), its region of convergence could be either {z ∈
C | |z| < 2} or {z ∈ C | |z| > 2}. Again, the second possibility would violate
(13.7), so we must have the first possibility. This results in x2(n) = −2n−1u(−n),
from the last entry in table 13.1. Hence, the inverse Z transform is

∀ n ∈ Z, x(n) = u(−n)−2n−1u(−n).

If RoC(x) is given by case (2), we rewrite (13.6) slightly as

X̂(z) =−z−1 z
z−1

+
1

z−2
.

The inverse Z transform of the first term is obtained from table 13.1, together with
the delay property in table 13.2. The inverse Z transform of the second term is the

560 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


13. LAPLACE AND Z TRANSFORMS

same as in case (1). We conclude that in case (2) the inverse Z transform is the
two-sided signal

∀n, x(n) =−u(n−1)−2n−1u(−n).

In case (3), we write (13.6) as

X̂(z) =−z−1 z
z−1

+ z−1 z
z−2

,

and conclude that the inverse Z transform is the causal signal

∀n, x(n) =−u(n−1)+2n−1u(n−1).

We can generalize this example. Consider any strictly proper rational polynomial

X̂(z) =
A(z)
B(z)

=
aMzM + · · ·+a1z+a0

zN +bN−1zN−1 + · · ·+b1z+b0
.

The numerator is of order M, the denominator is of order N. ‘Strictly proper’ means that
M < N. We can factor the denominator,

X̂(z) =
aMzM + · · ·+a1z+a0

(z− p1)m1(z− p2)m2 · · ·(z− pk)mk
. (13.8)

Thus X̂ has k distinct poles at pi, each with multiplicy mi. Since the order of the denomi-
nator is N, it must be true that

N =
k

∑
i=1

mi . (13.9)

The partial fraction expansion of (13.8) is

X̂(z) =
k

∑
i=1

[
Ri1

(z− pi)
+

Ri2

(z− pi)2 + · · ·+
Rimi

(z− pi)mi

]
. (13.10)

A pole with multiplicity mi contributes mi terms to the partial fraction expansion, so the
total number of terms is N, the order of the denominator, from (13.9). The coefficients Ri j

are complex numbers called the residues of the pole pi.

We assume that the poles p1, · · · , pN are indexed so that |p1| ≤ · · · |pN |. The RoC(x) must
have one of the following three forms:

Lee & Varaiya, Signals and Systems 561

http://LeeVaraiya.org


13.5. THE INVERSE TRANSFORMS

1. RoC = {z ∈ C | |z|< |p1|},
2. RoC = {z ∈ C | |p j−1|< |z|< |p j|}, for j ∈ {2, · · · ,k}, or

3. RoC = {z ∈ C | |z|> |pk|} .

As in example 13.13, each term in the partial fraction expansion has two possible regions
of convergence, only one of which overlaps with RoC(x). Thus, if we know RoC(x), we
can determine the region of convergence of each term of the partial fraction expansion,
and then use table 13.1 to find its inverse.

The following example illustrates how to find the residues.

Example 13.14: We will find the inverse Z transform of

X̂(z) =
2z+3

(z−1)(z+2)
=

R1

z−1
+

R2

z+2
.

The residues R1,R2 can be found by matching coefficients on both sides. Rewrite
the right-hand side as

(R1 +R2)z+(2R1−R2)

(z−1)(z+2)
.

Matching the coefficients of the numerator polynomials on both sides we conclude
that R1 +R2 = 2 and 2R1−R2 = 3. We can solve these simultaneous equations to
determine that R1 = 5/3 and R2 = 1/3.

Alternatively, we can find residue R1 by multiplying both sides by (z−1) and eval-
uating at z = 1. That is,

R1 =
2z+3
z+2

∣∣∣∣
z=1

=
5
3
.

Similarly, we can find R2 by we multiplying both sides by z+ 2 and evaluating at
z =−2, to get

2z+3
z−1

|z=−2 = R2,

so R2 = 1/3. Thus the partial fraction expansion is

X̂(z) =
5/3
z−1

+
1/3
z+2

.

RoC(x) is either

562 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


13. LAPLACE AND Z TRANSFORMS

1. {z ∈ C | |z|< 1},
2. {z ∈ C | 1 < |z|< 2}, or

3. {z ∈ C | |z|> 2}.

Knowing which case holds, we can find the inverse Z transform of each term from
table 13.1. In the first case, x is the anti-causal signal

∀n, x(n) =−5
3

u(−n)− 1
3
(−2)n−1u(−n).

In the second case it is the two-sided signal

∀n, x(n) =
5
3

u(n−1)− 1
3
(−2)n−1u(−n).

In the third case it is the causal signal

∀n, x(n) =
5
3

u(n−1)+
1
3
(−2)n−1u(n−1).

If some pole of X̂ has multiplicity greater than one, it is slightly more difficult to carry out
the partial fraction expansion. The following example illustrates the method.

Example 13.15: Consider the expansion

X̂(z) =
2z+3

(z−1)(z+2)2 =
R1

z−1
+

R21

z+2
+

R22

(z+2)2 .

Again we can match coefficients and determine the residues. Alternatively, to ob-
tain R1 we multiply both sides by (z− 1) and evaluate the result at z = 1, to get
R1 = 5/9. To obtain R22 we multiply both sides by (z+2)2 and evaluate the result
at z =−2, to get R22 = 1/3.

To obtain R21 we multiply both sides by (z+2)2,

2z+3
z−1

=
(z+2)2R1

z−1
+R21(z+2)+R22,

Lee & Varaiya, Signals and Systems 563

http://LeeVaraiya.org


13.5. THE INVERSE TRANSFORMS

and then differentiate both sides with respect to z. We evaluate the result at z =−2,
to get

d
dz

2z+3
z−1

∣∣∣∣
z=−2

= R21.

Hence R21 =−5/9. So the partial fraction expansion is

2z+3
(z−1)(z+2)2 =

5/9
z−1

− 5/9
z+2

+
1/3

(z+2)2 .

Knowing the RoC, we can now obtain the inverse Z transform of X̂ . For instance,
in the case where RoC = {z ∈ C | |z| > 2}, the inverse Z transform is the causal
signal

∀n, x(n) =
5
9

u(n−1)− 5
9
(−2)n−1u(n−1)+

1
3
(n−1)(−2)n−2u(n−2).

In example 13.15, we used the next to the last entry in table 13.1 to find the inverse
transform of the term (1/3)/(z+2)2. That entry in the table is based on a generalization
of the geometric series identity, given by (12.9). The first generalization is

∞

∑
n=0

(n+1)an = (
∞

∑
n=0

an)2 =
1

(1−a)2 . (13.11)

The series above converges for any complex number a with |a| < 1 (see Exercise 3 of
Chapter 12). The broader generalization, for any integer k ≥ 1, is

1
k!

∞

∑
n=0

(n+ k)(n+ k−1) · · ·(n+1)an =
1

(1−a)k+1 , (13.12)

for any complex number a with |a|< 1.

Consider then a Z transform X̂ that has a pole at p of multiplicity m and no zeros. Since
the pole p cannot belong to RoC, the RoC is either

{z ∈ C | |z|> |p|} or {z ∈ C | |z|< |p|}.

564 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


13. LAPLACE AND Z TRANSFORMS

In the first case we expand X̂ in a series involving only the terms z−n,n≥ 0,

X̂(z) =
1

(z− p)m

=
z−m

(1− pz−1)m

= z−m 1
(m−1)!

∞

∑
n=0

(m+n−1) · · ·(n+1)(pz−1)n, using (13.12)

=
1

(m−1)!

∞

∑
k=m

(k−1) · · ·(k−m+1)pk−mz−k, defining k = n+m,

and the series converges for any z with |z| > |p|. We can match the coefficients of the
powers of z in the Z transform definition,

X̂(z) =
∞

∑
k=−∞

x(k)z−k,

from which we can recognize that

∀k ∈ Z, x(k) =

{
0, k < m

1
(m−1)!(k−1) · · ·(k−m+1)pk−m, k ≥ m

=
1

(m−1)!
(k−1) · · ·(k−m+1)pk−mu(k−m).

(13.13)

In the second case, RoC = {z ∈ C | |z|< |p|}, we expand X̂ in a series involving only the
terms z−n,n≤ 0,

X̂(z) =
1

(z− p)m

=
1

(−p)m
1

(1− p−1z)m

=
1

(−p)m
1

(m−1)!

∞

∑
n=0

(m+n−1) · · ·(n+1)(p−1z)n, using (13.12)

=
(−1)m

(m−1)!

0

∑
k=−∞

(m− k−1) · · ·(1− k)pk−mz−k, defining k =−n,

Lee & Varaiya, Signals and Systems 565

http://LeeVaraiya.org


13.5. THE INVERSE TRANSFORMS

and the series converges for any z with |z| < |p|. Again, we match powers of z in the Z
transform definition to get

∀k ∈ Z, x(k) =

{
(−1)m

(m−1)!(m−1− k) · · ·(1− k)pk−m, k ≤ 0
0, k > 0

=
(−1)m

(m−1)!
(m−1− k) · · ·(1− k)pk−mu(−k).

(13.14)

Example 13.16: Suppose

X̂(z) =
1

(z−2)2

with RoC = {z ∈ C | |z|> 2}. Then, by (13.13), X̂ is the Z transform of the signal

∀k ∈ Z, x(k) =
{

0, k < 2
(k−1)2k−2, k ≥ 2

.

Suppose

Ŷ (z) =
1

(z−2)2

with RoC = {z ∈ C | |z|< 2}. Then, by (13.14), Ŷ is the Z transform of the signal

∀k ∈ Z, y(k) =
{

(1− k)2k−2, k ≤ 0
0, k > 0

.

Since the unit circle {z ∈ C | |z| = 1} ⊂ RoC, the DTFT of y is defined and given
by

∀ω ∈ R, Y (ω) = Ŷ (eiω) =
1

(eiω−2)2 .

Now that we know how to inverse transform all the terms of the partial fraction expansion,
we can generalize the method used in example 13.15 to calculate the inverse Z transform

566 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


13. LAPLACE AND Z TRANSFORMS

of any X̂ of the form

X̂(z) =
aMzM + · · ·+a0

zN +bN−1zN−1 + · · ·+b0
.

Step 1 If M ≥ N, divide through to obtain

X̂(z) = cM−NzM−N + · · ·+ c0 +Ŵ (z),

where Ŵ is strictly proper.

Step 2 Carry out the partial fraction expansion of Ŵ and, knowing the RoC, obtain the
inverse Z transform w. Then from table 13.1,

∀n, x(n) = cm+l−Nδ(n+m+ l−N)+ · · ·+ c0δ(n)+w(n).

Example 13.17: We follow the procedure for

X̂(z) =
z2 + z+1+ z−1

(z+2)2 .

First, to get this into the proper form, as a rational polynomial in z, notice that

X̂(z) = z−1Ŷ (z),

where

Ŷ (z) =
z3 + z2 + z+1

(z+2)2 .

Since z−1 corresponds to a one-step delay,

x(n) = y(n−1),

so if we find the inverse Z transform of Ŷ , then we have found the inverse Z trasform
of X̂ .

Working now with Ŷ , step 1 yields

Ŷ (z) = z−3+
9z+13

z2 +4z+4
.

Lee & Varaiya, Signals and Systems 567

http://LeeVaraiya.org


13.5. THE INVERSE TRANSFORMS

Step 2 gives

Ŵ (z) =
9z+13
(z+2)2 =

−5
(z+2)2 +

9
z+2

.

Suppose RoC = {z ∈ C | |z|> 2}. Then from table 13.1,

∀n, w(n) = −5(n−1)(−2)n−2u(n−2)+9(−2)n−1u(n−1),

∀n, y(n) = δ(n+1)−3δ(n)+w(n),

∀n, x(n) = y(n−1).

Hence, for all n ∈ Z,

x(n) = δ(n)−3δ(n−1)−5(n−2)(−2)n−3u(n−3)+9(−2)n−2u(n−2).

13.5.2 Inverse Laplace transform

The procedure to calculate the inverse Laplace transform is virtually identical. Suppose
the Laplace transform X̂ is a rational polynomial

X̂(s) =
aMsM + · · ·+a0

sN +bN−1sN−1 + · · ·+b0
.

We follow Steps 1 and 2 above. We divide through in case M ≥ N to obtain

X̂(s) = cM−NsM−N + · · ·+ c0 +Ŵ (s),

where Ŵ is strictly proper. We carry out the partial fraction expansion of Ŵ . Knowing
RoC(x), we can again infer the region of convergence of each term. We then obtain the
inverse Laplace transform term by term using table 13.3,

∀t ∈ R, x(t) = cm−nδ
(M−N)(t)+ · · ·+ c0δ(t)+w(t).

Here w is the inverse Laplace transform of Ŵ , δ is the Dirac delta function, and δ(i) is the
ith derivative of the Dirac delta function.1

1The derivative of δ is a function only in a formal sense, and we obtain its Laplace transform using the
differentiation property in table 13.4.

568 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


13. LAPLACE AND Z TRANSFORMS

Example 13.18: We follow the procedure and obtain the partial fraction expansion
of

X̂(s) =
s3 + s2 + s+1

s(s+2)2

= 1+
−3s2−3s+1

s(s+2)2

= 1+
1/4

s
+
−13/4
s+2

+
5/2

(s+2)2 .

X̂ has one pole at s = 0 and a pole at s = −2 of multiplicity two. So its RoC has
one of three forms:

1. RoC = {s ∈ C | Re{s}<−2},
2. RoC = {s ∈ C | −2 < Re{s}< 0}, or

3. RoC = {s ∈ C | Re{s}> 0}.

We now use table 13.3 to obtain the inverse Laplace transform of each term. In case
(1), the continuous-time signal is the anti-causal signal

∀ t, x(t) = δ(t)− 1
4

u(−t)+
13
4

e−2tu(−t)− 5
2

te−2tu(−t).

In case (2), it is the two-sided signal,

∀t, x(t) = δ(t)− 1
4

u(−t)− 13
4

e−2tu(t)+
5
2

te−2tu(t).

In case (3), it is the causal signal,

∀t, x(t) = δ(t)+
1
4

u(t)− 13
4

e−2tu(t)+
5
2

te−2tu(t).

Lee & Varaiya, Signals and Systems 569

http://LeeVaraiya.org


13.6. STEADY STATE RESPONSE

13.6 Steady state response

Although it has been a fair amount of work, being able to compute an inverse transform
for an arbitrary rational polynomial proves useful. Our first use will be to study the stead-
state response of a causal and stable LTI system that has a sinusoidal input that starts at
time zero.

If the input to an LTI system is a complex exponential,

∀t ∈ R, x(t) = eiωt ,

then the output y is an exponential of the same frequency but with amplitude and phase
given by H(ω),

∀t ∈ R, y(t) = H(ω)eiωt ,

where H is the frequency response. However, this result requires the exponential input to
start at t =−∞. In practice, of course, an input may start at some finite time, say at t = 0,
but this result does not describe the output if the input is

∀t ∈ R, x(t) = eiωtu(t). (13.17)

We will see that if the system is stable and causal,2 then the output y decomposes into two
parts, a transient output and a steady state output,

y = ytr + yss,

where the transient becomes vanishingly small for large t. That is,

lim
t→∞

ytr(t) = 0.

Moreover, the steady state signal is the exponential,

∀t, yss(t) = H(ω)eiωtu(t). (13.18)

Thus for stable systems, we can use the frequency response to describe the eventual output
to sinusoidal signals that start at some finite time.

For the special case ω = 0, the input (13.17) is the unit step, x = u, and yss = H(0)u. So
for stable systems, the steady state response to a unit step input is a step of size H(0).

2This result can be generalized to non-causal systems, but causal systems will be sufficient for our pur-
poses.

570 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


13. LAPLACE AND Z TRANSFORMS

(H(0) is called the dc gain.) This case is important in the design of feedback control,
considered in the next chapter.

Let h be the impulse response and Ĥ be the Laplace transform of a stable and causal LTI
system. We assume for simplicity that Ĥ is a strictly proper rational polynomial all of
whose poles have multiplicity one,

Ĥ(s) =
A(s)

(s− p1) · · ·(s− pN)
.

Because the system is causal, RoC(h) has the form

RoC(h) = {s | Re{s}> q},

where q is the largest real part of any pole. Since the system is stable, q < 0, so that the
region of convergence includes the imaginary axis.

From table 13.3 the Laplace transform X̂ of the signal (13.17) is

X̂(s) =
1

s− iω
,

with RoC(x) = {s ∈ C | Re{s}> 0}.
The Laplace transform of the output y = h∗ x is

Ŷ = ĤX̂ ,

with
RoC(y)⊃ RoC(h)∩RoC(x) = {s ∈ C | Re{s}> 0}.

The partial fraction expansion of Ŷ is

Ŷ (s) = Ĥ(s)X̂(s) =
A(s)

(s− p1) · · ·(s− pN)
· 1

s− iω
(13.19)

=
R1

s− p1
+ · · ·+ RN

s− pN
+

Rω

s− iω
. (13.20)

Because everything is causal, each term must be causal, so from table 13.3 we obtain

∀t, y(t) =
N

∑
k=1

Rkepktu(t)+Rωeiωtu(t).

Lee & Varaiya, Signals and Systems 571

http://LeeVaraiya.org


13.6. STEADY STATE RESPONSE

We decompose y = ytr + yss, with

∀t, ytr(t) =
N

∑
k=1

Rkepktu(t),

∀t, yss(t) = Rωeiωtu(t).

Since Re{pk}< 0 for k = 1, · · · ,N,

lim
t→∞

ytr(t) = 0.

Thus, the steady-state response yss is eventually all that is left.

Finally, the residue Rω is obtained by multiplying both sides of (13.19) by s− iω and
evaluating at s = iω to get Rω = Ĥ(iω) = H(ω), so that

∀t, yss(t) = H(ω)eiωtu(t).

This analysis reveals several interesting features of the total response y. First, from (13.20)
we see the poles p1, · · · , pN of the transfer function contribute to the transient response
ytr, and the pole of the input X̂ at iω contributes to the steady state response. Second we
can determine how quickly the transient response dies down. The transient response is

∀t, ytr(t) = R1ep1tu(t)+ · · ·+RNepNtu(t).

The magnitude of the terms is

|R1|eRe{p1}t , · · · , |RN |eRe{pN}t .

Each term decreases exponentially with t, since the real parts of the poles are negative.
The slowest decrease is due to the pole with the least negative part. Thus the pole of
the stable, causal transfer function with the least negative part determines how fast the
transient response goes to zero. Indeed for large t, we can approximate the response y as

y(t)≈ Riepit +H(ω)eiωt ,

where pi is the pole with the largest (least negative) real part.

There is a similar result for discrete-time systems, and it is obtained in the same way.
Suppose an exponential input

∀n ∈ Z, x(n) = eiωnu(n),

572 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


13. LAPLACE AND Z TRANSFORMS

is applied to a stable and causal system with impulse response h, transfer function Ĥ, and
frequency response H. Then the output y = h∗ x can again be decomposed as

∀n, y(n) = ytr(n)+ yss(n),

where the transient ytr(n)→ 0 as n→ ∞, and the steady state response is

∀n, yss(n) = Ĥ(eiω)eiωnu(n) = H(ω)eiωnu(n).

For large n, the transient response decays exponentially as pn
i , i.e.

y(n)≈ Ri pn
i + yss(n),

where pi is the pole with the largest magnitude (which must be less than one, since the
system is stable).

13.7 Linear difference and differential equations

Many natural and man-made systems can be modeled as linear differential equations or
difference equations. We have seen that when such systems are initially at rest, they
are LTI systems. Hence, we can use their transfer functions (which are Z transforms or
Laplace transforms) to analyze the response of these systems to external inputs.

However, physical systems are often not initially at rest. Dealing with non-zero initial
conditions introduces some complexity in the analysis. Mathematicians call such systems
with non-zero initial conditions initial value problems. We can adapt our methods to
deal with initial conditions. The rest of this chapter is devoted to these methods.

Example 13.19: In example 13.8 we considered the LTI system described by the
difference equation

y(n)−0.9y(n−1) = x(n).

The transfer function of this system is Ĥ(z) = z/(z−0.9). If the system is initially
at rest, we can calculate its response y from its Z transform Ŷ = ĤX̂ . For instance,
if the input is the unit step, X̂(z) = z/(z−1),

Ŷ (z) =
z2

(z−0.9)(z−1)
=
−9z

z−0.9
+

10z
z−1

,

Lee & Varaiya, Signals and Systems 573

http://LeeVaraiya.org


13.7. LINEAR DIFFERENCE AND DIFFERENTIAL EQUATIONS

and so y(n) =−9(0.9)n +10,n≥ 0.

We cannot use the transfer function, however, to determine the response if the initial
condition at time n = 0 is y(−1) = ȳ(−1), and the input is x(n) = 0,n ≥ 0. The
response to this initial condition is

y(n) = ȳ(−1)(0.9)n+1, n≥−1.

We can check that this expression is correct by verifying that it satisfies both the
initial condition and the difference equation.

If the initial condition is y(−1) = ȳ(−1) and the input is a unit step, the response
turns out to be the sum of the response due to the input (with zero initial condition)
and the response due to the initial condition (with zero input),

y(n) = [−9(0.9)n +10]+ [ȳ(−1)(0.9)n+1], n≥ 0.

For small values of n the response depends heavily on the initial condition, espe-
cially if ȳ(0) is large. Because this system is stable, the effect of the initial condition
becomes vanishingly small for large n.

An LTI difference equation has the form

y(n)+a1y(n−1)+ · · ·+amy(n−m) = b0x(n)+ · · ·+bkx(n− k), n≥ 0. (13.21)

We interpret this equation as describing a causal discrete-time LTI system in which x(n)
is the input and y(n) is the output at time n. The ai and b j are constant coefficients that
specify the system.

We have used difference equations before. In section 8.2.1 we used this form and the
discrete time Fourier transform to find the frequency response of this system. In section
9.5 we showed how to realize such systems as IIR filters. In example 13.19 we used the
transfer function to find the response. But in all these cases, we had to assume that the
system was initially at rest. We now develop a method to find the response for arbitrary
inital conditions.

We assume the input signal x starts at some finite time, which we take to be zero, x(n) =
0,n < 0. We wish to calculate y(n),n ≥ 0. From (13.21) we can see that we need to be
given m initial conditions,

y(−1) = ȳ(−1), · · · ,y(−m) = ȳ(−m).

574 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


13. LAPLACE AND Z TRANSFORMS

Given the input signal and these initial conditions, there is a straightforward procedure to
calculate the output response y(n),n≥ 0: Rewrite (13.21) as

y(n) =−a1y(n−1)−·· ·−amy(n−m)+b0x(n)+ · · ·+bkx(n− k), (13.22)

and recursively use (13.22) to obtain y(0),y(1),y(2), · · · . For n = 0, (13.22) yields

y(0) = −a1y(−1)−·· ·−amy(−m)+b0x(0)+ · · ·+bkx(−k)

= −a1ȳ(−1)−·· ·−amȳ(−m)+b0x(0).

All the terms on the right are known from the initial conditions and the input x(0), so we
can calculate y(0). Next, taking n = 1 in (13.22),

y(1) =−a1y(0)+ · · ·+amy(1−m)+b0x(1)+ · · ·+bkx(1− k).

All the terms on the right are known either from the given data or from precalculated
values—y(0) in this case. Proceeding in this way we can calculate the remaining values
of the output sequence y(2),y(3), · · · , one at a time.

We now use the Z transform to calculate the entire output sequence. Multiplying both
sides of (13.21) by u(n), the unit step, gives us a relation that holds among signals whose
domain is Z:

y(n)u(n)+a1y(n−1)u(n)+ · · ·+amy(n−m)u(n)

= b0x(n)u(n)+ · · ·+bkx(n− k)u(n), n ∈ Z.

We can now take the Z transforms of both sides. We multiply both sides by z−n and sum,

∞

∑
n=0

y(n)z−n +a1

∞

∑
n=0

y(n−1)z−n + · · ·+am

∞

∑
n=0

y(n−m)z−n

= b0

∞

∑
n=0

x(n)z−n + · · ·+bk

∞

∑
n=0

x(n− k)z−n. (13.23)

Define

X̂(z) =
∞

∑
n=0

x(n)z−n, Ŷ (z) =
∞

∑
n=0

y(n)z−n.

Lee & Varaiya, Signals and Systems 575

http://LeeVaraiya.org


13.7. LINEAR DIFFERENCE AND DIFFERENTIAL EQUATIONS

Each sum in (13.23) can be expressed in terms of Ŷ or X̂ . In evaluting the Z transforms
of the signals y(n−1)u(n),y(n−2)u(n), · · · we need to include the initial conditions:

∞

∑
n=0

y(n−1)z−n = ȳ(−1)z0 + z−1
∞

∑
n=1

y(n−1)z−(n−1) = ȳ(−1)z0 + z−1Ŷ (z),

∞

∑
n=0

y(n−2)z−n = ȳ(−2)z0 + ȳ(−1)z−1 + z−2
∞

∑
n=2

y(n−2)z−(n−2)

= ȳ(−2)z0 + ȳ(−1)z−1 + z−2Ŷ (z),

· · ·
∞

∑
n=0

y(n−m)z−n = ȳ(−m)z0 + · · ·+ ȳ(−1)z−(m−1)+ z−m
∞

∑
n=m

y(n−m)z−(n−m)

= ȳ(−m)z0 + · · ·+ ȳ(−1)z−(m−1)+ z−mŶ (z).

Because x(n) = 0,n < 0, by assumption, the sums on the right in (13.23) are simpler:
∞

∑
n=0

x(n−1)z−n = x(−1)z0 + z−1X̂(z) = z−1X̂(z)

∞

∑
n=0

x(n−2)z−n = x(−2)z0 + x(−1)z−1 + z−2X̂(z) = z−2X̂(z)

· · ·
∞

∑
n=0

x(n− k)z−n = x(−k)z0 + · · ·+ x(−1)z−(k−1)+ z−kX̂(z) = z−kX̂(z).

(If there were non-zero initial conditions for x(−1), · · · ,x(−k), we could include them in
the Z transforms of x(n−1)u(n), · · · ,x(n−k)u(n).) Substituting these relations in (13.23)
yields

Ŷ (z) + a1[z−1Ŷ (z)+ ȳ(−1)z0]

+ · · ·
+ am[z−mŶ (z)+ ȳ(−m)z0 + · · · ȳ(−1)z−(m−1)]

= b0X̂(z)+b1z−1X̂(z)+ · · ·bkX̂z−k, (13.24)

from which, by rearranging terms, we obtain

[1+a1z−1 + · · ·+amz−m]Ŷ (z) = [b0 +b1z−1 + · · ·+bkz−k]X̂(z)+Ĉ(z),

where Ĉ(z) is an expression involving only the initial conditions

ȳ(−1), · · · , ȳ(−m).

576 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


13. LAPLACE AND Z TRANSFORMS

Therefore,

Ŷ (z) =
b0 +b1z−1 + · · ·bkz−k

1+a1z−1 + · · ·+amz−m X̂(z)+
Ĉ(z)

1+a1z−1 + · · ·+amz−m .

We rewrite this relation as

Ŷ (z) = Ĥ(z)X̂(z)+
Ĉ(z)

1+a1z−1 + · · ·+amz−m . (13.25)

where

Ĥ(z) =
b0 +b1z−1 + · · ·+bkz−k

1+a1z−1 + · · ·+amz−m . (13.26)

Observe that if the initial conditions are all zero, Ĉ(z) = 0, and we only have the first term
on the right in (13.25); and if the input is zero—i.e., x(n) = 0 for all n, then X̂(z) = 0, and
we only have the second term.

By definition, Ŷ (z) is the Z transform of the causal signal y(n)u(n),n ∈ Z. So its RoC =
{z ∈ C | |z| > |p|} in which p is the pole of the right side of (13.25) with the largest
magnitude. The inverse Z transform of Ŷ can be expressed as

∀n≥ 0, y(n) = yzs(n)+ yzi(n),

where yzs(n), the inverse Z transform of ĤX̂ , is the zero-state response, and yzi(n), the
inverse Z transform of Ĉ(z)/[1+ a1z−1 + · · ·+ amz−m], is the zero-input response. The
zero-state response, also called the forced response, is the output when all initial condi-
tions are zero. The zero-input response, also called the natural response, is the output
when the input is zero.

Thus the (total) response is the sum of the zero-state and zero-input response. We first
encountered this property of linearity in Chapter 5.

By definition, the transfer function is the Z transform of the zero-state impulse response.
Taking Ĉ = 0 and X̂ = 1 in (13.25) shows that the transfer function is Ĥ(z). From (13.26)
we see that Ĥ can be written down by inspection of the difference equation (13.21). If the
system is stable—all poles of Ĥ are inside the unit circle—the frequency response is

∀ω, H(ω) = Ĥ(eiω) =
b0 +b1e−iω + · · ·+bke−ikω

1+a1e−iω + · · ·+ame−imω
.

We saw this relation in (8.21).

Lee & Varaiya, Signals and Systems 577

http://LeeVaraiya.org


13.7. LINEAR DIFFERENCE AND DIFFERENTIAL EQUATIONS

Example 13.20: Consider the difference equation

y(n)− 5
6

y(n−1)+
1
6

y(n−2) = x(n), n≥ 0.

Taking Z transforms as in (13.24) yields

Ŷ (z)− 5
6
[z−1Ŷ (z)+ ȳ(−1)]+

1
6
[z−2Ŷ (z)+ ȳ(−2)+ ȳ(−1)z−1] = X̂(z).

Therefore

Ŷ (z) =
1

1− 5
6 z−1 + 1

6 z−2
X̂(z)+

5
6 ȳ(−1)+ 1

6 ȳ(−2)+ 1
6 ȳ(−1)z−1

1− 5
6 z−1 + 1

6 z−2

=
z2

z2− 5
6 z+ 1

6

X̂(z)+
[5

6 ȳ(−1)+ 1
6 ȳ(−2)]z2 + 1

6 ȳ(−1)z

z2− 5
6 z+ 1

6

,

from which we can obtain Ŷ for a specified X̂ and initial conditions ȳ(−1), ȳ(−2).
The transfer function is

Ĥ(z) =
z2

z2− 5
6 z+ 1

6

=
z2

(z− 1
3)(z− 1

2)
,

which has poles at z = 1/3 and z = 1/2 (and two zeros at z = 0). The system is
stable. The zero-state impulse response h is the inverse Z transform of Ĥ(z), which
we obtain using partial fraction expansion,

Ĥ(z) = z

[
−2

z− 1
3

+
3

z− 1
2

]
so that

∀n ∈ Z, h(n) =−2
(

1
3

)n

u(n)+3
(

1
2

)n

u(n).

We can recognize that the impulse response consists of two terms, each contributed
by one pole of the transfer function.

Suppose the initial conditions are ȳ(−1) = 1, ȳ(−2) = 1 and the input x is the unit
step, so X̂(z) = z/(z−1). Then the zero-input response, yzi, has Z transform

Ŷzi(z) =
[5

6 ȳ(−1)+ 1
6 ȳ(−2)]z2 + 1

6 ȳ(−1)z

(z− 1
3)(z− 1

2)

=
z2 + 1

6 z

(z− 1
3)(z− 1

2)
= z

[
−3

z− 1
3

+
4

z− 1
2

]
,

578 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


13. LAPLACE AND Z TRANSFORMS

so

∀n, yzi(n) =−3
(

1
3

)n

u(n)+4
(

1
2

)n

u(n).

The zero-state response, yzs, has Z transform

Ŷzs(z) = Ĥ(z)X̂(z) =
z3

(z− 1
3)(z− 1

2)(z−1)

= z

[
1

z− 1
3

+
−3

z− 1
2

+
3

z−1

]
,

so

∀n, yzs(n) =
(

1
3

)n

u(n)−3
(

1
2

)n

u(n)+3u(n).

The (total) response

∀n ∈ Z, y(n) = yzs(n)+ yzi(n) = 3u(n)+ [−2(1/3)n +(1/2)n]u(n),

can also be expressed as the sum of the steady-state and the transient response with
yss(n) = 3u(n) and ytr(n) = −2(1/3)nu(n)+ (1/2)nu(n). Note that the decompo-
sition of the response into the sum of the zero-state and zero-input responses is
different from its decomposition into the steady-state and transient responses.

13.7.1 LTI differential equations

The analogous development for continuous time concerns systems described by a LTI
differential equation of the form

dmy
dtm (t)+am−1

dm−1y
dtm−1 (t)+ · · ·+a1

dy
dt

(t)+a0y(t)

= bk
dkx
dtk (t)+ · · ·+b1

dx
dt

(t)+b0x(t), t ≥ 0. (13.27)

We interpret this equation as describing a causal continuous-time LTI system in which
x(t) is the input and y(t) is the output at time t. The constant coefficients ai and b j specify
the system.

Lee & Varaiya, Signals and Systems 579

http://LeeVaraiya.org


13.7. LINEAR DIFFERENCE AND DIFFERENTIAL EQUATIONS

In section 8.2.1 we used this form to find the frequency response. In example 13.11, we
used the Laplace transform to find the transfer function of a tuning force. But in both
cases, we assumed that the system was initially at rest. We now develop a method to find
the response to arbitrary initial conditions. We begin with a simple circuit example.

Example 13.21: A series connection of a resistor R, a capacitor C, and a voltage
source x, is described by the differential equation

dy
dt

(t)+
1

RC
y(t) = x(t),

in which y is the voltage across the capacitor. The differential equation is obtained
from Kirchhoff’s voltage law. The transfer function of this system is Ĥ(s) = 1/(s+
1/RC). So if the system is initially at rest, we can calculate the response y from its
Laplace transform Ŷ = ĤX̂ . For instance, if the input is a unit step, X̂(s) = 1/s,

Ŷ (s) =
1

(s+1/RC)s
=
−RC

s+1/RC
+

RC
s
,

therefore, y(t) =−RCe−t/RC +RC, t ≥ 0.

We cannot use this transfer function, however, to determine the response if the
initial capacitor voltage is y(0) = ȳ(0) and x(t) = 0, t ≥ 0. The response in this case
is

y(t) = ȳ(0)e−t/RC, t ≥ 0.

We can check that expression is correct by verifying that it satisfies the given initial
condition and the differential equation.

If the initial condition is y(0) = ȳ(0) and the input is a unit step, the response turns
out to be the sum of the response due to the input (with zero initial condition) and
the response due to the initial condition (with zero input),

y(t) = [−RCe−t/RC +RC]+ [ȳ(0)e−t/RC], t ≥ 0.

For the general case (13.27) we assume that the input x starts at some finite time which
we take to be zero, so x(t) = 0, t < 0. We wish to calculate y(t), t ≥ 0. From the theory of

580 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


13. LAPLACE AND Z TRANSFORMS

differential equations we know that we need to be given m initial conditions,

y(0) = ȳ(0),
dy
dt

(0) = ȳ(1)(0), · · · , dm−1y
dtm−1 (0) = ȳ(m−1)(0),

in order to calculate y(t), t ≥ 0.

Because time is continuous, there is no recursive procedure for calculating the output
from the given data as we did in (13.22). Instead we calculate the output signal using the
Laplace transform. We define the Laplace transforms of the signals y(t)u(t),y(1)(t)u(t), · · · ,y(m)(t)u(t),x(t)u(t):

Ŷ (s) =
∫

∞

−∞

y(t)u(t)e−stdt =
∫

∞

0
y(t)e−stdt

Ŷ (i)(s) =
∫

∞

−∞

y(i)(t)u(t) =
∫

∞

0
y(i)(t)e−stdt, i = 1, · · · ,m

X̂(s) =
∫

∞

−∞

x(t)u(t)e−stdt =
∫

∞

0
x(t)e−stdt.

Here we use the notation y(i)(t) = dit
dt i y(t), t ≥ 0. We now derive the relations between

these Laplace transforms.

The derivative y(1)(t) = dy
dt (t) and y are related by

y(t)u(t) = y(0)u(t)+
∫ t

0
y(1)(τ)u(τ)dτ = ȳ(0)u(t)+

∫ t

0
y(1)(τ)u(τ)dτ, t ∈ R.

Using integration by parts,

Ŷ (s) =
∫

∞

0
y(t)e−stdt =

∫
∞

0
ȳ(0)e−stdt +

∫
∞

0

(∫ t

0
y(1)(τ)dτ

)
e−stdt

=
1
s

ȳ(0)− 1
s

∫ t

0
y(1)(τ)dτe−st |∞t=0 +

1
s

∫
∞

0
y(1)(t)e−stdt

=
1
s
[Ŷ (1)(s)+ ȳ(0)].

Therefore,

Ŷ (1)(s) = sŶ (s)− ȳ(0). (13.28)

Repeating this procedure, we get the Laplace transforms of the higher-order derivatives,

Ŷ (2)(s) = sŶ (1)(s)− ȳ(1)(0)

= s2Ŷ (s)− sȳ(0)− ȳ(1)(0)

· · ·
Ŷ (m)(s) = smŶ (s)− sm−1ȳ(0)− sm−2ȳ(1)(0)−·· ·− ȳ(m−1)(0).

Lee & Varaiya, Signals and Systems 581

http://LeeVaraiya.org


13.7. LINEAR DIFFERENCE AND DIFFERENTIAL EQUATIONS

On the other hand, because x(i)(t) = dix
dt i (t) for all t ∈R, using the differentiation property

in table 13.4, we obtain

X̂ (1)(s) = sX̂(s)

· · ·
X̂ (k)(s) = skX̂(s).

By substituting from the relations just derived, we obtain the Laplace transforms of all the
terms in (13.27),

[smŶ (s)− sm−1ȳ(0)−·· ·− ȳm−1(0)]

+ am−1[sm−1Ŷ (s)− sm−2ȳ(0)−·· ·− ȳm−2(0)]

· · ·
+ a1[sŶ (s)− ȳ(0)]

+ a0Ŷ (s)

= bkskX̂(s)+ · · ·+b1sX̂(s)+b0X̂(s). (13.29)

Rearranging terms yields

[sm +am−1sm−1 + · · ·+a1s+a0]Ŷ (s) = [bksk + · · ·+b1s+b0]X̂(s)+Ĉ(s),

in which Ĉ is an expression involving only the intial conditions

ȳ(0), · · · , ȳ(m−1)(0).

Therefore,

Ŷ (s) =
bksk +bk−1sk−1 + · · ·b1s+b0

sm +am−1sm−1 + · · ·a1s+a0
X̂(s)+

Ĉ(s)
sm +am−1sm−1 + · · ·a1s+a0

, (13.30)

which we also write as

Ŷ (s) = Ĥ(s)X̂(s)+
Ĉ(s)

sm +am−1sm−1 + · · ·a1s+a0
, (13.31)

in which

Ĥ(s) =
bksk + · · ·+b1s+b0

sm + · · ·+a1s+a0
. (13.32)

582 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


13. LAPLACE AND Z TRANSFORMS

If the initial conditions are all zero, Ĉ(s) = 0, and we only have the first term on the right
in (13.31); if the input is zero—i.e., x(t) = 0 for all t, then X̂(s) = 0, and we only get the
second term in (13.31).

By definition, Ŷ (s) is the Laplace transform of the causal signal y(t)u(t), t ∈ R. So its
RoC = {s ∈ C | Re{s} > Re{p}}, where p is a pole of the right side of (13.31) with the
largest real part.

Taking the inverse Laplace transform of Ŷ , we can decompose the output signal y as

∀t, y(t) = yzs(t)+ yzi(t),

where yzs, the inverse Laplace transform of ĤX̂ , is the zero-state or forced response and
yzi, the inverse Laplace transform of Ĉ(s)/[sm + · · ·+ a0], is the zero-input or natural
response. The (total) response is the sum of the zero-state and zero-input response, which
is a general property of linear systems.

By definition, the transfer function is the Laplace transform of the zero-state impulse
response. Taking Ĉ = 0 and X̂ = 1 (the Laplace transform of the unit impulse) in (13.31)
shows that the transfer function is Ĥ(s) which, as we see from (13.32), can be written
down by inspection of the differential equation (13.27). If the system is stable—all poles
of Ĥ(s) have real parts strictly less than zero—the frequency response is, as in (8.23)

∀ω, H(ω) = Ĥ(iω) =
bk(iω)k + · · ·+b1iω+b0

(iω)m + · · ·+a1iω+a0
.

Example 13.22: We find the response y(t), t ≥ 0, for the differential equation

d2y
dt2 +3

dy
dt

+2y = 3x(t)+
dx
dt

,

when the input is a unit step x(t) = u(t) and the initial conditions are y(0) =
1,y(1)(0) = 2. Taking Laplace transforms of both sides as in (13.29),

[s2Ŷ (s)− sȳ(0)− ȳ(1)(0)]+3[sŶ (s)− ȳ(0)]+2Ŷ (s) = 3X̂(s)+ sX̂(s).

Therefore,

Ŷ (s) =
s+3

s2 +3s+2
X̂(s)+

sȳ(0)+ ȳ(1)(0)+3ȳ(0)
s2 +3s+2

.

Lee & Varaiya, Signals and Systems 583

http://LeeVaraiya.org


13.8. STATE-SPACE MODELS

Substituting X̂(s) = 1/s, ȳ(0) = 1, ȳ(1) = 2, yields

Ŷ (s) =
s+3

s(s2 +3s+2)
+

s+5
s2 +3s+2

= [
3/2

s
− 2

s+1
+

1/2
s+2

]+ [
4

s+1
− 3

s+2
].

Taking inverse Laplace transforms gives

∀t, y(t) = yzs(t)+ yzi(t)

= [
3
2

u(t)−2e−tu(t)+
1
2

e−2tu(t)]+ [4e−tu(t)−3e−2tu(t)]

=
3
2

u(t)+ [2e−t − 5
2

e−2t ]u(t)

= yss(t)+ ytr(t).

As in the case of difference equations, the decomposition of the response into zero-
state and zero-input responses is different from the decomposition into transient
and steady-state responses. (Indeed, the steady-state response does not exist if the
system is unstable, whereas the former decomposition always exists.)

13.8 State-space models

This section is mathematically more advanced in that it uses the operation of matrix in-
verse.

In section 5.3 we introduced single-input, single-output (SISO) multidimensional state-
space models of discrete-time and continuous-time LTI systems. For LTI systems, state-
space models provide an alternative description to difference or differential equation rep-
resentations. The advantage of state-space models is that by using matrix notation we
have a very compact representation of the response, independent of the order of the sys-
tem. We develop a method that combines this matrix notation with transform techniques
to calculate the response.

584 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


13. LAPLACE AND Z TRANSFORMS

The discrete-time SISO state-space model is

∀ n≥ 0, s(n+1) = As(n)+bx(n), (13.33)

y(n) = cT s(n)+dx(n), (13.34)

in which s(n) ∈ RN is the state, x(n) ∈ R is the input, and y(n) ∈ R is the output at time
n. In this [A,b,c,d] representation, A is an N×N (square) matrix, b,c are N-dimensional
column vectors, and d is a scalar. If the initial state is s(0), and the input sequence is
x(0),x(1), · · · , by recursively using (13.33) and (13.34) we obtain the state and output
responses:

s(n) = Ans(0)+
n−1

∑
m=0

An−1−mbx(m), (13.35)

y(n) = cT Ans(0)+{
n−1

∑
m=0

cT An−1−mbx(m)+dx(n)}, (13.36)

for all n≥ 0. Notice that these “closed-form” formulas for the response are independent of
the order N. Difference equation representations do not have such a closed-form formula.

Example 13.23: Consider the system described by the difference equation

y(n)−2y(n−1)−3y(n−2) = x(n).

As in section 5.3, we can construct a state-space model for this system by noting
that the state at time n should remember the previous two inputs y(n−1),y(n−2).
Define the two-dimensional state vector s(n) = [s1(n) s2(n)]T by s1(n) = y(n−
1),s2(n) = ay(n− 2), in which a 6= 0 is a constant. Problem 23 at the end of this
chapter asks you to show that the [A,b,c,d] representation for this choice of state is
given by

A =

[
2 3/a
a 0

]
, b =

[
1
0

]
, cT = [2 3/a], and d = 1.

Different choices of a give a different state-space model. However, they all have
the same input-output relation because they all have the same transfer function.

Lee & Varaiya, Signals and Systems 585

http://LeeVaraiya.org


13.8. STATE-SPACE MODELS

We will obtain the Z transforms of the response sequences (13.35), (13.36). The key is
to compute the Z transform of the entire N×N matrix sequence Anu(n),n ∈ Z. This Z
transform is

∞

∑
n=0

z−nAn = [I− z−1A]−1 = z[zI−A]−1. (13.37)

Here z is a complex number and I is the N×N identity matrix. The series on the left is
an infinite sum of N×N matrices which converges to the N×N matrix on the right, for
z ∈ RoC. RoC is determined later.

Assuming the series converges, it is easy to check the equality (13.37): Just multiply both
sides by [I− z−1A] and verify that

[I− z−1A]
∞

∑
n=0

z−nAn =
∞

∑
n=0

z−nA−n−
∞

∑
n=0

z−(n+1)An+1 = z0A0 = I.

Next, denote by F the matrix inverse,

F(z) = [I− z−1A]−1 = z[zI−A]−1, (13.38)

and the coefficients of An and F(z) by

An = [ai j(n) | 1≤ i, j ≤ N], F(z) = [ fi j(z) | 1≤ i, j ≤ N].

Then fi j(z) =∑
∞
n=0 z−nai j(n) is the Z transform of the sequence ai j(n),n≥ 0, 1≤ i, j≤N.

So we can obtain An,n≥ 0, by taking the inverse Z transform of each of the N2 coefficients
of F(z).

Example 13.24: Let

A =

[
2 1
3 4

]
,

then

[zI−A]−1 =

[
z−2 −1
−3 z−4

]−1

=
1

det[zI−A]

[
z−4 1

3 z−2

]
,

in which det[zI−A] denotes the determinant of [zI−A],

det[zI−A] = (z−2)(z−4)−3 = z2−6z+5 = (z−1)(z−5).

586 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


13. LAPLACE AND Z TRANSFORMS

Hence,

F(z) = z[zI−A]−1 =
z

(z−1)(z−5)

[
z−4 1

3 z−2

]

=


z(z−4)

(z−1)(z−5)
z

(z−1)(z−5)

3z
(z−1)(z−5)

z(z−2)
(z−1)(z−5)

 .
The partial fraction expansion of the coefficients of F is

F(z) =

 (3/4)z
z−1 + (1/4)z

z−5
(−1/4)z

z−1 + (1/4)z
z−5

(−3/4)z
z−1 + (3/4)z

z−5
(1/4)z
z−1 + (3/4)z

z−5

 .
Using table 13.1 we find the inverse Z transform of every coefficient of F(z): for
all n ∈ Z,

Anu(n) =

 3
4 u(n)+ 1

4 5nu(n) −1
4 u(n)+ 1

4 5nu(n)

−3
4 u(n)+ 3

4 5nu(n) 1
4 u(n)+ 3

4 5nu(n)

 .
This is more revealingly expressed as

An =

[
3/4 −1/4
−3/4 1/4

]
+5n

[
1/4 1/4
3/4 3/4

]
, n≥ 0,

because it shows that the variation in n of An is determined by the two poles, at
z = 1 and z = 5, in the coefficients of F(z). Moreover, these two poles are the zeros
of

det[zI−A] = (z−1)(z−5).

This determinant is called the characterstic polynomial of the matrix A and its
zeros are called the eigenvalues of A. The domain of convergence is RoC = {z ∈
C | |z|> 5}.

Lee & Varaiya, Signals and Systems 587

http://LeeVaraiya.org


13.8. STATE-SPACE MODELS

We return to the general case in (13.38). Denote the matrix inverse of [zI−A] as

[zI−A]−1 =
1

det[zI−A]
G(z),

in which G(z) is the N×N matrix of co-factors of [zI−A]. It follows that each coefficient
fi j(z) of F(z) = z[zI−A]−1 is a rational polynomial whose denominator is the character-
istic polynomial of A, det[zI−A]. Therefore, if there are no pole-zero cancellations, all
coefficients of F(z) have the same poles, which are the zeros of det[zI−A]. These zeros
are called the eigenvalues of A. The polynomial det[zI−A] is of order N, and so A has N
eigenvalues.

Because Anu(n),n ∈ Z, is a causal sequence, the region of convergence is RoC = {z ∈
C | |z|> |p|}, in which p is the pole of F (or eigenvalue of A) with the largest magnitude.
For the system (13.33), (13.34) to be stable, the poles of F must have magnitudes strictly
smaller than 1.

Suppose A has N distinct eigenvalues p1, · · · , pN ,

det[zI−A] = (z− p1) · · ·(z− pN).

Then the partial fraction expansion of F(z) has the form

F(z) =
z

z− p1
R1 + · · ·+

z
z− pN

RN ,

in which Ri is the matrix of residues of the coefficients of F at the pole pi. Ri is a constant
matrix, possibly with complex coefficients if pi is complex. Recalling that z

z−pi
is the

inverse Z transform of pn
i u(n), we can take the inverse Z transform of F(z) to conclude

that
An = pn

1R1 + · · · pn
NRN , n≥ 0. (13.39)

Thus An is a linear combination of pn
1, · · · , pn

N .

We can decompose the response (13.36) into the zero-input and zero-state responses,
expressing the latter as a convolution sum,

y(n) = cT Ans(0)+
n

∑
m=0

h(n−m)x(m), n≥ 0,

where the (zero-state) impulse response is

h(n) =


0, n < 0
d, n = 0
cT An−1b, n≥ 1

.

588 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


13. LAPLACE AND Z TRANSFORMS

Let X̂ ,Ŷ , Ĥ,Ŷzi be the Z transforms:

X̂(z) =
∞

∑
n=0

x(n)z−n, Ŷ (z) =
∞

∑
n=0

y(n)z−n,

Ĥ(z) =
∞

∑
n=0

h(n)z−n, Ŷzi(z) =
∞

∑
n=0

cT z−nAns(0).

Then
Ŷ = ĤX̂ + Ŷzi.

Because ∑
∞
n=0 z−nAn = z[zI−A]−1, we obtain

Ĥ(z) = cT [zI−A]−1b+d,

and
Ŷzi(z) = zcT [zI−A]−1s(0).

Example 13.25: Suppose A is as in example 13.24, bT = [1 1],cT = [2 0],d = 3,
and (s(0))T = [0 4]. Then the transfer function is

Ĥ(z) = [2 0]


(z−4)

(z−1)(z−5)
1

(z−1)(z−5)

3
(z−1)(z−5)

(z−2)
(z−1)(z−5)

[ 1
1

]
+3 =

2(z−4)+2
(z−1)(z−5)

+3,

and the Z transform of the zero-input response is

Ŷzi(z) = [2 0]


z(z−4)

(z−1)(z−5)
z

(z−1)(z−5)

3z
(z−1)(z−5)

z(z−2)
(z−1)(z−5)

[ 0
4

]
=

8z
(z−1)(z−5)

.

The transfer function

Ĥ(z) =
2(z−4)+2
(z−1)(z−5)

+3 =
3z2−16z+9
z2−6z+5

=
3−16z−1 +9z−2

1−6z−1 +5z−2 .

Lee & Varaiya, Signals and Systems 589

http://LeeVaraiya.org


13.8. STATE-SPACE MODELS

From (13.26) we recognize that Ĥ is also the transfer function of the difference
equation

y(n)−6y(n−1)+5y(n−2) = 3x(n)−16x(n−1)+9x(n−2).

This difference equation describes the same input-output relation as the state-space
model of this example.

13.8.1 Continuous-time state-space models

The continuous-time SISO state-space model introduced in section 5.4 has the represen-
tation in terms of [A,b,c,d]

v̇(t) = Av(t)+bx(t), (13.40)

y(t) = cT v(t)+dx(t), (13.41)

in which v(t) ∈ RN is the state, x(t) ∈ R is the input, and y(t) ∈ R is the output at time
t ∈R. A is an N×N matrix, and b,c are N-dimensional column vectors, and d is a scalar.
(We use v instead of s to denote the state, because s is reserved for the Laplace transform
variable.)

Given the initial state v(0) and the input signal x(t), t ≥ 0, we will show that the state
response and the output response obey the formulas

v(t) = etAv(0)+
∫ t

0
e(t−τ)Abx(τ)dτ, (13.42)

y(t) = cT etAv(0)+ [
∫ t

0
cT e(t−τ)Abx(τ)dτ]+dx(t). (13.43)

In these formulas, etA or exp(tA) is the name of the N×N matrix

etA =
∞

∑
k=0

(tA)k

k!
= I + tA+

(tA)2

2!
+

(tA)3

3!
+ · · · , (13.44)

where (tA)k is the matrix tA multiplied by itself k times, and (tA)0 = I, the N×N identity
matrix. Definition (13.44) of the matrix exponential is the natural generalization of the
exponential of a real or complex number. (The series in (13.44) is absolutely summable
because of the factor k! in the denominator.)

590 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


13. LAPLACE AND Z TRANSFORMS

Unlike in the discrete-time case, there is no recursive procedure to compute the responses
(13.42), (13.43). This is because time is continuous, and the difficulty has to do with
the integrals in these formulas. For numerical calculation, one resorts to a finite sum
approximation of the integrals, as we indicated in Section 5.4. The Laplace transform
provides an alternative approach that is exact.

The key to showing (13.42) is the fact that etA, t ≥ 0, is the solution to the differential
equation

d
dt

etA = AetA, t ≥ 0, (13.45)

with initial condition e0A = I. Note that (13.43) follows immediately from (13.42) and
(13.41).

To verify (13.45) we substitute for etA from (13.44) and differentiate the sum term by
term,

d
dt

etA =
∞

∑
k=0

d
dt

(tA)k

k!
=

∞

∑
k=1

kA
k!

(tA)k−1 = A
∞

∑
k=1

(tA)k−1

(k−1)!
= AetA.

We can now check that (13.42) is indeed the solution of (13.40) by taking derivatives of
both sides and using (13.45):

v̇(t) = AetAv(0)+ e0Abx(t)+
∫ t

0
Ae(t−τ)Abx(τ)dτ

= A[etAv(0)+
∫ t

0
Ae(t−τ)Abx(τ)dτ]+bx(t)

= Av(t)+bx(t).

We turn to the main difficulty in calculating the terms on the right in the responses (13.42),
(13.43), namely the calculation of the N×N matrix etA, t ≥ 0. We determine the Laplace
transform of etAu(t), t ∈ R, denoting it by

G(s) =
∫

∞

0
etAe−stdt.

This means that gi j(s) is the Laplace transform of ai j(t), t ≥ 0, denoting by ai j(t) and
gi j(s) the coefficients of the N ×N matrices etA and G(s), respectively. The region of
convergence of G, RoC, is determined later.

Using the derivative formula (13.28) in (13.45) we see that

sG(s)− I = AG(s),

Lee & Varaiya, Signals and Systems 591

http://LeeVaraiya.org


13.8. STATE-SPACE MODELS

which gives G(s) = [sI−A]−1, so that the Laplace transform of etAu(t) is

G(s) =
∫

∞

0
etAe−stdt = [sI−A]−1. (13.46)

Example 13.26: Let

A =

[
1 2
−2 1

]
,

then

[sI−A]−1 =

[
s−1 −2

2 s−1

]−1

=
1

det[sI−A]

[
s−1 2
−2 s−1

]
.

The determinant is

det[sI−A] = (s−1)2 +4 = (s−1+2i)(s−1−2i),

so that

[sI−A]−1 =


s−1

(s−1+2i)(s−1−2i)
2

(s−1+2i)(s−1−2i)

−2
(s−1+2i)(s−1−2i)

s−1
(s−1+2i)(s−1−2i)



=

 1/2
s−1+2i +

1/2
s−1−2i

i/2
s−1+2i +

−i/2
s−1−2i

−i/2
s−1+2i +

i/2
s−1−2i

1/2
s−1+2i +

1/2
s−1−2i

 .
The region of convergence RoC = {s∈C | Re{s}> 1}. We find the inverse Laplace
transform using table 13.3 and express it in two ways: for all t ≥ 0,

etA = e(1−2i)t
[

1/2 i/2
−i/2 1/2

]
+ e(1+2i)t

[
1/2 −i/2
i/2 1/2

]
= et

[
cos2t sin2t
−sin2t cos2t

]
.

The first expression shows etA as a linear combination of the exponentials e(1−2i)t

and e(1+2i)t , in which the exponents, 1− 2i and 1+ 2i, are the two eigenvalues of
A—that is, the zeros of its characteristic polynomial, det[sI−A]. The second ex-
pression shows that etA is sinusoidal with frequency 2 radians/sec equal to the imag-
inary part of the eigenvalues whose amplitude grows exponentially corresponding
to the real part of the eigenvalues.

592 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


13. LAPLACE AND Z TRANSFORMS

Returning to the general case (13.46), denote the matrix inverse of [sI−A] as

G(s) = [sI−A]−1 =
1

det[sI−A]
K(s),

in which K(s) is the N ×N matrix of co-factors of [sI−A]. Each coefficient gi j(s) of
G(s) is a rational polynomial of A whose denominator is the characterstic polynomial of
A, det[sI−A]. Therefore, if there are no pole-zero cancellations, all coefficients of G(s)
have the same poles—the eigenvalues of A. Because etAu(t), t ∈ R, is a causal signal,
the region of convergence of its Laplace transform G(s) is {s ∈ C | Re{s} > Re{p}}, in
which p is the pole of G with the largest real part.

Because det[sI−A] is a polynomial of order N, G has N poles. For the system (13.40),
(13.41) to be stable, the poles of G(s) must have strictly negative real parts. The system
of example (13.26) is unstable, because the real part of the eigenvalues is +1.

Suppose the characteristic polynomial has N distinct zeros p1, · · · , pN ,

det[sI−A] = (s− p1) · · ·(s− pN).

Then the partial fraction expansion of G(s) has the form

G(s) = [sI−A]−1 =
1

s− p1
R1 + · · ·+

1
s− pN

RN ,

in which Ri is the matrix of residues at the pole pi of the coefficients of G(s). Ri is a
constant matrix, possibly with complex coefficients, if pi is complex. Because the inverse
Laplace transform of 1

s−pi
is epitu(t), the inverse Laplace transform of [sI−A]−1 is

etAu(t) = [ep1tR1 + · · ·+ epNtRN ]u(t). (13.47)

Thus the matrix etA as a function of t is a linear combination of ep1t , · · · ,epNt , where the
pi are the eigenvalues of A—that is the zeros of det[sI−A].

We decompose the response (13.43) into the sum of the zero-input and zero-state re-
sponses, expressing the latter as a convolution integral,

y(t) = cT etAv(0)+
∫ t

0
h(t− τ)x(τ)dτ, t ≥ 0,

in which the (zero-state) impulse response is: for all t ∈ R,

h(t) = cT etAbu(t)+dδ(t).

Lee & Varaiya, Signals and Systems 593

http://LeeVaraiya.org


13.8. STATE-SPACE MODELS

(Here δ is the Dirac delta function.) Let X̂ ,Ŷ , Ĥ,Ŷzi be the Laplace transforms

X̂(s) =
∫

∞

0 x(t)e−stdt, Ŷ (s) =
∫

∞

0
y(t)e−stdt,

Ĥ(s) =
∫

∞

−∞
h(t)e−stdt, Ŷzi(s) =

∫
∞

0
cT etAv(0)e−stdt.

Then
Ŷ = ĤX̂ + Ŷzi,

in which
Ĥ(s) = cT [sI−A]−1b+d,

and
Ŷzi(s) = cT [sI−A]−1v(0).

We continue with example 13.26.

Example 13.27: Suppose A is as in example 13.26, bT = [1 1]T ,cT = [2 0]T ,d = 3,
and v(0)T = [0 4]T . Then the transfer function is

Ĥ(s) = [2 0]


s−1

(s−1)2−4
−2

(s−1)2−4

2
(s−1)2−4

s−1
(s−1)2−4

[ 1
1

]
+3 =

2s−6
(s−1)2−4

+3,

and the Laplace transform of the zero-input response is

Ŷzi(s) = [2 0]


s−1

(s−1)2−4
−2

(s−1)2−4

2
(s−1)2−4

s−1
(s−1)2−4

[ 0
4

]
=

−16
(s−1)2−4

.

The transfer function

Ĥ(s) =
2s−6

(s−1)−4
+3 =

3s2−4s−15
s2−2s−3

.

From (13.32) we know that Ĥ is also the transfer function of the differential equa-
tion

d2y
dt2 (t)−2

dy
dt

(t)−3y(t) = 3
d2x
dt2 (t)−4

dx
dt

(t)−15x(t).

Thus this differential equation describes the same system as the state-space model
of example 13.24.

594 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


13. LAPLACE AND Z TRANSFORMS

This example illustrates a general way of obtaining a differential equation description of
a continuous-time state-space model by means of its transfer function.

It is easier to obtain a state-space model with a specified proper transfer function,

Ĥ(s) =
bN−1sN−1 + · · ·+b1s+b0

sN + · · ·+a1s+a0
+bN .

(The first term in Ĥ is strictly proper. Some of the coefficients bi,a j may be zero.) Then
the N-dimensional [A,b,c,d] representation

A =


0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · · · · · · ·
0 0 0 · · · 1
−a0 −a1 −a2 · · · −aN−1

 , b =


0
0
· · ·
0
1

 ,

cT = [b0b1 · · ·bN−1], d = bN . (13.48)

has the same transfer function as Ĥ, that is

cT [sI−A]−1b+d = Ĥ(s). (13.49)

Exercise 30 at the end of this chapter asks you to verify (13.49).

Simply by interchanging the variables s and z we see that the proper rational polynomial

Ĥ(z) =
bN−1zN−1 + · · ·+b1z+b0

zN + · · ·+a1z+a0
+bN = d + cT [zI−A]−1b

is the transfer function of the discrete-time [A,b,c,d] representation.

Thus we can use any of three equivalent representations of LTI systems:

• difference or differential equations, used to describe many physical systems,

• transfer functions used for frequency-domain analysis, and in feedback design con-
sidered in the next chapter,

• state-space models, used in modern control theory.

Lee & Varaiya, Signals and Systems 595

http://LeeVaraiya.org


13.9. SUMMARY

13.9 Summary

The Z transform and Laplace transform have many of the same properties as the Fourier
transforms. They are linear, which greatly facilitates computation of the transforms and
their inverses. Moreover, the Z transform (Laplace transform) of the output of an LTI
system is the product of the Z transforms (Laplace transforms) of the input and the transfer
function. Thus, the Z transform (Laplace transform) plays the same role as the frequency
response, describing the relationship between the input and the output as a product rather
than a convolution.

Linear difference and differential equations, and state-space models of LTI systems were
introduced in Chapter 5 and Chapter 8. However, we lacked a method to calculate the
response of these models for non-zero initial conditions. The Z transform and the Laplace
transform provide such a method.

596 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


13. LAPLACE AND Z TRANSFORMS

Probing Further: Derivatives of Z transforms

Calculus on complex-valued functions of complex variables can be intricate. Suppose X̂
is a function of a complex variable. The derivative can be defined as a limit,

d
dz

X̂(z) = lim
ε→0

X̂(z+ ε)− X̂(z)
ε

,

where ε is a complex variable that can approach zero from any direction in the complex
plane. The derivative exists if the limit does not depend on the direction. If the derivative
exists at all points within a distance ε > 0 of a point z in the complex plane, then X̂ is
said to be analytic at z. A Z transform is a series of the form

∀ z ∈ RoC(x), X̂(z) =
∞

∑
n=−∞

x(n)z−n.

This is called a Laurent series in the theory of complex variables. It can be shown that
a Laurent series is analytic at all points z ∈ RoC(x), and that the derivative is

∀ z ∈ RoC(x),
d
dz

X̂(z) =
∞

∑
m=−∞

−mx(m)z−m−1.

We can use this fact to show that the Z transform of y given by y(n) = nx(n) is

∀z ∈ Roc(x), Ŷ (z) =−z
d
dz

X̂(z).

This is because

Ŷ (z) =
∞

∑
n=−∞

nx(n)z−n =
∞

∑
n=−∞

(−z)
d
dz

x(n)z−n =−z
d
dz

X̂(z).

It is not difficult to show that Roc(y) = Roc(x) (see Exercise 5).
This property can be used to find other Z transforms. For example, the Z transform

of the unit step, x = u, is X̂(z) = z/(z− 1), with RoC(x) = {z ∈ C | |z| > 1}. So the Z
transform of the unit ramp y, given by y(n) = nu(n), is

Ŷ (z) =−z
d
dz

z
z−1

=
z

(z−1)2 ,

with RoC(y) = {z ∈C | |z|> 1}. Another method for finding the Z transform of the unit
ramp is given in Exercise 3 of Chapter 12.

Lee & Varaiya, Signals and Systems 597

http://LeeVaraiya.org


13.9. SUMMARY

|z|=1

Re z

Im z

3

Figure 13.2: Pole-zero plot for a length-4 moving average system.

Im s

Re s

RoC

s = iω

s = − iω

Figure 13.3: Pole-zero plot for the sinusoidal signal y of example 13.10.

598 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


13. LAPLACE AND Z TRANSFORMS

Im s

Re s

RoC

s = − 1 + i

2 4 6− 2− 4− 6

ω

|H(ω)| 

s = − 1 − i

Im s

Re s

RoC

s = − 0.5 + i

s = − 0.5 − i

Im s

Re s

RoC

s = − 0.1 + i

s = − 0.1 − i

Figure 13.4: Pole-zero plots for the three transfer functions in example 13.12, and
the three corresponding magnitude frequency responses.

Lee & Varaiya, Signals and Systems 599

http://LeeVaraiya.org


13.9. SUMMARY

Probing Further: Inverse transform as an integral

Even if the Z transform is not a rational polynomial, we can recover the signal x from its
Z transform, X̂ : RoC(x)→C, using the DTFT. A non-empty RoC(x) contains the circle
of radius r for some r > 0. So the series in the equation

X̂(reiω) =
∞

∑
m=−∞

x(m)(reiω)−m =
∞

∑
m=−∞

(x(m)r−m)e−iωm

is absolutely summable. Hence the signal xr: ∀n,xr(n) = x(n)r−n, has DTFT Xr:
∀ω,Xr(ω) = X̂(reiω). We can, therefore, obtain xr as the inverse DTFT of Xr

∀n, xr(n) = r−nx(n) =
1

2π

∫ 2π

0
X̂(reiω)eiωndω.

Multiplying both sides by rn, we can recover x as

∀n ∈ Z, x(n) =
1

2π

∫ 2π

0
X̂(reiω)(reiω)ndω. (13.15)

This formula defines the inverse Z transform as an integral of the real variable ω. (Con-
tinued on page 601.)

600 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


13. LAPLACE AND Z TRANSFORMS

Probing Further: (Continued) Inverse transform

It is conventional to write the inverse Z transform differently. Express z as z= reiω. Then
as ω varies from 0 to 2π, z varies as

dz = reiωidω = zidω, or dω =
dz
iz
.

Substituting this in (13.15) gives,

∀n, x(n) =
1

2π

∮
X̂(z)zn dz

iz
=

1
2πi

∮
X̂(z)zn−1dz.

Here the ‘circle’ in the integral sign,
∮

, means that the integral in the complex z-plane
is along any closed counterclockwise circle contained in RoC(x). (An integral along a
closed contour is called a contour integral.) In summary,

∀n ∈ Z, x(n) =
1

2πi

∮
X̂(z)zn−1dz, (13.16)

where the integral is along any closed counterclockwise circle inside RoC(x).
We can similarly use the CTFT to recover any continuous-time signal x from its

Laplace transform by

∀t ∈ R, x(t) =
1

2πi

σ+i∞∫
σ−i∞

X̂(s)estds

where the integral is along any vertical line (σ− i∞,σ+ i∞) contained in RoC(x).

Lee & Varaiya, Signals and Systems 601

http://LeeVaraiya.org


13.9. SUMMARY

Probing Further: Differentiation and Laplace transforms

We can use the inverse Laplace transform as given in the box on page 600 to demon-
strate the differentiation property in table 13.4. Let y be defined by

∀ t ∈ R, y(t) =
d
dt

x(t).

We can write x in terms of its Laplace transform as

∀t ∈ R, x(t) =
1

2πi

∫
σ+i∞

σ−i∞
X̂(s)estds.

Differentiating this with respect to t is easy,

∀t ∈ R,
d
dt

x(t) =
1

2πi

∫
σ+i∞

σ−i∞
sX̂(s)estds.

Consequently, y(t) = dx(t)/dt is the inverse transform of sX̂(s), so

∀ s ∈ RoC(y), Ŷ (s) = sX̂(s),

where RoC(y)⊃ RoC(x).

602 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


13. LAPLACE AND Z TRANSFORMS

Exercises

Each problem is annotated with the letter E, T, C which stands for exercise, requires some
thought, requires some conceptualization. Problems labeled E are usually mechanical,
those labeled T require a plan of attack, those labeled C usually have more than one
defensible answer.

1. E Consider the signal x given by

∀n, x(n) = sin(ω0n)u(n).

(a) Show that the Z transform is

∀ z ∈ RoC(x), X̂(z) =
zsin(ω0)

z2−2zcos(ω0)+1
,

where
RoC(x) = {z ∈ C | |z|> 1}.

(b) Where are the poles and zeros?

(c) Is x absolutely summable?

2. T Consider the signal x given by

∀ n ∈ Z, x(n) = a|n|,

where a ∈ C.

(a) Find the Z transform of x. Be sure to give the region of convergence.

(b) Where are the poles?

(c) Under what conditions is x absolutely summable?

3. E Consider a discrete-time LTI system with transfer function given by

∀ z ∈ {z | |z|> 0.9}, Ĥ(z) =
z

z−0.9
.

Suppose that the input x is given by

∀ n ∈ Z, x(n) = δ(n)−0.9δ(n−1).

Find the Z transform of the output y, including its region of convergence.

Lee & Varaiya, Signals and Systems 603

http://LeeVaraiya.org


EXERCISES

4. E Consider the exponentially modulated sinusoid y given by

∀ n ∈ Z, y(n) = a−n cos(ω0n)u(n),

where a is a real number, ω0 is a real number, and u is the unit step signal.

(a) Find the Z transform. Be sure to give the region of convergence. Hint: Use
example 13.3 and Section 13.1.6.

(b) Where are the poles?

(c) For what values of a is this signal absolutely summable?

5. T Suppose x ∈ DiscSignals satisfies

∞

∑
n=−∞

|x(n)r−n|< ∞, 0 < r1 < r < r2,

for some real numbers r1 and r2 such that r1 < r2. Show that

∞

∑
n=−∞

|nx(n)r−n|< ∞, 0 < r1 < r < r2.

Hint: Use the fact that for any ε > 0 there exists N < ∞ such that n(1+ ε)−n < 1
for all n > N.

6. T Consider a causal discrete-time LTI system where the input x and output y are
related by the difference equation

∀ n ∈ Z, y(n)+b1y(n−1)+b2y(n−2) = a0x(n)+a1x(n−1)+a2x(n−2),

where b1, b2, a0, a1, and a2 are real-valued constants.

(a) Find the transfer function.

(b) Say as much as you can about the region of convergence.

(c) Under what conditions is the system stable?

7. E This exercise verifies the time delay property of the Laplace transform. Show
that if x is a continuous-time signal, τ is a real constant, and y is given by

∀ t ∈ R, y(t) = x(t− τ),

604 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


13. LAPLACE AND Z TRANSFORMS

then its Laplace transform is

∀ s ∈ RoC(y), Ŷ (s) = e−sτX̂(s),

with region of convergence

RoC(y) = RoC(x).

8. E This exercise verifies the convolution property of the Laplace transform. Sup-
pose x and h have Laplace transforms X̂ and Ĥ. Let y be given by

∀ t ∈ R, y(t) = (x∗h)(t) =
∞∫
−∞

x(τ)h(t− τ)dτ.

Then show that the Laplace transform is

∀s ∈ RoC(y), Ŷ (s) = X̂(s)Ĥ(s),

with
RoC(y)⊃ RoC(x)∩RoC(h).

9. T This exercise verifies the conjugation property of the Laplace transform, and
then uses this property to demonstrate that for real-valued signals, poles and zeros
come in complex-conjugate pairs.

(a) Let x be a complex-valued continuous-time signal and y be given by

∀ t ∈ R, y(t) = [x(t)]∗.

Show that
∀ s ∈ RoC(y), Ŷ (s) = [X̂(s∗)]∗,

where
RoC(y) = RoC(x).

(b) Use this property to show that if x is real, then complex poles and zeros occur
in complex conjugate pairs. That is, if there is a zero at s = q, then there must
be a zero at s = q∗, and if there is a pole at s = p, then there must also be a
pole at s = p∗.

Lee & Varaiya, Signals and Systems 605

http://LeeVaraiya.org


EXERCISES

10. T This exercise verifies the time scaling property of the Laplace transform. Let y
be defined by

∀ t ∈ R, y(t) = x(ct),

for some real number c. Show that

∀ s ∈ RoC(y), Ŷ (s) = X̂(s/c)/|c|,

where
RoC(y) = {s | s/c ∈ RoC(x)}.

11. E This exercise verifies the exponential scaling property of the Laplace transform.
Let y be defined by

∀ t ∈ R, y(t) = eatx(t),

for some complex number a. Show that

∀ s ∈ RoC(y), Ŷ (s) = X̂(s−a),

where
RoC(y) = {s | s−a ∈ RoC(x)}.

12. T Consider a discrete-time LTI system with impulse response

∀n, h(n) = an cos(ω0n)u(n),

for some ω0 ∈ R. Show that if the input is

∀ n ∈ Z, x(n) = eiω0nu(n),

then the output y is unbounded.

13. E Find and plot the inverse Z transform of

X̂(z) =
1

(z−3)3

with

(a) Roc(x) = {z ∈ C | |z|> 3}
(b) Roc(x) = {z ∈ C | |z|< 3}.

606 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


13. LAPLACE AND Z TRANSFORMS

14. E Obtain the partial fraction expansions of the following rational polynomials. First
divide through if necessary to get a strictly proper rational polynomial.

(a)
z+2

(z+1)(z+3)

(b)
(z+2)2

(z+1)(z+3)

(c)
z+2
z2 +4

.

15. E Find the inverse Z transform x for each of the three possible regions of conver-
gence associated with

X̂(z) =
(z+2)2

(z+1)(z+3)
.

For which region of convergence is x causal? For which is x strictly anti-causal?
For which is x two-sided?

16. E Find the inverse Z transform x for each of the two possible regions of convergence
associated with

X̂(z) =
z+2
z2 +4

.

17. E Consider a stable system with impulse response

h(n) = (0.5)nx(n).

Find the steady-state response to a unit step input.

18. E Let h(n) = 2nu(−n), all n, and g(n) = 0.5nu(n), for all n. Find h ∗ u and g ∗ u,
where u is the unit step.

19. E This exercise shows how we can determine the transfer function and frequency
response of an LTI system from its step response. Suppose a causal system with
step input x = u, produces the output

∀ n ∈ Z, y(n) = (1−0.5n)u(n).

(a) Find the transfer function (including its region of convergence).

Lee & Varaiya, Signals and Systems 607

http://LeeVaraiya.org


EXERCISES

(b) If the system is stable, find its frequency response.

(c) Find the impulse response of the system.

20. E Consider an LTI system with impulse response h given by

∀ n ∈ Z, h(n) = 2nu(n).

(a) Find the transfer function, including its region of convergence.

(b) Use the transfer function to find the Z transform of the step response.

(c) Find the inverse transform of the result of part (b) to obtain the step response
in the time domain.

21. E Determine the zero-input and zero-state responses, and the transfer function for
the following. In both cases take y(−1) = y(−2) = 0 and x(n) = u(n).

(a) y(n)+ y(n−2) = x(n),n≥ 0.

(b) y(n)+2y(n−1)+ y(n−2) = x(n),n≥ 0.

22. E Determine the zero-input and the zero-state responses for the following.

(a) 5ẏ+10y = 2x,y(0) = 2,x(t) = u(t).

(b) ÿ+5ẏ+6y =−4x−3ẋ,y(0) =−1, ẏ(0) = 5,x(t) = e−tu(t).

(c) ÿ+4y = 8x,y(0) = 1, ẏ(0) = 2,x(t) = u(t).

(d) ÿ+2ẏ+5y = ẋ,y(0) = 2, ẏ(0) = 0,x(t) = e−tu(t).

23. E Show that the [A,b,c,d] representation in example 13.23 is correct. Then show
that the transfer function of the state-space model is the same as that of the differ-
ence equation.

24. T Consider the circuit of figure 13.5. The input is the voltage x, the output is the
capacitor voltage v. The inductor current is called i.

(a) Derive the [A,b,c,d] representation for this system using s(t) = [i(t),v(t)]T as
the state.

(b) Obtain an [F,g,h,k] representation for a discrete-time model of the same
circuit by sampling at times kT,k = 0,1, · · · and using the approximation
ṡ(kT ) = 1/T (s((k+ 1)T )− s(kT )). (This is called a forward-Euler approx-
imation.)

608 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


13. LAPLACE AND Z TRANSFORMS

+

-
x(t)

R

L

v(t)
i(t)

r

C
+

-

Figure 13.5: Circuit of problem 24

25. E For the matrix A in example 13.24, determine etA, t ≥ 0.

26. E For the matrix A in example 13.26, determine An,n≥ 0.

27. T A continuous-time SISO system has [A,b,c,d] representation with

A =

[
a b
−b a

]
,

in which a,b are real constants.

(a) Find the eigenvalues of A.

(b) For what values of a,b is the SISO system stable?

(c) Calculate etA, t ≥ 0.

(d) Suppose b = c = [1 0]T , and d = 0. Find the transfer function.

28. T Let A be an N ×N matrix. Let p be an eigenvalue of A. An N-dimensional
(column) vector e, possibly complex-valued, is said to be an eigenvector of A cor-
responding to p if e 6= 0 and Ae = pe. Note that an eigenvector always exists since
det[pI−A] = 0. Find eigenvectors for each of the two eigenvalues of the matrices
in examples 13.24 and 13.26.

29. E Let A be a square matrix with eigenvalue p and corresponding eigenvector e.
Determine the response of the following.

(a) s(k+1) = As(k),k ≥ 0; s(0) = e.

(b) ṡ(t) = As(t), t ≥ 0; s(0) = e.

Hint. Show that Ane = pne and etAe = epte.

Lee & Varaiya, Signals and Systems 609

http://LeeVaraiya.org


EXERCISES

30. T Verify (13.49). Hint. First show that

[sI−A]−1b =
1

sN +aN−1sN−1 + · · ·+a0


1
s
· · ·

sN−1

 ,
by multiplying both sides by [sI−A]. Then check (13.49).

610 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


14
Composition and Feedback

Control

Contents
14.1 Cascade composition . . . . . . . . . . . . . . . . . . . . . . . . . 613

14.1.1 Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . 613
14.1.2 Equalization . . . . . . . . . . . . . . . . . . . . . . . . . . 614

14.2 Parallel composition . . . . . . . . . . . . . . . . . . . . . . . . . . 620
14.2.1 Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . 621
14.2.2 Noise cancellation . . . . . . . . . . . . . . . . . . . . . . . 622

14.3 Feedback composition . . . . . . . . . . . . . . . . . . . . . . . . . 626
14.3.1 Proportional controllers . . . . . . . . . . . . . . . . . . . . 628

14.4 PID controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639
14.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648

A major theme of this book is that interesting systems are often compositions of simpler
systems. Systems are functions, so their composition is function composition, as dis-
cussed in section 2.1.5. However, systems are often not directly described as functions,
so function composition is not the easiest tool to use to understand the composition. We
have seen systems described as state machines, frequency responses, and transfer func-
tions. In chapter 4 we obtained the state machine of the composite system from its compo-
nent state machines. In section 8.5 we obtained the frequency response of the composite

611



14.1. CASCADE COMPOSITION

H1

x w
H2

y

H = H1 H2

Figure 14.1: Cascade composition of two LTI systems with transfer functions H1
and H2.

system from the frequency response of its component linear time-invariant (LTI) systems.
We extend the latter study in this chapter to the composition of LTI systems described by
their transfer functions. This important extension allows us to consider unstable systems
whose impulse response has a Z or Laplace transform, but not a Fourier transform.

As before, feedback systems prove challenging. A particularly interesting issue is how to
maintain stability, and how to construct stable systems out of unstable ones. We will find
that some feedback compositions of stable systems result in unstable systems, and con-
versely, some compositions of unstable systems result in stable systems. For example, we
can stabilize the helicopter in example 12.2 using feedback, in fact we can precisely con-
trol its orientation, despite the intrinsic instability. The family of techniques for doing this
is known as feedback control. This chapter serves as an introduction to that topic. Feed-
back control can also be used to drive stable systems, in which case it serves to improve
their response. For example, feedback can result in faster or more precise responses, and
can also prevent overshoot, where a system overreacts to a command.

We will consider three styles of composition, cascade composition, parallel composi-
tion, and feedback composition. In each case, two LTI systems with transfer functions
Ĥ1 and Ĥ2 are combined to get a new system. The transfer functions Ĥ1 and Ĥ2 are
the (Z or Laplace) transforms of the respective impulse responses, h1 and h2. Much of
our discussion applies equally well whether the system is a continuous-time system or a
discrete-time system, so in many cases we leave this unspecified.

612 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


14. COMPOSITION AND FEEDBACK CONTROL

14.1 Cascade composition

Consider the cascade composition shown in figure 14.1. The composition is the grey box,
and it has transfer function

Ĥ = Ĥ1Ĥ2.

Notice that because of this simple form, if we know the pole and zero locations of the
component systems, then it is easy to determine the pole and zero locations of the compo-
sition. Unless a pole of one is cancelled by a zero of the other, the poles and zeros of the
composition are simply the aggregate of the poles and zeros of the components. More-
over, any pole of Ĥ must be a pole of either Ĥ1 or Ĥ2, so if Ĥ1 and Ĥ2 are both stable,
then so is Ĥ.

14.1.1 Stabilization

The possibility for pole-zero cancellation suggests that cascade composition might be
used to stabilize an unstable system.

Example 14.1: Consider a discrete-time system with transfer function

∀ z ∈ {z | |z|> |1.1|}, Ĥ1(z) =
z

z−1.1
.

This is a proper rational polynomial with a region of convergence of the form for a
causal signal, so it must be a causal system. However, it is not stable, because the
region of convergence does not include the unit circle.

To stabilize this system, we might consider putting it in cascade with

∀ z ∈ C, Ĥ2(z) =
z−1.1

z
.

This is a causal and stable system. The transfer function of the cascade composition
is

Ĥ(z) =
z

z−1.1
z−1.1

z
= 1 .

The pole at z = 1.1 has been cancelled, and the resulting region of convergence
is the entire complex plane. Thus, the cascade composition is a causal and stable
system, and we can recognize from table 13.1 that the impulse response is h(n) =
δ(n).

Lee & Varaiya, Signals and Systems 613

http://LeeVaraiya.org


14.1. CASCADE COMPOSITION

Stabilizing systems by cancelling their poles in a cascade composition, however, is almost
never a good idea. If the pole is not precisely cancelled, then no matter how small the
error, the resulting system is still unstable.

Example 14.2: Suppose that in the previous example the pole location is not
known precisely, and turns out to be at z = 1.1001 instead of z = 1.1. Then the
cascade composition has transfer function

Ĥ(z) =
z

z−1.1001
z−1.1

z
=

z−1.1
z−1.1001

,

which is unstable.

14.1.2 Equalization

While cascade compositions do not usually work well for stabilization, they do often
work well for equalization. An equalizer is a compensator that reverses distortion. The
source of the distortion, which is often called a channel, must be an LTI system, and the
equalizer is composed in cascade with it. At first sight this is easy to do. If the channel
has transfer function Ĥ1, then the equalizer could have transfer function

Ĥ2 = Ĥ−1
1 ,

in which case the cascade composition will have transfer function

Ĥ = Ĥ1Ĥ2 = 1,

which is certainly distortion-free.

Example 14.3: Some acoustic environments for audio have resonances, where
certain frequencies are enhanced as the sound propagates through the environment.
This will typically occur if the physics of the acoustic environment results in a
transfer function with poles near the unit circle (for a discrete-time model) or near
the imaginary axis (for a continuous-time model). Suppose for example that the

614 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


14. COMPOSITION AND FEEDBACK CONTROL

acoustic environment is well modeled by a discrete-time LTI system with transfer
function

∀ z ∈ {z | |z|> 0.95}, Ĥ1(z) =
z2

(z−a)(z−a∗)
,

where a = 0.95eiω1 for some frequency ω1. Using the methods of Section 13.2, we
can infer that the magnitude response will have a strong peak at frequencies ω1 and
−ω1, because the positions on the unit circle eiω1 and e−iω1 are very close to the
poles. This will result in distortion of the audio signal, where frequencies near ω1
will be amplified.

An equalizer that will compensate for this distortion has transfer function

Ĥ2(z) = [Ĥ1(z)]−1 =
(z−a)(z−a∗)

z2 =
z2−2Re{a}z+ |a|2

z2 .

As in example 13.2, we can recognize this as the Z transform of an FIR filter with
impulse response

∀ n ∈ Z, h2(n) = δ(n)−2Re{a}δ(n−1)+ |a|2δ(n−2).

This filter is causal and stable, and hence can serve as an effective equalizer.

There are a number of potential problems with this approach, however. First, the transfer
function of the channel is probably not known, or at least not known precisely. Second,
the channel may not have a stable and causal inverse.

Let us first examine the first difficulty, that the channel may not be known (precisely). If
the channel model Ĥ1 and its inverse Ĥ2 are both stable, then the cascade composition
is at least assured of being stable, even if the channel has been misconstrued. Moreover,
if the equalizer is close to the inverse of the true channel, then often the distortion is
significantly reduced despite the errors (see exercise 1).

This difficulty can sometimes be dealt with by adaptively varying the equalizer based on
measurements of the distortion. One way to measure the distortion is to send through
the channel a known sequence called a training sequence and observe the output of the
channel. Suppose that the training sequence is a signal x with Z transform X̂ , and that the
channel Ĥ1 is unknown. If we can observe the output y of the channel, and calculate its Z

Lee & Varaiya, Signals and Systems 615

http://LeeVaraiya.org


14.1. CASCADE COMPOSITION

transform Ŷ , then the channel transfer function is simply

∀ z ∈ RoC(h1), Ĥ1(z) =
Ŷ (z)
X̂(z)

,

where RoC(h1) is determined by identifying the poles and zeros of the rational polyno-
mial Ŷ (z)/X̂(z) and finding the one ring-shaped region that includes the unit circle and is
bordered by poles. This results in a stable channel model.

Training sequences are commonly used in digital communication systems, where, for ex-
ample, a radio channel introduces distortion. However, it is also common for such chan-
nels to change over time. Radio channels, for example, change if either the transmitter or
receiver moves, or if the weather changes, or if obstacles appear or disappear. Repeatedly
transmitting training sequences is an expensive waste of radio bandwidth, and fortunately,
is not usually necessary, as illustrated in the following example.

Example 14.4: Consider a digital communication system where the channel is
modeled as a discrete-time LTI system with transfer function Ĥ1, representing for
example a radio transmission subsystem. Suppose that this digital communication
system transmits a bit sequence represented as a discrete-time signal x of form

x : Z→{0,1}.

Suppose further that we use a training sequence to obtain an initial estimate Ĥ2 of
the inverse of the channel. But over time, the channel drifts, so that Ĥ2 is no longer
the inverse of Ĥ1. Assuming the drift is relatively slow, then after a short time, Ĥ2 is
still close to the inverse of Ĥ1, in that the cascade Ĥ1Ĥ2 yields only mild distortion.
That is, if x(n) = 0 for some n, then y(n) ≈ 0. Similarly, if x(n) = 1 for some n,
then y(n) ≈ 1. Thus, we can quantize y, getting an accurate estimate x without
it having to be a known training sequence. That is, when y(n) ≈ 0, we assume
that x(n) = 0, and when y(n) ≈ 1, we assume that x(n) = 1. These assumptions
are called decisions, and in fact, such decisions must be made anyway for digital
communication to occur. We have to decide whether a 1 or a 0 was transmitted,
and closeness to 1 or 0 seems like an eminently reasonable basis on which to make
such a decision.

Assuming there are no errors in these decisions, we can infer that

Ĥ1Ĥ2X̂d = Ŷ ,

616 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


14. COMPOSITION AND FEEDBACK CONTROL

where X̂d is the Z transform of the decision sequence. So, without using another
training sequence, we can revise our estimate of the channel transfer function as
follows,

Ĥ1 =
Ŷ

Ĥ2X̂d
.

We replace our equalizer Ĥ2 with

Ĥ ′2 = [Ĥ1]
−1 =

Ĥ2X̂d

Ŷ
.

Of course, we now start using Ĥ ′2, which will come closer to correcting the channel
distortion, which will make our decisions more reliable for the next update.

Example 14.4 outlines a widely used technique called decision-directed adaptive equal-
ization. It is so widely used, in fact, that it may be found in every digital cellular tele-
phone and almost every modem, including voiceband data modems, radio modems, cable
modems, DSL modems, etc. The algorithms used in practice to update the transfer func-
tion of the equalizer are not exactly as shown in the example, and their details are beyond
the scope of this text, but they follow the general principle in the example.

Let us now turn our attention to the second difficulty with equalization, that the channel
may not have a stable and causal inverse. We begin with an example.

Example 14.5: Suppose that, similar to example 14.3, a channel has transfer
function

∀ z in{z | |z|> 0.95}, Ĥ1(z) =
z

(z−a)(z−a∗)
,

where a = 0.95eiω1 for some frequency ω1. The inverse is

[Ĥ1(z)]−1 =
(z−a)(z−a∗)

z
=

z2−2Re{a}z+ |a|2)
z

,

which is not a proper rational polynomial. Thus, this cannot be the Z transform of
a causal signal. Implementing a non-causal equalizer will usually be impossible,
since it will require knowing future inputs. However, suppose we simply force the

Lee & Varaiya, Signals and Systems 617

http://LeeVaraiya.org


14.1. CASCADE COMPOSITION

equalizer have a proper rational polynomial transfer function by dividing by a high
enough power M of z to make [Ĥ1(z)]−1/zM proper. In this example, M = 1 is
sufficient, so we define the equalizer to be

Ĥ2(z) =
[Ĥ1(z)]−1

z
=

z2−2Re{a}z+ |a|2)
z2 ,

which we again recognize as the Z transform of an FIR filter with impulse response

∀ n ∈ Z, h2(n) = δ(n)−2Re{a}δ(n−1)+ |a|2δ(n−2).

This filter is causal and stable, but does it serve as an effective equalizer? Consider
now the cascade,

Ĥ(z) = Ĥ1(z)Ĥ2(z) =
1
z
.

From Section 13.1.2 we recognize this as the transfer function of the unit delay
system. That is, the equalizer completely compensates for the distortion, but at the
expense of introducing a one sample delay. This is usually a perfectly acceptable
cost.

Example 14.5 demonstrates that when the channel inverse is not a proper rational polyno-
mial, then introducing a delay may enable construction of a stable and causal equalizer.
Not all equalization stories have such a happy ending, however. Consider the following
example.

Example 14.6: Consider a channel with the following transfer function,

∀ z ∈ {z ∈ C | z 6= 0}, Ĥ1(z) =
z−2

z
.

This is a stable and causal channel. Its inverse is

[Ĥ1(z)]−1 =
z

z−2
.

This has a pole at z = 2, so in order to be stable, it would have to be anti-causal
(so that the region of convergence can include the unit circle). Implementing an
anti-causal equalizer is usually not possible.

618 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


14. COMPOSITION AND FEEDBACK CONTROL

Example 14.6 shows that not all channels can be inverted by an equalizer. All is not
lost, however. Given a channel Ĥ1(z) that has a rational Z transform, we can usually
find a transfer function Ĥ2(z) that compensates for the magnitude response part of the
distortion. That is, we can find a transfer function Ĥ2(z) that is stable and causal such that
the magnitude response of the composite satisfies

|H1(ω)H2(ω)|= |Ĥ1(eiω)Ĥ2(eiω)|= 1.

For some applications, this is sufficient. In audio equalization, for example, this is almost
always sufficient, because the human ear is not very sensitive to the phase of audio signals.
It hears only the magnitude of the frequency components.

Example 14.7: Continuing example 14.6, let Ĥ2 be given by

Ĥ2 =
z

1−2z
=
−0.5z
z−0.5

.

This has a pole at z = 0.5, and is a proper rational polynomial, so it can be the
transfer function of a causal and stable filter. Consider the cascade composition,

Ĥ(z) = Ĥ1(z)Ĥ2(z) =
z−2

z
· −0.5z

z−0.5
=

1−0.5z
z−0.5

.

This hardly looks like what we want, but if we rewrite it slightly, it is easy to show
that the magnitude frequency response has value one for all ω,

Ĥ(z) =
1−0.5z
z−0.5

= z
z−1−0.5
z−0.5

.

The magnitude frequency response is

|H(ω)|= |Ĥ(eiω)|= |eiω| · |e
−iω−0.5|
|eiω−0.5| = 1 .

This magnitude is equal to 1 because the numerator, e−iω− 0.5, is the complex
conjugate of the denominator, eiω−0.5, so they have the same magnitude.

The method in example 14.7 can be generalized so that for most channels it is possible
to cancel any magnitude distortion. The key is that if the channel transfer function has a

Lee & Varaiya, Signals and Systems 619

http://LeeVaraiya.org


14.2. PARALLEL COMPOSITION

zero outside the unit circle, say at z = a, then its inverse has a pole at the same location,
z = a. A pole outside the unit circle makes it impossible to have a stable and causal filter.
So the trick is to place a pole instead at z = 1/a∗. This pole will cancel the effect on the
magnitude (but not the phase) of the zero at z = a.

There are still channels for which this method will not work.

Example 14.8: Consider a channel given by

∀ z ∈ {z ∈ C | z 6= 0}, Ĥ1(z) =
z−1

z
.

This has a pole at z = 0 and a zero at z = 1. Its inverse cannot be stable because
it will have a pole at z = 1. In fact, no equalization is possible. This is intuitive
because the frequency response is zero at ω = 0, and no stable equalizer in cascade
with this channel can reconstruct the original component at ω = 0. It would have
to have infinite gain at ω = 0, which would make it unstable.

14.2 Parallel composition

Consider the parallel composition shown in figure 14.2. The transfer function of the
composition system is

Ĥ = Ĥ1 + Ĥ2.

This is valid whether these are Laplace transforms or Z transforms. Once again, notice
that a pole of Ĥ must be a pole of either Ĥ1 or Ĥ2, so if Ĥ1 and Ĥ2 are stable, then so is
Ĥ. At the poles of Ĥ1, Ĥ1(z) is infinite, so very likely a pole of Ĥ1 will also be a pole of
Ĥ. However, just as in the cascade composition, this pole may be cancelled by a zero.

Determining the location of the zeros of the composition, however, is slightly more com-
plicated than for cascade composition. The sum has to be put into rational polynomial
form, and the polynomials then need to be factored.

620 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


14. COMPOSITION AND FEEDBACK CONTROL

H1
x 

w1

H2

y

H = H1+ H2

w2

Figure 14.2: Parallel composition of two LTI systems with transfer functions H1
and H2.

14.2.1 Stabilization

Just as with cascade composition, stabilizing systems by cancelling their poles in a parallel
composition is possible, but is almost never a good idea.

Example 14.9: Consider a discrete-time system with transfer function

∀ z ∈ {z | |z|> |1.1|}, Ĥ1(z) =
z

z−1.1
.

This describes a causal but unstable system. Suppose we combine this in parallel
with a system with transfer function

∀ z ∈ {z | |z|> |1.1|}, Ĥ2(z) =
−1.1

z−1.1
.

This is again causal and unstable. The transfer function of the parallel composition
is

Ĥ(z) =
z

z−1.1
+
−1.1

z−1.1
=

z−1.1
z−1.1

= 1 .

The pole at z = 1.1 has been cancelled, and the resulting region of convergence
is the entire complex plane. Thus, the parallel composition is a causal and stable
system with impulse response h(n) = δ(n).

Lee & Varaiya, Signals and Systems 621

http://LeeVaraiya.org


14.2. PARALLEL COMPOSITION

H1
x 

w

H2

y

w1

w2

Figure 14.3: Structure of a noise canceller.

However, if the pole is not precisely cancelled, then no matter how small the error, the
resulting system is still unstable.

Example 14.10: Suppose that in the previous example the pole location is not
known precisely, and turns out to be at z = 1.1001 instead of z = 1.1. Then the
parallel composition has transfer function

Ĥ(z) =
z

z−1.1001
+
−1.1

z−1.1
=

z2−2.2z+1.21001
(z−1.1001)(z−1.1)

,

which is unstable.

14.2.2 Noise cancellation

While parallel compositions do not usually work well for stabilization, with a small mod-
ification they do often work well for noise cancellation. A noise canceller is a compen-
sator that removes an unwanted component from a signal. The unwanted component is
called noise.

The pattern of a noise cancellation problem is shown in figure 14.3. The signal x is a noise
source. This signal is filtered by Ĥ1 and added to the desired signal w. The result is a

622 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


14. COMPOSITION AND FEEDBACK CONTROL

noisy signal. To cancel the noise, the signal from the noise source is filtered by a noise
cancelling filter Ĥ2 and the result is added to the noisy signal. If x has (Laplace or Z)
transform X̂ , w has transform Ŵ , and y has transform Ŷ , then

Ŷ = Ŵ +(Ĥ1 + Ĥ2)X̂ .

From this it is evident that if we choose

Ĥ2 =−Ĥ1,

then y will be a clean (noise-free) signal, equal to w. The following examples describe
real-world applications of this pattern.

Example 14.11: A connection to the telephone network uses two wires (called
a twisted pair, consisting of tip and ring) to connect a telephone to a central
office. The central office may be, perhaps, 4 kilometers away. The two wires carry
voice signals to and from the customer premises, representing the voice signals as a
voltage difference across the two wires. Since two wires can only have one voltage
difference across them, the incoming voice signal and the outgoing voice signal
share the same twisted pair.

The central office needs to separate the voice signal from the local customer
premises (called the near-end signal) from the voice signal that comes from the
other end of the connection (called the far-end signal). The near end signal is
typically digitized (sampled and quantized), and a discrete-time representation of
the voice signal is transmitted over the network to the far end. The network itself
consists of circuits that can carry voice signals in one direction at a time. Thus, in
the network, four wires (or equivalent) are required for a telephone connection, one
wire pair for each direction.

As indicated in figure 14.4, the conversion from a two-wire to a four-wire connec-
tion is done by a device called a hybrid. A hybrid is a Wheatstone bridge, a circuit
that can separate two signals based on the electrical impedance looking into the lo-
cal twisted pair and the electrical impedance looking into the network. The design
of this circuit is a suitable topic for a text on electrical circuits.

A connection between subscribers A and B involves two hybrids, one in each sub-
scriber’s central office. The hybrid in B’s central office ideally will pass all of the

Lee & Varaiya, Signals and Systems 623

http://LeeVaraiya.org


14.2. PARALLEL COMPOSITION

A B

Hybrid
at A's
CO

Hybrid
at B's
CO

x = signal from A

y = leakage of A's signal plus signal from Becho

twisted pair

H1

x 

w

H2

y

echo pathecho canceller 

w1w2

Figure 14.4: A telephone central office converts the two-wire connection with a
customer telephone into a four-wire connection with the telephone network using
a device called a hybrid. An imperfect hybrid leaks, causing echo. An echo
canceller removes the leaked signal.

624 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


14. COMPOSITION AND FEEDBACK CONTROL

incoming signal x to B’s two-wire circuit, and none back into the network. How-
ever, the hybrid is not perfect, and some of the incoming signal x leaks through the
hybrid into the return path back to A. The signal y in the figure is the sum of the
signal from B and the leaked signal from A. A hears the leaked signal as an echo,
since it is A’s own signal, delayed by propagation through the telephone network.

If the telephone connection includes a satellite link, then the delay from one end
of the connection to the other is about 300ms. This is the time it takes for a radio
signal to propagate to a geosynchronous satellite and back. The echo traverses
this link twice: once going from A to B, and the second time coming back. Thus,
the echo is A’s own signal delayed by about 600ms. For voice signals, 600ms of
delay is enough to create a very annoying echo that can make it difficult to speak.
Humans have difficulty speaking when they hear their own voices 600ms later.
Consequently, the designers of the telephone network have put echo cancellers in
to prevent the echo from occuring.

Let Ĥ1 be the transfer function of the hybrid leakage path. The echo canceller is
the filter Ĥ2 placed in parallel composition with the hybrid, as shown in the figure.
The output w2 of this filter is added to the output w1+w of the hybrid, so the signal
that actually goes back is y = w2 +w1 +w. If

Ĥ2 =−Ĥ1,

then y = w and the echo is cancelled perfectly. Moreover, note that as long as Ĥ1 is
stable and causal, so will be the echo canceller Ĥ2.

However, Ĥ1 is not usually known in advance, and also it changes over time. So
either a fixed Ĥ2 is designed to match a ‘typical’ Ĥ1, or an adaptive echo canceller
is designed that estimates the characteristics of the echo path (Ĥ1) and changes Ĥ2
accordingly. Adaptive echo cancellers are common in the telephone network today.

The following example combines cascade and parallel composition to achieve noise can-
cellation.

Example 14.12: Consider a microphone in a noisy environment. For example,
a traffic helicopter might be used to deliver live traffic reports over the radio, but
the (considerable) background noise of the helicopter would be highly undesirable

Lee & Varaiya, Signals and Systems 625

http://LeeVaraiya.org


14.3. FEEDBACK COMPOSITION

H1
x 

w

H2

y

w1

w2
H3 w3

w4

Figure 14.5: Traffic helicopter noise cancellation/equalization problem.

on the radio. Fortunately, the background noise can be cancelled. Referring to
Figure 14.5, suppose that w is the announcer’s voice, x is the engine noise, and
Ĥ1 represents the acoustic path from the engine noise to the microphone. The
microphone picks up both the engine noise and the announcer’s voice, producing
the noisy signal w4. We can place a second microphone somewhere far enough from
the announcer so as to not pick up much of his or her voice. Since this microphone
is in a different place, say on the back of the announcer’s helmet, the acoustic path
is different, so we model that path with another transfer function Ĥ2. To cancel the
noise, we design a filter Ĥ3. This filter needs to equalize (invert) Ĥ2 and cancel Ĥ1.
That is, its ideal value is

Ĥ3 =−Ĥ1/Ĥ2.

Of course, as with the equalization scenario, we have to ensure that this filter re-
mains stable. Once again, in practice, it is necessary to make the filter adaptive.

14.3 Feedback composition

Consider the feedback composition in figure 14.6. It is a composition of two systems
with transfer functions Ĥ1 and Ĥ2. We assume that these systems are causal and that Ĥ1
and Ĥ2 are proper rational polynomials in z or s. The regions of convergence of these
two transfer functions are those suitable for causal systems (the region outside the largest

626 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


14. COMPOSITION AND FEEDBACK CONTROL

H1
x e

H2

y

H =

w

H1H2
1 + H1 H2

!

Figure 14.6: Negative feedback composition of two LTI systems with transfer func-
tions H1 and H2.

circle passing through a pole, for discrete time, and the region to the right of the pole with
the largest real part, for continuous-time).

In terms of Laplace or Z transforms, the signals in the figure are related by

Ŷ = Ĥ2Ĥ1Ê,

and
Ê = X̂− Ŷ .

Notice that, by convention, the feedback term is subtracted, as indicated by the minus
sign adjacent to the adder (for this reason, this composition is called negative feedback).
Combining these two equations to elimintate Ê, we get

Ŷ = Ĥ1Ĥ2(X̂− Ŷ ),

which we can solve for the transfer function of the composition,

Ĥ =
Ŷ
X̂

=
Ĥ1Ĥ2

1+ Ĥ1Ĥ2
. (14.1)

This is often called the closed-loop transfer function, to contrast it with the open-loop
transfer function, which is simply Ĥ1Ĥ2. We will assume that this resulting system is
causal, and that the region of convergence of this transfer function is therefore determined
by the roots of the denominator polynomial, 1+ Ĥ1Ĥ2.

Lee & Varaiya, Signals and Systems 627

http://LeeVaraiya.org


14.3. FEEDBACK COMPOSITION

The closed-loop transfer function is valid as long as the denominator 1+ Ĥ1Ĥ2 is not
identically zero (that is, it is not zero for all s or z in C – it may be zero some s or z in C).
This is sufficient for the feedback loop to be well-formed, although in general, this fact
is not trivial to demonstrate (Exercise 8 considers the easier case where Ĥ1Ĥ2 is causal
and strictly proper, in which case the system Ĥ1Ĥ2 has state-determined output). We will
assume henceforth, without comment, that the denominator is not identically zero.

Feedback composition is useful for stabilizing unstable systems. In the case of cascade
and parallel composition, a pole of the composite must be a pole of one of the components.
The only way to remove or alter a pole of the components is to cancel it with a zero. For
this reason, cascade and parallel composition are not effective for stabilizing unstable
systems. Any error in the specification of the unstable pole location results in a failed
cancellation, which results in an unstable composition.

In contrast, the poles of the feedback composition are the roots of the denominator 1+
Ĥ1Ĥ2, which are generally quite different from the poles of Ĥ1 and Ĥ2. This leads to the
following important conclusion:

The poles of a feedback composition can be different from the poles of its component
subsystems. Consequently, unstable system can be effectively and robustly stabilized by
feedback.

The stabilization is robust in that small changes in the pole or zero locations do not result
in the composition going unstable. We will be able to quantify this robustness.

14.3.1 Proportional controllers

In control applications, one of the two systems being composed, say Ĥ2, is called the plant.
This is a physical system that is given to us to control. Its transfer function is determined
by its physics. The second system being composed, say Ĥ1, is the controller. We design
this system to get the plant to do what we want. The following example illustrates a
simple strategy called a proportional controller or P controller.

Example 14.13: For this example we take as the plant the simplified continuous-
time helicopter model of example 12.2,

ẏ(t) =
1
M

w(t).

628 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


14. COMPOSITION AND FEEDBACK CONTROL

Here y(t) is the angular velocity at time t and w(t) is the torque. M is the moment
of inertia.

We have renamed the input w (instead of x) because we wish to control the heli-
copter, and the control input signal will not be the torque. Instead, let’s define the
input x to be the desired angular velocity. So, to get the helicopter to not rotate, we
provide input x(t) = 0.

Let us call the impulse response of the plant h2, to conform with the notation in
Figure 14.6; it is given by

∀ t ∈ R, h2(t) = u(t)/M,

where u is the unit step. The transfer function is

Ĥ2(s) = 1/(Ms),

with
RoC(h) = {s ∈ C | Re(s)> 0}.

Ĥ2 has a pole at s = 0, so this is an unstable system.

As a compensator we can simply place a gain K in a negative feedback composition,
as shown in Figure 14.7. The intuition is as follows. Suppose we wish to keep the
helicopter from rotating. That is, we would like the output angular velocity to be
zero, y(t) = 0. Then we should apply an input of zero, x(t) = 0. However, the
plant is unstable, so even with a zero input, the output diverges (even the smallest
non-zero initial condition or the smallest input disturbance will cause it to diverge).
With the feedback arrangement in Figure 14.7, if the output angular velocity rises
above zero, then the input is modified downwards (the feedback is negative), which
will result in a negative torque being applied to the plant, which will counter the
rising velocity. If the output angular velocity drops below zero, then the torque will
be modified upwards, which again will tend to counter the dropping velocity. The
output velocity will stabilize at zero.

To get the helicopter to rotate, for example to execute a turn, we simply apply a
non-zero input. The feedback system will again compensate so that the helicopter
will rotate at the angular velocity specified by the input.

The signal e is the difference between the input x, which is the desired angular
velocity, and the output y, which is the actual angular velocity. It is called the error
signal. Intuitively, this signal is zero when everything is as desired, when the output
angular velocity matches the input.

Lee & Varaiya, Signals and Systems 629

http://LeeVaraiya.org


14.3. FEEDBACK COMPOSITION

H1=K
x e

H2

y

H =

w

K / M
s + K / M

!
Ms
1=

desired 
angular 
velocity

angular 
velocity

torqueerror

Figure 14.7: A negative feedback proportional controller with gain K.

2− −2

K = −2K = +2 K = −K = 

root locus

K = 0

Figure 14.8: Root locus of the helicopter P controller.

A compensator like that in example 14.13 and Figure 14.7 is called a proportional con-
troller or P controller. The input w to the plant is proportional to the error e. The
objective of the control system is to have the output y of the plant track the input x as
closely as possible. I.e., the error e needs to be small. We can use (14.1) to find the
transfer function of the closed-loop system.

Example 14.14: Continuing with the helicopter of example 14.13, the closed loop
system transfer function is

Ĝ(s) =
KĤ(s)

1+KĤ(s)
=

K/M
s+K/M

. (14.2)

630 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


14. COMPOSITION AND FEEDBACK CONTROL

which has a pole at s = −K/M. If K > 0, the closed loop system is stable, and
if K < 0, it is unstable. Thus, we have considerable freedom to choose K. How
should we choose its value?

As K increases from 0 to ∞, the pole at at s =−K/M moves left from 0 to −∞. As
K decreases from 0 to−∞, the pole moves to the right from 0 to ∞. The locus of the
pole as K varies is called the root locus, since the pole is a root of the denominator
polynomial.

Figure 14.8 shows the root locus as a thick gray line, on which are marked the
locations of the pole for K = 0,±2,±∞. Since there is only one pole, the root locus
comprises only one ‘branch’. In general the root locus has as many branches as
the number of poles, with each branch showing by the movement of one pole as K
varies.

Note that in principle, the same transfer function as the closed-loop transfer function can
be achieved by a cascade composition. But as in example 14.1, the resulting system is
not robust, in that even the smallest change in the pole location of the plant can cause
the system to go unstable (see problem 6). The feedback system, however, is robust, as
shown in the following example

Example 14.15: Continuing with the P controller for the helicopter, suppose that
our model of the plant is not perfect, and its actual transfer function is

Ĥ2(s) =
1

M(s− ε)
,

for some small value of ε > 0. In that case, the closed loop transfer function is

Ĥ(s) =
K/M

s− ε+K/M
,

which has a pole at s = ε−K/M. So the feedback system remains stable so long as

ε < K/M.

Lee & Varaiya, Signals and Systems 631

http://LeeVaraiya.org


14.3. FEEDBACK COMPOSITION

In practice, when designing feedback controllers, we first quantify our uncertainty about
the plant, and then determine the controller parameters so that under all possible plant
transfer functions, the closed-loop system is stable.

Example 14.16: Continuing the helicopter example, we might say that ε < 0.5. In
that case, if we choose K so that K/M > 0.5, we would guarantee stability for all
values of ε < 0.5. We then say that the proportional feedback controller is robust
for all plants with ε < 0.5.

We still have a large number of choices for K. How do we select one? To understand
the implications of different choices of K we need to study the behavior of the output y
(or the error signal e) for different choices of K. In the following examples we use the
closed-loop transfer function to analyze the response of a proportional controller system
to various inputs. The first example studies the response to a step function input.

Example 14.17: Continuing the helicopter example, suppose that the input is a
step function, ∀t,x(t) = au(t) where a is a constant and u is the unit step. This
input declares that at time t = 0, we wish for the helicopter to begin rotating with
angular velocity a. The closed-loop transfer function is given by (14.2), and the
Laplace transform of x is X̂(s) = a/s, from table 13.3, so the Laplace transform of
the output is

Ŷ (s) = Ĝ(s)X̂(s) =
K/M

s+K/M
· a

s

Carrying out the partial fraction expansion, this becomes

Ŷ (s) =
−a

s+K/M
+

a
s
.

We can use this to find the inverse Laplace transform,

∀t, y(t) =−ae−Kt/Mu(t)+au(t).

The second term is the steady-state response yss, which in this case equals the
input. So the first term is the tracking error ytr, which goes to zero faster for
larger K. Hence for step inputs, the larger the gain K, the smaller the tracking error.

632 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


14. COMPOSITION AND FEEDBACK CONTROL

In the previous example, we find that the error goes to zero when the input is a step
function. Moreover, the error goes to zero faster if the gain K is larger than if it is smaller.
In the following example, we find that if the input is sinusoidal, then larger gain K results
in an ability to track higher frequency inputs.

Example 14.18: Suppose the input to the P controller helicopter system is a sinu-
soid of amplitude A and frequency ω0,

∀ t ∈ R, x(t) = A(cosω0t)u(t).

We know that the response can be decomposed as y = ytr + yss. The transient re-
sponse ytr is due to the pole at s =−K/M, and so it is of the form

∀ t ∈ R, ytr(t) = Re−Kt/M,

for some constant R. The steady-state response is determined by the frequency
response at ω0. The frequency response is

∀ ω ∈ R, H(ω) = Ĥ(iω) =
K/M

iω+K/M
,

with magnitude and phase given by

|H(ω)|= K/M
[ω2 +(K/M)2]1/2 , ∠H(ω) =− tan−1 ωM

K
.

So the steady-state response is

∀t, yss(t) = |H(ω0)|Acos(ω0t +∠H(ω0)).

Thus the steady-state output is a sinusoid of the same frequency as the input but
with a smaller amplitude (unless ω0 = 0). The larger ω0 is, the smaller the output
amplitude. Hence, the ability of the closed-loop system to track a sinusoidal input
decreases as the frequency of the sinusoidal input increases. However, increasing
K reduces this effect. Thus, larger gain in the feedback loop improves its ability to
track higher frequency sinusoidal inputs.

In addition to the reduction in amplitude, the output has a phase difference. Again,
if ω0 = 0, there is no phase error, because tan−1(0) = 0. As ω0 increases, the phase
lag increases (the phase angle decreases). Once again, however, increasing the gain
K reduces the effect.

Lee & Varaiya, Signals and Systems 633

http://LeeVaraiya.org


14.3. FEEDBACK COMPOSITION

The previous two examples suggest that large gain in the feedback loop is always better.
For a step function input, it causes the transient error to die out faster. For a sinusoidal
input, it improves the ability to track higher frequency inputs, and it reduces the phase
error in the tracking. A large gain is not always a good idea, however, as seen in the next
example, a DC motor.

Example 14.19: The angular position y of a DC motor is determined by the input
voltage w according to the differential equation

Mÿ(t)+Dẏ(t) = Lw(t),

where M is the moment of inertia of the rotor and attached load, Dẏ is the damping
force, and the torqe Lw is proportional to the voltage. The transfer function is

Ĥ2(s) =
L

Ms2 +Ds
=

L/M
s(s+D/M)

.

which has one pole at s = 0 and one pole at s = −D/M. By itself the DC motor
is unstable because of the pole at s = 0. The transfer function of the feedback
composition with proportional gain K is

Ĥ(s) =
KĤ2(s)

1+KĤ2(s)
=

KL
Ms2 +Ds+KL

.

There are two closed loop poles—the roots of Ms2 +Ds+KL—located at

s =− D
2M
±
√

D2

4M2 −
KL
M

.

The closed loop system is stable if both poles have negative real parts, which is the
case if K > 0. If K < D2/(4ML) both poles are real. But if K > D2/(4ML), the
two poles form a complex conjugate pair located at

s =− D
2M
± i

√
KL
M
− D2

4M2 .

The real part is fixed at D/2M, but the imaginary part increases with K. We inves-
tigate performance for the parameter values L/M = 10,D/M = 0.1. The transfer
function is

Ĥ(s) =
10K

s2 +0.1s+10K
.

634 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


14. COMPOSITION AND FEEDBACK CONTROL

Because there are two poles, the root locus has two branches, as shown in Figure
14.9. For K = 0, the two poles are located at 0 and -0.1, as illustrated by crosses
in the figure. As K increases the two poles move towards each other, coinciding at
-0.05 when K = 0.00025. For larger values of K, the two branches split into a pair
of complex conjugate poles.

To appreciate what values of K > 0 to select for good tracking, we consider the
response to a step input x = u(t) for two different values of K. For K = 0.00025,
the Laplace transform of the output y is

Ŷ (s) =
10K

s2 +0.1s+10K
1
s

=
0.0025

(s+0.05)2
1
s

= − 1
s+0.05

− 0.05
(s+0.05)2 +

1
s
.

So the time domain response is

∀t, y(t) = {−e−0.05t −0.05te−0.05t}u(t)+u(t). (14.3)

For K = 0.0025, the Laplace transform of the output y is

Ŷ (s) =
0.025

s2 +0.1s+0.025
1
s

≈ −0.5+ i0.17
s+0.05− i0.15

+
−0.5−0.17i

s+0.05+ i0.15
+

1
s
.

So

∀t, y(t) = e−0.5t [0.527ei(0.15t+2.82)+0.527e−i(0.15t+2.82)]u(t)

+u(t)

= 0.527e−0.5t ×2cos(0.15t +2.82)u(t)+u(t). (14.4)

The right-hand panel in Figure 14.9 shows plots of the responses (14.3) and (14.4)
that illustrate the design tradeoffs. In both cases, the output approaches the input
as t→∞, so the asymptotic tracking error is zero. The response for the higher gain
is faster but it overshoots the asymptotic value. The response for the lower gain is
slower but there is no overshoot. In this example, K must be selected to balance
speed of response versus the magnitude of the overshoot. In some applications,
overshoot may be completely unacceptable.

Lee & Varaiya, Signals and Systems 635

http://LeeVaraiya.org


14.3. FEEDBACK COMPOSITION

-0.05

-0.1 0
K=0

K= 0.00025

K < 0
Re s

Im s

K=0K < 0

- 50 0 50 100 150
0

0 .2

0 .4

0 .6

0 .8

1

1 .2

1 .4

K = 0.0025

K = 0.00025

t

y

x

overshoot

Figure 14.9: The root locus and step response for two values of K of a DC motor
with proportional feedback.

We can now investigate the proportional feedback control in a general setting. Suppose
the plant transfer function is a proper rational polynomial

Ĥ2(s) =
Â(s)
B̂(s)

,

where Â has degree M, B̂ has degree N, and M ≤ N (Ĥ2 is proper). The closed loop
transfer function is

Ĥ(s) =
KĤ2(s)

1+KĤ2(s)
=

KÂ(s)
B̂(s)+KÂ(s)

. (14.5)

The closed loop poles are the N roots of the equation B̂(s)+KÂ(s) = 0. These roots will
depend on K, so we denote them p1(K), · · · , pn(K). As K varies, these roots will trace out
the N branches of the root locus. At K = 0, the poles are the roots of B̂(s) = 0, which are
the poles of the plant transfer function Â(s)/B̂(s). The stability of the closed loop plant
requires that K must be such that

Re{p1(K)}< 0, · · · ,Re{pn(K)}< 0. (14.6)

Within those values of K that satisfy (14.6) we must select K to get a good response.

636 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


14. COMPOSITION AND FEEDBACK CONTROL

The following example shows that a proportional compensator may be unable to guarantee
closed loop stability.

Example 14.20: Consider a plant transfer function given by

Ĥ2(s) =
Â(s)
B̂(s)

=
s+1

(s−1)(s2 +0.5s+1.25)
.

There is one zero at s =−1, one pole at s = 1 and a pair of complex conjugate poles
at s =−0.5± i1.09. The plant is unstable because of the pole at s = 1. The closed
loop poles are the roots of the polynomial

P(K,s) = KÂ(s)+ B̂(s) = K(s+1)+(s−1)((s+0.25)2 +1.188).

Figure 14.10 shows the three branches of the root locus plot for K > 0. As K
increases, the unstable pole moves towards the zero, while the complex conjugate
poles move into the right-half plane. We need to find the values of K that satisfy
the stability condition (14.6). The value of K for which the pole at s = 1 moves to
s = 0 is obtained from the condition P(K,0) = 0, which gives K− (0.52 + 1) = 0
or K = 1.25. So one condition for stability is K > 1.25. The complex conjugate
poles cross the imaginary axis at s =±i1.15 for K = 0.6. So the second condition
for stability is K < 0.6. The two conditions K > 1.25 and K < 0.6 are inconsistent,
so no proportional compensator can stabilize this system.

We return to the general discussion. Suppose the stability condition (14.6) can be met.
Among the values of K that achieve stability, we select that value for which the output y
closely tracks a step input, x = u. In this case, the Laplace transform of the input is 1/s,
so the Laplace transform of y is, from (14.5),

Ŷ (s) = Ĥ(s)
1
s
=

KÂ(s)
B̂(s)+KÂ(s)

1
s
. (14.7)

Assuming for simplicity that all the poles p1(K), · · · , pn(K) have multiplicity 1, Ŷ has the
partial fraction expansion

Ŷ (s) =
n

∑
i=1

Ri

s− pi(K)
+

R0

s
,

Lee & Varaiya, Signals and Systems 637

http://LeeVaraiya.org


14.3. FEEDBACK COMPOSITION

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-4

-2

-6

2

4

6

0
Re s

Im s

K = 1.25
K > 1.25

K = 0.8
K > 0.8

Figure 14.10: Root locus for example 14.20. Stability requires K > 1.25 and K <
0.6. Therefore, there is no stabilizing proportional compensator.

638 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


14. COMPOSITION AND FEEDBACK CONTROL

and hence the time-domain behavior of

∀t, y(t) =

[
n

∑
i=1

Riepi(K)t

]
u(t)+R0u(t).

The first term is the transient response, ytr, and the second term is the steady-state response
yss = R0u. The transient response goes to zero, since from (14.6), Re{pi(K)} < 0 for all
i. The input is the unit step, x = u. So the steady-state tracking error is |R0− 1|, which
depends on R0. It is easy to find the residue R0. We simply multiply both sides of (14.7)
by s and evaluate both sides at s = 0, to get

R0 = Ĝ(0) =
KĤ2(0)

1+KĤ2(0)
.

To have zero steady-state error, we want R0 = 1, which can only happen if Ĥ2(0) = ∞.
But this means s = 0 must be a pole of the plant transfer function Ĥ2. (This is the case
in the examples of the helicopter and the DC motor.) If the plant does not have a pole at
s = 0, the steady-state error will be∣∣∣∣1− KĤ2(0)

1+KĤ2(0)

∣∣∣∣ .
This error is smaller the larger the gain K. So to minimize the steady-state error we should
choose as large a gain as possible, subject to the stability requirement (14.6).

However, a large value of K may lead to poor transient behavior by causing overshoots,
as happened in the DC motor example in Figure 14.9 for the larger gain K = 0.0025. To
decide the appropriate K is a matter of trial and error. One studies the transient response
for different (stabilizing) values of K (as we did for the DC motor) and selects K that gives
a satisfactory transient behavior.

14.4 PID controllers

The P controller discussed in the previous section achieves zero steady-state error if the
plant has a pole at s= 0. This means that the plant includes an integrator, since the transfer
function of an integrator is 1/s, which has a pole at s = 0. If the plant does not have a pole
at s = 0, however, a non-zero error results. While this error can be reduced by choosing a
large gain K in the controller, this results in poor transient behavior.

Lee & Varaiya, Signals and Systems 639

http://LeeVaraiya.org


14.4. PID CONTROLLERS

w(t)

D

y(t)

M

C

spring

damper

mass

H2(s) =
yw

1 
Ms2 + Ds + C

Figure 14.11: A mass-spring-damper system.

In this section, we develop the well-known PID controller, which includes an integrator
in the controller. It can achieve zero steady-state error even if the plant does not have
a pole at s = 0, and still achieve reasonable transient behavior. The PID controller is a
generalization of the P controller, in that with certain choices of parameters, it becomes a
P controller.

We begin with an example that has rich enough dynamics to demonstrate the strengths
of the PID controller. This example describes a mechanical system, but just about any
physical system that is modeled by a linear second-order differential equation is subject to
similar analysis. This includes, for example, electrical circuits having resistors, capcitors,
and inductors.

Example 14.21: A basic mass-spring-damper system is illustrated in Figure
14.11. This system has a mass M that slides on a frictionless surface, a spring that
attaches the mass to a fixed physical object, and a damper, which absorbes mechan-
ical energy. A damper might be, for example, a dashpot, which is a cylinder filled
with oil plus a piston. A familiar example of such a damper is a shock absorber in
the suspension system of a car.

640 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


14. COMPOSITION AND FEEDBACK CONTROL

Suppose that an external force w is applied to the mass, where w is a continuous-
time signal. The differential equation governing the system is obtained by setting
the sum of all forces to zero,

Mÿ(t)+Dẏ(t)+Cy(t) = w(t).

The output y(t) is the position of the mass at time t, Mÿ(t) is the inertial force,
Dẏ(t) is the damping force due to the damper, Cy(t) is the restoring force of the
spring, and w(t) is the externally applied force. We assume that y(t) = 0 when the
spring is in its equilibrium position (neither extended nor compressed). M, D, and
C are constants. Taking the Laplace transform, using the differentiation property
from table 13.4, gives

s2Ŷ (s)+DsŶ (s)+CY (s) =W (s),

so the plant or open loop transfer function is

Ĥ2(s) =
Ŷ (s)
Ŵ (s)

=
1

Ms2 +Ds+C
.

Suppose for example that the constants have values M = 1, D = 1,and C = 1.25.
Then

Ĥ2(s) =
1

s2 + s+1.25
. (14.8)

In this case, the transfer function has a pair of complex poles at s =−0.5± i. Since
their real part is strictly negative, the system is stable.

Suppose we wish to drive the system to move the mass to the right one unit of
distance at time t = 0. We can apply an input force that is a unit step, scaled so that
the steady-state response places the mass at position y(t) = 1. The final steady-state
output is determined by the DC gain, which is Ĥ2(0) = 1/1.25 = 0.8, so we can
apply an input given by

∀ t, ,w(t) =
1

0.8
u(t) = 1.25u(t),

where u is the unit step signal. The resulting response yo has Laplace transform

Ŷo(s) =
1

s2 + s+1.25
· 1.25

s
=
−0.5+0.25i

s+0.5− i
+
−0.5−0.25i

s+0.5+ i
+

1
s
.

Lee & Varaiya, Signals and Systems 641

http://LeeVaraiya.org


14.4. PID CONTROLLERS

yo(t)

t

overshoot 

0 5 10 15 20 
0 

0 .2

0 .4

0 .6

0 .8

1

1 .2

1 .4

Figure 14.12: The open loop step response yo of the mass-spring-damper sys-
tem.

We call this the open-loop step response, because there is no control loop (yet).

Taking the inverse transform gives the open-loop step response

∀ t, yo(t) = e−0.5t [(−0.5+0.25i)eit +(−0.5−0.25i)e−it ]u(t)+u(t).

By combining the complex conjugate terms, this can be expressed as

∀t, yo(t) = Re−0.5t cos(t +θ)u(t)+u(t),

where R = 1.12 and θ = 2.68. Figure 14.12 displays a plot of this open-loop step
response yo. Notice that the mass settles to position y(t) = 1 for large t.

This system in the previous example is stable, and therefore does not need a feedback con-
trol loop to stabilize it. However, there are two difficulties with its open-loop response,
shown in Figure 14.12, that can be corrected using a controller. First, it takes approxi-
mately 10 units of time for the transient to disappear, which may be too slow for some
applications. Moreover, there is an overshoot of 20 percent beyond the final steady-state
value, which may be too much.

642 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


14. COMPOSITION AND FEEDBACK CONTROL

x e y

H =
H1H2

1 + H1 H2

−
H2(s) =

w

Ms2 + Ds + C
H1(s) = K1 + K2/s + K3s

PID controller Plant

1

Figure 14.13: The mass-spring-damper system composed with a PID controller
in a feedback composition.

We can correct for the slow response and the large overshoot, using a PID controller.
The term ‘PID’ stands for proportional plus integral plus derivative. A PID controller
generalizes the P controller of the previous section by adding an integral and derivative
term.

The general form of the transfer function of a PID controller is

Ĥ1(s) = K1 +
K2

s
+K3s =

K3s2 +K1s+K2

s
. (14.9)

We will compose this with the plant in a feedback loop, as shown in Figure 14.13. Here
K1,K2,K3 are constants to be selected by the designer. If K2 = K3 = 0, then we have a
P controller. If K1 = K3 = 0, Ĥ1(s) = K2/s, we have an integral contoller, so called
because 1/s is the transfer function of an integrator. That is, if the input to the integral
controller is e, and the output is w, then

∀ t, w(t) = K2

∫ t

−∞

e(τ)dτ.

If K1 = K2 = 0, Ĥ2(s) = K3s, then we have a derivative controller, so called because s is
the transfer function of a differentiator. That is, if the input to the derivative controller is
e, and the output is w, then

∀ t, w(t) = K3ė(t).

Lee & Varaiya, Signals and Systems 643

http://LeeVaraiya.org


14.4. PID CONTROLLERS

The following table offers guidelines for selecting the parameters of a PID controller.
Of course, these are guidelines only—the actual performance of the closed loop system
depends on the plant transfer function and must be checked in detail.

Parameter Response speed Overshoot Steady-state error
K1 Faster Larger Decreases
K2 Faster Larger Zero
K3 Minor change Smaller Minor change

Example 14.22: We now evaluate a PID controller for the mass-spring-damper
system of Figure 14.11, using the feedback composition of Figure 14.6. We assume
the parameters values M = 1, D = 1, and C = 1.25, as in example 14.21. The
closed-loop transfer function with the PID controller is

Ĥ(s) =
Ĥ1(s)Ĥ2(s)

1+ Ĥ1(s)Ĥ2(s)
=

K3s2 +K1s+K2

s3 +(1+K3)s2 +(1.25+K1)s+K2
.

Suppose we provide as input a unit step. This means that we wish to move the mass
to the right one unit of distance, starting at time t = 0. The controller will attempt
to track this input. The response to a unit step input has Laplace transform

Ŷpid(s) = Ĥ(s) · 1
s
=

K3s2 +K1s+K2

s3 +(1+K3)s2 +(1.25+K1)s+K2
· 1

s
. (14.10)

We now need to select the values for the parameters of the PID controller, K1, K2,
and K3. We first try proportional control with K1 = 10, and K2 = K3 = 0. In this
case, the step response has the Laplace transform

Ŷp(s) =
10

s2 + s+11.25
· 1

s
.

The inverse Laplace transform gives the time response yp, which is plotted in Figure
14.14. The steady-state value is determined by the DC gain of the closed loop
transfer function,

10
s2 + s+11.25

∣∣∣∣
s=0

=
10

11.25
≈ 0.89.

644 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


14. COMPOSITION AND FEEDBACK CONTROL

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

yo

yp

ypd

ypid

Figure 14.14: The step response for open loop, yo, with P-control, yp, PD-control,
ypd , and PID-control, ypid .

Lee & Varaiya, Signals and Systems 645

http://LeeVaraiya.org


14.4. PID CONTROLLERS

This yields an error of 11 percent, and the overshoot of 50 percent is much worse
than that of the open-loop response yo, also shown in the figure. Thus, a P controller
with gain K = 10 is useless for this application.

Following the guidelines in the table above, we add derivative control to reduce the
overshoot. The result is a so-called PD controller, because it adds a proportional
and a derivative term. For the PD controller we choose K1 = 10 and K3 = 10.
Substitution in (14.10) gives the Laplace transform of the step response,

Ŷpd(s) =
10s+10

s2 +11s+11.25
· 1

s
.

The steady-state value is given by the DC gain of the closed loop transfer function,

10s+10
s2 +11s+11.25

∣∣∣∣
s=0
≈ 0.89,

which is the same as the steady-state value for the P controller. The inverse Laplace
transform gives the time response ypd, which is plotted in Figure 14.14. The
overshoot is reduced to 10 percent—a large improvement. Also, the response is
quicker—the transient disappears in about 4 time units.

Finally, to eliminate the steady-state error we add integral control. For the PID
controller we choose K1 = 10,K2 = 5,K3 = 10. Substitution in (14.10) gives the
Laplace transform of the step response

Ŷpid(s) =
10s2 +10s+5

s3 +11s2 +11.25s+5
· 1

s
.

The steady-state value is again given by the DC gain of the closed loop transfer
function,

10s2 +10s+5
s3 +11s2 +11.25s+5

∣∣∣∣
s=0

= 1.

So the steady-state error is eliminated, as expected. The time response ypid is
plotted in Figure 14.14. It shows significant improvement over the other responses.
There is no overshoot, and the transient disappears in about 4 time units. Further
tuning of the parameters K1,K2,K3 could yield small improvements.

646 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


14. COMPOSITION AND FEEDBACK CONTROL

14.5 Summary

This chapter considers cascade, parallel, and feedback compositions of LTI systems de-
scribed by Z or Laplace transforms. Cascade composition is applied to equalization,
parallel composition is applied to noise cancellation, and feedback composition is applied
to control.

Because we are using Z and Laplace transforms rather than Fourier transforms, we are
able to consider unstable systems. In particular, we find that while, in principle, cas-
cade and parallel compositions can be used to stabilize unstable systems, the result is
not robust. Small changes in parameter values can result in the system being once again
unstable. Feedback composition, on the other hand, can be used to robustly stabilize
unstable systems. We illustrate this first with a simple helicopter example. The second
example, a DC motor, benefits from more sophisticated controllers. The third example, a
mass-spring-damper system, motivates the development of the well-known PID controller
structure. PID controllers can be used to stabilize unstable systems and to improve the
response time, precision, and overshoot of stable systems.

Lee & Varaiya, Signals and Systems 647

http://LeeVaraiya.org


EXERCISES

Exercises

Each problem is annotated with the letter E, T, C which stands for exercise, requires some
thought, requires some conceptualization. Problems labeled E are usually mechanical,
those labeled T require a plan of attack, those labeled C usually have more than one
defensible answer.

1. E This exercise studies equalization when the channel is only known approximately.
Consider the cascade composition of figure 14.1, where Ĥ1 is the channel to be
equalized, and Ĥ2 is the equalizer. If the equalizer is working perfectly, then x = y.
For example, if

Ĥ1(z) =
z

z−0.5
and Ĥ2(z) =

z−0.5
z

,

then x = y because Ĥ1(z)Ĥ2(z) = 1.

(a) Suppose that Ĥ2(z) is as given above, but the plant is a bit different,

Ĥ1(z) =
z

z−0.5− ε
.

Suppose that x = δ, the Kronecker delta function. Plot y− x for ε = 0.1 and
ε =−0.1.

(b) Now suppose that the equalizer is

Ĥ2(z) =
z−2

z
,

and the channel is
Ĥ1(z) =

z
z−2− ε

.

Again suppose that x = δ, the Kronecker delta function. Plot y− x for ε =
0.1,−0.1.

(c) For part (b), show that equalization error y−x grows without bound whenever
ε 6= 0, |ε|< 1.

2. E This exercise studies equalization for continuous-time channels. Consider the
cascade composition of figure 14.1, where Ĥ1 is the channel to be equalized, and
Ĥ2 is the equalizer. Both are causal. If

Ĥ1(s) =
s+1
s+2

and Ĥ2(s) =
s+2
s+1

,

648 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


14. COMPOSITION AND FEEDBACK CONTROL

x v y w
y

w

0.50

1H1(z) H2(z)

Channel Equalizer Decision

transmitted
binay signal

equalizer
output

reconstructed
binary signal

channel
output

Figure 14.15: Arrangement of decision-directed equalization of Exercise 3.

then x = y because Ĥ1(s)Ĥ2(s) = 1.

(a) Suppose Ĥ2 is as above but

Ĥ1(s) =
s+1

s+2+ ε
.

Suppose x = u, the unit step. Plot y−x for ε= 0.1 and ε=−0.1, and calculate
the steady state error.

(b) Now suppose the equalizer is

Ĥ2(s) =
s−1
s+2

,

and the channel is
Ĥ1(s) =

s+2
s−1− ε

.

Again suppose that x = u. Plot y− x for ε = 0.1,−0.1.

(c) For part (b) show that the error y− x grows without bound for any ε 6= 0,
|ε|< 1.

3. T This exercise explores decision-directed equalization. The arrangement is shown
in Figure 14.15. The transmitted signal is a binary sequence x : Z→ {0,1}. The
causal channel transfer function is Ĥ1 and the equalizer transfer function is Ĥ2. The
channel output is the real-valued signal v : Z→R. The equalizer output is the real-
valued signal y : Z→ R. This signal is fed to a decision unit whose binary output
at time n, w(n) = 0 if y(n)< 0.5 and w(n) = 1 if y(n)≥ 0.5. Thus the decision unit
is a (nonlinear) memoryless system,

Decision : [Z→ R]→ [Z→{0,1}],

Lee & Varaiya, Signals and Systems 649

http://LeeVaraiya.org


EXERCISES

defined by a threshold rule

∀n, (Decision(y))(n) =
{

0, y(n)< 0.5,
1, y(n)≥ 0.5

At each point in time, the receiver has an estimate Ĥe
1 of the true channel transfer

function, Ĥ1. The equalizer is set at

Ĥ2(z) = [Ĥe
1(z)]

−1. (14.11)

(a) Suppose that initially Ĥ1(z) = z
z−0.2 , and the estimate is perfect, Ĥe

1 = Ĥ1.
(This perfect estimate is achieved using a known training sequence for x.)
Determine the respective impulse responses h1 and h2.
Now suppose the signal x is

∀n, x(n) =


0, n < 0
1, n≥ 0,n even
0, n≥ 0,n odd

(14.12)

Calculate the channel output v(n) = (h1 ∗ x)(n),n ≤ 3. Then calculate the
equalizer output y(n) = (h2 ∗ v)(n),n ≤ 3, and check that y(n) = x(n),n ≤ 3.
Also check that w(n) = x(n),n≤ 3.

(b) Now suppose the channel transfer function has changed to

Ĥ1(z) =
z

z−0.3
,

but the receiver’s estimate hasn’t changed, i.e.

Ĥe
1(z) =

z
z−0.2

,

so the equalizer (14.11) hasn’t changed either. For the same input signal again
calculate the channel and equalizer outputs v(n) and y(n) for n ≤ 3. Check
that y(n) 6= x(n) for n > 0. But show that the decision w(n) = x(n) for n≤ 3.
So the equalizer correctly determines x.

(c) Since the receiver’s decision w = x, it can make a new estimate of the channel
using the fact that Ŷ = Ĥ1Ĥ2X̂ = Ĥ1Ĥ2Ŵ . The new estimate is

Ĥe
1 =

Ŷ
Ĥ2Ŵ

. (14.13)

650 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


14. COMPOSITION AND FEEDBACK CONTROL

Suppose time is 3, and the receiver has observed y(n),w(n),n ≤ 3. Since the
Z transforms Ŷ and Ŵ also depend on values of y(n),w(n) for n > 3, these Z
transforms can not be calculated at time n = 3, and so the estimator (14.13)
cannot be used. The following approach will work, however.
Suppose the receiver knows that the unknown channel transfer function is of
the form

Ĥ1(z) =
z

z−a
,

so that only the parameter a has to be estimated. Using this information, we
have

Ŷ (z) =
z

z−a
z−0.2

z
Ŵ (z) =

z−0.2
z−a

W (z).

Now take the inverse Z transform and express the time-domain relation be-
tween y and w. Show that you can estimate a knowing y(0),y(1),w(0),w(1).

4. E This continues Exercise 3. It shows that if the channel estimate Ĥe
1 is not suf-

ficiently close to the true channel Ĥ1, the decision may become incorrect. Sup-
pose the true channel is Ĥ1(z) = z

z−a , the estimate is Ĥe
1(z) =

z
z−0.2 , the equal-

izer is Ĥ2(z) = [Ĥe
1(z)]

−1 = z−0.2
z , and the decision is as in Figure 14.15. As-

sume the input signal x to be the same as in (14.12) Show that if a = 0.6 then
w(0) = x(0),w(1) = x(1),w(2) = x(2), but w(3) 6= x(3).

5. E This exercise continues the discussion in examples 14.5, 14.6 for the continuous-
time, causal and stable channel with impulse response h1 and transfer function

∀s ∈ RoC(h1) = {s | Re{s}>−1}, Ĥ1(s) =
s−2
s+1

.

(a) Calculate h1 and sketch it. (Observe how the zero in the right-half plane at
s = 2 accounts for the negative values.)

(b) The inverse of Ĥ1,

Ĥ2(s) =
s+1
s−2

,

has a pole at s = 2. So as a causal system, the inverse is unstable. But as a
non-causal system, it is stable with RoC = {s | Re{s} < 2} which includes
the imaginary axis. Evaluate the impulse response h2 of Ĥ2 as an anti-causal
system, and give a sketch.

Lee & Varaiya, Signals and Systems 651

http://LeeVaraiya.org


EXERCISES

(c) The impulse response h2 calculated in (a) is non-zero for t ≤ 0. Consider
the finite-duration, anti-causal impulse response h3 obtained by truncating h2
before time -5,

∀t ∈ R, h3(t) =
{

h2(t), t ≥−5
0, t <−5

and sketch h3. Calculate the transfer function Ĥ3, including its RoC, by using
the definition of the Laplace transform.

(d) Obtain the causal impulse response h4 by delaying h3 by time T , i.e.

∀t ∈ R, h4(t) = h3(t +T ).

Sketch h4 and find its transfer function, Ĥ4. Then Ĥ4 is an approximate inverse
of Ĥ1 with a delay of 5 time units. (Note: h3 has a delta function at 0.)

6. T The proportional controller of Figure 14.7 stabilizes the plant for K > 1. In this
exercise, we try to achieve the same effect by the cascade compensator of figure
14.1.

(a) Assume that the plant Ĥ2 is as given in Figure 14.7. Design Ĥ1 for the cascade
composition of figure 14.1 so that Ĥ2Ĥ1 is the same as the closed-loop transfer
function achieved in Figure 14.7.

(b) Now suppose that the model of the plant is not perfect, and the plant’s real
transfer function is

Ĥ2(s) =
1

M(s− ε)
,

for some small value of ε > 0. Using the same Ĥ1 that you designed in part
(a), what is the transfer function of the cascade composition? Is it stable?

7. T Consider a discrete-time causal plant with transfer function

Ĥ2(z) =
z

z−2
.

(a) Where are the poles and zeros? Is the plant stable?

(b) Find the impulse response of the plant. Is it bounded?

(c) Give the closed-loop transfer function for the P controller for this plant.

(d) Sketch the root locus for the P controller for this plant.

652 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


14. COMPOSITION AND FEEDBACK CONTROL

(e) For what values of K is the closed-loop system stable?

(f) Find the step response of the closed-loop system. Identify the transient and
steady-state responses. For K = 10, what is the steady-state tracking error?

(g) Suppose that the plant is instead given by

Ĥ2 =
z

z−2− ε
,

for some real ε≥ 0. For what values of K is the P controller robust for plants
with |ε|< 0.5?

8. T Consider the feedback composition in Figure 14.6. Suppose that Ĥ1Ĥ2 is causal
and strictly proper, meaning that the order of the numerator is greater than the
order of the denominator.

(a) Show that if Ĥ1Ĥ2 is causal and strictly proper, then so is Ĥ, the transfer
function of the feedback composition given by (14.1).

(b) For the discrete-time case, show that we can write

Ĥ1(z)Ĥ2(z) = z−1Ĝ(z), (14.14)

where G(z) is proper, and is the transfer function of a causal system. Intu-
itively, this means that there must be a net unit delay in the feedback loop,
because z−1 is the transfer function of a unit delay.

(c) Use the result of part (a) to demonstrate that the system Ĥ1Ĥ2 has state-
determined output.

(d) For the continuous-time case, show that we can write

Ĥ1(s)Ĥ2(s) = s−1Ĝ(s), (14.15)

where G(s) is proper, and is the transfer function of a causal system. In-
tuitively, this means that there must be an integration in the feedback loop,
because s−1 is the transfer function of an integrator.

(e) Use the result of part (c) to demonstrate that the system Ĥ1Ĥ2 has state-
determined output, assuming that the input is bounded and piecewise con-
tinuous.

9. E Consider the mth order polynomial sN + am−1sm−1 + · · ·+ a1s + a0. Suppose
all its roots have negative real parts. Show that all coefficients of the polynomial

Lee & Varaiya, Signals and Systems 653

http://LeeVaraiya.org


EXERCISES

must be positive, i.e., am−1 > 0, · · · ,a0 > 0. Hint. Express the polynomial as (s−
p1) · · ·(s− pm) with Re{pi} > 0. Note that complex roots must occur in complex
conjugate pairs. (The positiveness of all coefficients is a necessary condition. A
sufficient condition is given by the Routh-Hurwitz criterion, described in control
theory texts.)

10. T Consider the feedback composition in figure 14.6. The plant’s transfer function
is Ĥ2(s) = 1/s2.

(a) Show that no PI controller in the form Ĥ1(s) = K1 +K2/s can stabilize the
closed loop system for any values of K1,K2. Hint. Use the result of problem
9.

(b) Show that by the proper choice of the coefficients K1,K2 of a PD controller
in the form Ĥ1(s) = K1 +K2s, you can place the closed-loop poles at any
locations p1, p2 (these must be complex conjugate if they are complex).

11. T Consider the feedback composition in figure 14.6. The plant’s transfer function
is Ĥ2(s) = 1/(s2 +2s+1). The PI controller is Ĥ1(s) = K1 +K2/s.

(a) Take K2 = 0, and plot the root locus as K1 varies. For what values of K1 is the
closed loop system stable? What is the steady state error to a step input as a
function of K1?

(b) Select K1,K2 such that the closed loop system is stable and has zero-steady
state error.

654 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


A
Sets and Functions

Contents
A.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656

A.1.1 Assignment and assertion . . . . . . . . . . . . . . . . . . . 657
A.1.2 Sets of sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 658
A.1.3 Variables and predicates . . . . . . . . . . . . . . . . . . . . 659
A.1.4 Quantification over sets . . . . . . . . . . . . . . . . . . . . . 660
Probing Further: Predicates in Matlab . . . . . . . . . . . . . . . . . 661
A.1.5 Some useful sets . . . . . . . . . . . . . . . . . . . . . . . . 662
A.1.6 Set operations: union, intersection, complement . . . . . . . . 663
A.1.7 Predicate operations . . . . . . . . . . . . . . . . . . . . . . 664
A.1.8 Permutations and combinations . . . . . . . . . . . . . . . . 665
A.1.9 Product sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 666
Basics: Tuples, strings, and sequences . . . . . . . . . . . . . . . . . 667
A.1.10 Evaluating an expression . . . . . . . . . . . . . . . . . . . . 672

A.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677
A.2.1 Defining functions . . . . . . . . . . . . . . . . . . . . . . . 679
A.2.2 Tuples and sequences as functions . . . . . . . . . . . . . . . 679
A.2.3 Function properties . . . . . . . . . . . . . . . . . . . . . . . 680

A.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 680
Probing Further: Infinite sets . . . . . . . . . . . . . . . . . . . . . . 681
Probing Further: Even bigger sets . . . . . . . . . . . . . . . . . . . 683

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684

655



A.1. SETS

This appendix establishes the notation of sets and functions as used in the book. We
review the use of this mathematical language to describe sets in a variety of ways, to
combine sets using the operations of union, intersection, and product, and to derive logical
consequences. We also review how to formulate and understand predicates, and we define
certain sets that occur frequently in the study of signals and systems. Finally, we review
functions.

A.1 Sets

A set is a collection of elements. The set of natural numbers, for example, is the collec-
tion of all positive integers. This set is so commonly used that it is denoted by the special
symbol N ,

N= {1,2,3, · · ·}. (A.1)

In (A.1) the left hand side is the name of the set and the right hand side is an enumeration
or list of all the elements of the set, enclosed by curly braces. We read (A.1) as ‘N is
the set consisting of the numbers 1,2,3, and so on.’ The ellipsis ‘· · · ’ means ‘and so on’.
Because N is an infinite set we cannot list all its elements, and so we have to use ellipsis.
For a finite set, we may use ellipsis as a convenient shorthand, as in

A = {1,2,3, · · · ,100}, (A.2)

which defines A to be the set consisting of the first 100 natural numbers. N and A are sets
of numbers.

Many authors include the number zero in the set of natural numbers. For no particularly
good reason, in this text, we denote the set of non-negative integers by a slightly different
symbol,

N0 = {0,1,2,3, · · ·}.

An element of a set is also said to be a member of the set. The number 10 is a member
of the set A defined in (A.2), but the number 110 is not a member of A. We express these
two facts by the two expressions:

10 ∈ A, 110 /∈ A.

656 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


A. SETS AND FUNCTIONS

The symbol ‘∈’ is read ‘is a member of’ or ‘belongs to’ and the symbol ‘/∈’ is read ‘is not
a member of’ or ‘does not belong to.’

When we define a set by enumerating or listing all its elements, we enclose the list in
curly braces {· · ·}. It is not always necessary to give the set a name. We can instead refer
to it directly by enumerating its elements. Thus

{1,2,3,4,5}

is the set consisting of the numbers 1,2, · · · ,5.

The order in which the elements of the set appear in the list is not (usually) significant.
When the order is significant, the set is called an ordered set.

An element is either a member of a set or it is not. It cannot be a member more than once.
So, for example, {1,2,1} is not a set.

Two sets are equal if and only if every element of the first set is also an element of the
second set, and every element of the second set is a member of the first set. So if B =
{1,2,3,4,5} and C = {5,3,4,1,2}, then it is correct to state

B =C. (A.3)

Let A = {1,2, · · · ,10}, and B = {1, · · · ,5}. B is a subset of A, and A is a subset of N . We
express these assertions as:

B⊂ A, A⊂ N.

Some texts use the symbol ⊂ to denote a proper subset, where A ⊂ B means “A is a
subset of B and is not equal to B.” Those texts will write A⊆ B to mean “A is a subset of
B and may be equal to B.” In this text, we will not make the distinction. We will use the
symbol ⊂ to mean subset, and if we need to refer to a proper subset, we make it clear that
we are talking about a proper subset.

The empty set (a set with no elements) is written /0. For any set A, /0⊂ A.

A.1.1 Assignment and assertion

Although the expressions (A.1) and (A.3) are both in the form of equations, the “=” in
these two expressions have very different meanings. Expression (A.1) (as well as (A.2))
is an assignment: the set on the right-hand side is assigned to the name N on the left-hand

Lee & Varaiya, Signals and Systems 657

http://LeeVaraiya.org


A.1. SETS

side. Expression (A.3) is an assertion, which is an expression that can be true or false. In
other words, an assertion is an expression that has a truth value. Thus (A.3) asserts that
the two sides are equal. Since this is true, (A.3) is a true assertion. But the assertion

N= A

is a false assertion. An assertion is true or false, while an assignment is a tautology
(something that is trivially true because the definition makes it so). Some notation systems
make a distinction between an assignment and an assertion by writing an assignment using
the symbol “:=” instead of “=” as in

N := {1,2,3, · · ·}.

Other notation systems use “=” for assignments and ‘==’ for assertions. We will not make
these notational distinctions (except in Chapter 6), since it will be clear from the context
whether an expression is an assignment or an assertion.1

Context is essential in order to disambiguate whether an expression like

MyNumbers = {1,3,5}

is an assertion or an assignment. Thus, for example, in the context,

Define the set MyNumbers by MyNumbers = {1,3,5},

the expression is clearly an assignment, as indicated by “Define the set · · ·”. However, in
the following context,

If we define MyNumbers by MyNumbers = {1,3,5}, then
MyNumbers = {3,5,1},

the first “=” is an assignment, but the second is an assertion.

A.1.2 Sets of sets

Nearly anything can be an element of a set, so sets can be elements that are themselves
sets. Suppose, for example, that X is a set. Then we can construct the set of all subsets of

1A symbol such as “=” which has more than one meaning depending on the context is said to be over-
loaded. C++ uses overloaded symbols, while Java does not (Java does support overloaded methods, how-
ever). People often have difficulty reading other people’s code written in a language that permits overloading.

658 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


A. SETS AND FUNCTIONS

X , which is written ℘(X) and is called the powerset of X .2 Notice that since /0⊂ X , then
/0 ∈℘(X). ( /0 denotes the empty set.)

The fact that elements of sets can themselves be sets leads to an interesting limitation in
the notion of sets. Consider a set R defined to consist of all sets that are not members of
themselves. Then is the assertion R ∈ R true or false? If it is true, then R must not be a
member of R, and if it is false, then R must be a member of R. This paradox is known
as Russell’s paradox. It demonstrates that the notion of sets is not in fact as universal as
once thought. This subtlety, however, will not in any way infringe on our ability to use
sets in this book, so we can safely ignore it.

A.1.3 Variables and predicates

We can refer to a particular element of a set by using its name, for example the element 55
in N . We often need to refer to a general element in a set. We do this by using a variable.
We usually use lower case letters for variable names, such as x,y,n, t. Thus n ∈ N refers
to any natural number. N is the set of values that the variable n can take on. We may also
use a character string for a variable name such as city ∈ USCities. We say that “n is a
variable over N ” and “city is a variable over USCities,” where USCities is the set of cities
in the United States.

A variable can be assigned (or substituted by) any value in its range. Thus the assignment
n = 5 assigns the value 5 to n, and city = Berkeley assigns the value Berkeley to city.

Once again the use of “=” in an expression like n= 5 is ambiguous, because the expression
could be an assignment or an assertion, depending on the context. Thus, for example, in
the context,

Let n = 5,m = 6, and k = 2, then m = k+n

the first three “=” are assignments, but the last is an assertion, which happens to be false.

We can use variables to form expressions such as n≤ 5. Now, when we assign a particular
value to n in this expression, the expression become an assertion that evaluates to true or
false. (For instance, n≤ 5 evaluates to true for n= 3 and to false for n= 6.) An expression
such as x≤ 5 which evaluates to true or false when we assign the variable a specific value

2The powerset of X is sometimes written 2X .

Lee & Varaiya, Signals and Systems 659

http://LeeVaraiya.org


A.1. SETS

is called a predicate (in x).3 Predicates are used to define new sets from old ones, as in
this example:

B = {x ∈ N | x≤ 5}
which reads “B is the set of all elements x in N such that (the symbol ‘|’ means ‘such that’)
the predicate x≤ 5 is true.” More generally, we use the following prototype expression to
define a new set NewSet from an old set Set

NewSet = {x ∈ Set | Pred(x)}. (A.4)

In this prototype expression for defining sets, x ∈ Set means that x is a variable over the
set Set, Pred(x) is a predicate in x, and so NewSet is the set consisting of all elements x in
Set for which Pred(x) evaluates to true.

The concept of predicate is very general. In essence, a predicate is a condition involving
any attributes or properties of the elements of Set. Consider

TallStudents = {name ∈ Students | name is more than 6 feet tall}.

Here the predicate is “name is more than 6 feet tall.”

The variable name “x” used in (A.4) is not significant. The sets {x ∈ N | x ≥ 5} and
{n ∈ N | n≥ 5} are the same sets even though the variable names used in the prototypes
are different. This is because the predicates ‘n ≥ 5’ and ‘x ≥ 5’ both evaluate to true
or both evaluate to false when the same value is assigned to n and x. We say that the
variable name x used in (A.4) is a dummy variable since the meaning of the expression
is unchanged if we substitute x with another variable name, say y. You are already familiar
with the use of dummy variables in integrals. The two integrals below evaluate to the same
number: ∫ 1

0
x2dx =

∫ 1

0
y2dy.

A.1.4 Quantification over sets

Consider the set A = {1,3,4}. Suppose we want to make the assertion that every element
of A is smaller than 7. We could do this by the three expressions

1 < 7, 3 < 7, 4 < 7,
3A specific value is said to satisfy a predicate if it evaluates to true, and not to satisfy the predicate if the

predicate evaluates to false.

660 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


A. SETS AND FUNCTIONS

which gets to be very clumsy if A has many more elements. So mathematicians have
invented a shorthand. The idea is to be able to say that x < 7 for every value that the
variable x takes in the set A. The precise expression is

∀x ∈ A, x < 7. (A.5)

The symbol ‘∀’ reads ‘for all’, so the expression reads, “for all values of x in A, x < 7.”
The phrase ∀x ∈ A is called universal quantification. Note that in the expression (A.5), x
is again a dummy variable; the meaning of the expression is unchanged if we use another
variable name. Note, also, that (A.5) is an assertion which, in this case, evaluates to true.
However, the assertion

∀x ∈ A, x > 3

is false, since for at least one value of x ∈ A, namely x = 1, x > 3 is false.

Suppose we want to say that there is at least one element in A that is larger than 3. We
can say this using existential quantification as in

∃x ∈ A, x > 3. (A.6)

Probing Further: Predicates in Matlab

In Matlab, “=” is always used as an assignment, while “==” is used to express an asser-
tion. Thus the Matlab program,

n = 5, m = 6, k = 2, m = k+n

returns

n = 5, m = 6, k = 2, m =7

because the expression m=k+n assigns the value 7 to m. However, the Matlab program

n = 5, m = 6, k = 2, m == k+n

returns

n = 5, m = 6, k = 2, ans = 0

where ans = 0 means that the assertion m == k+n evaluates to false.

Lee & Varaiya, Signals and Systems 661

http://LeeVaraiya.org


A.1. SETS

The symbol ‘∃’ reads ‘there exists’, so the expression (A.6) reads ‘there exists a value of
x in A, x > 3’. Once again, any other variable name could be used in place of x, and the
meaning of the assertion is unchanged.

In general, the expression,
∀x ∈ A, Pred(x), (A.7)

is an assertion that evaluates to true if Pred(x) evaluates to true for every value of x ∈ A,
and

∃x ∈ A, Pred(x), (A.8)

is an assertion that evaluates to true if Pred(x) evaluates to true for at least one value of
x ∈ A.

Conversely, the assertion (A.7) evaluates to false if Pred(x) evaluates to false for at least
one value of x ∈ A, and the assertion (A.8) evaluates to false if Pred(x) evaluates to false
for every value of x ∈ A.

We can use these two quantifiers to define sets using the prototype new set constructor
(A.4). For example

EvenNumbers = {n ∈ N | ∃k ∈ N, n = 2k}

is the set of all even numbers, since the predicate in the variable n,

∃k ∈ N, n = 2k,

evaluates to true if and only if n is even.

A.1.5 Some useful sets

The following sets are frequently used in the book:

N = {1,2, · · ·} natural numbers
N0 = {0,1,2, · · ·} non-negative integers
Z = {· · · ,−2,−1,0,1,2, · · ·} integers

Z+ = {0,1,2, · · ·} non-negative integers, same as N0
R = (−∞,∞) real numbers

R+ = [0,∞) non-negative real numbers
C = {x+ jy | x,y ∈ R} complex numbers, j =

√
−1

662 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


A. SETS AND FUNCTIONS

If α,β are real numbers, then intervals of real numbers are written

[α,β] = {x ∈ R | α≤ x≤ β}
(α,β) = {x ∈ R | α < x < β}
(α,β] = {x ∈ R | α < x≤ β}

(−∞,∞) = R

Note the meaning of the difference in notation: both end-points α and β are included in
[α,β], and we say that [α,β] is a closed interval; neither end-point is included in (α,β),
and we call this an open interval; the interval (α,β] is said to be half-open, half-closed.
Whether an end-point is included in an interval or not is indicated by the use of square
brackets [, ] or parentheses (,).

Other useful sets are:

Binary = {0,1} the binary values
Binary∗ = {0,1}∗ set of all finite binary strings

Bools = {true, false} truth values
Bools∗ = {true, false}∗ set of finite sequences of truth values

Char = {a,b, · · ·} set of all alphanumeric characters
Char∗ = {a,b, · · ·}∗ set of all finite character strings

A.1.6 Set operations: union, intersection, complement

If A and B are sets, then the intersection A∩B is the set consisting of all elements that
are in both A and B. The union A∪B is the set consisting of all elements that are either
in A or in B or in both A and B. We can express these definitions using variables as:

A∩B = {x | x ∈ A∧ x ∈ B}, A∪B = {x | x ∈ A∨ x ∈ B}

where ∧ is the notation for the logical and and ∨ is the symbol for the logical or. The
predicate “x ∈ A∧x ∈ B” reads “x is a member of A and x is a member of B”; “x ∈ A∨x ∈
B” reads “x is a member of A or x is a member of B.” The logical and of two predicates
is also called their conjunction and their logical or is also called their disjunction. The
symbols ∧ and ∨ are called logical connectives.

If A,X are sets, then X \A is the set consisting of all elements in X that are not in A (think
of it as set subtraction, X −A). When A⊂ X , X \A is called the complement of A in X .
When X is understood, we can write Ac instead of X \A.

Lee & Varaiya, Signals and Systems 663

http://LeeVaraiya.org


A.1. SETS

B

A∩B

A

A∪B

X

Ac

A

(a) (b)

Figure A.1: (a) Union and intersection. (b) Set complement.

We gain some intuitive understanding by depicting sets and set operations using pictures.
Figure A.1 illustrates union, intersection, and complement.

A.1.7 Predicate operations

Given two predicates P(x) and Q(x) we can form their conjunction P(x)∧Q(x), and their
disjunction P(x)∨Q(x). These predicate operations correspond to the set operations of
intersection and union:

{x ∈ X | P(x)∧Q(x)} = {x ∈ X | P(x)}∩{x ∈ X | Q(x)}
{x ∈ X | P(x)∨Q(x)} = {x ∈ X | P(x)}∪{x ∈ X | Q(x)}. (A.9)

There is a helpful visual similarity between ∧ and ∩, and between ∨ and ∪.

The counterpart of the complement of a set is the negation of a predicate. We denote
by ¬Pred(x) the predicate that evaluates to false for any value of x for which Pred(x)
evaluates to true, and that evaluates to true for any value of x for which Pred(x) evaluates
to false. We read “¬Pred(x)” as “not Pred(x)” or the “negation of Pred(x).” For example,

{n ∈ N | ¬(n < 5)}= {5,6,7, · · ·},

since ¬(n < 5) evaluates to true if and only if n < 5 evaluates to false, which happens if
and only if n is larger than or equal to 5.

664 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


A. SETS AND FUNCTIONS

In general we have the following correspondence between predicate negation and set com-
plement:

{x ∈ X | ¬Pred(x)}= X \{x ∈ X | Pred(x)}. (A.10)

We can combine (A.9), (A.9), and (A.10) to obtain more complex identities. If P(x) and
Q(x) are predicates, then

{x ∈ X | ¬(P(x)∧Q(x))} = {x ∈ X | ¬P(x)∨¬Q(x)},
{x ∈ X | ¬(P(x)∨Q(x))} = {x ∈ X | ¬P(x)∧¬Q(x)}. (A.11)

These identities have counterparts for set operations. For some set X , if and Y ⊂ X and
Z ⊂ X , then

X \ (Y ∩Z) = (X \Y )∪ (X \Z),
X \ (Y ∪Z) = (X \Y )∩ (X \Z).

When the set X is understood, we can write these as

(Y ∩Z)c = Y c∪Zc,
(Y ∪Z)c = Y c∩Zc.

These identities are called de Morgan’s rules.

A.1.8 Permutations and combinations

Given a set X with a finite number n of elements, we sometimes wish to construct a subset
with a fixed number m≤ n of elements. The number of such subsets is given by(

n
m

)
=

n!
m!(n−m)!

, (A.12)

where the exclamation point denotes the factorial function. The notation
(n

m

)
is read “n

choose m”. It gives the number of combinations of m elements from the set n.

A combination is a set, so order does not matter. Sometimes, however, order matters.
Suppose for example that X = {a,b,c}. The number of subsets with two elements is(

3
2

)
=

3!
2!1!

=
6
2
= 3.

Lee & Varaiya, Signals and Systems 665

http://LeeVaraiya.org


A.1. SETS

These subsets are {a,b}, {a,c}, and {b,c}. Suppose instead that we wish to construct
ordered subsets of X with two elements. In other words, we wish to consider [a,b] to be
distinct from [b,a] (note the temporary use of square brackets to avoid confusion with un-
ordered sets). Such ordered subsets are called permutations. The number of m-element
permutations of a set of size n is given by

n!
(n−m)!

. (A.13)

The number of permutations is a factor of m! larger than the number of combinations in
A.12. For example, the number of 2-element permutations of X = {a,b,c} is six. They
are (a,b), (a,c), (b,c), (b,a), (c,a), and (c,b).

A.1.9 Product sets

The Cartesian product X ×Y of two sets X and Y consists of all pairs of elements (x,y)
with x ∈ X and y ∈ Y , i.e.

X×Y = {(x,y) | x ∈ X ,y ∈ Y}.

The product of two sets may be visualized as in Figure A.2. These pictures are informal,
to be used only to reinforce intuition. In Figure A.2(a), the set X = [0,6] is represented
by a horizontal line segment, and the set Y = [1,8] is represented by the vertical line
segment. The product set X ×Y = [0,6]× [1,8] is represented by the rectangle whose
lower left corner is the pair (0,1) and upper right corner is (6,8).

In Figure A.2(b), the discrete set X = {1,2,3,4,5,6} is represented by six points, while
and Y = [1,8] is represented the same as before. The product set is depicted by six vertical
line segments, one for each element of X . For example, the fifth segment from the left is
the set {(5,y) | 1≤ y≤ 8}. One point in that set is shown.

In Figure A.2(c), the product of two discrete sets is shown as an array of points. Unless
these are ordered sets, there is no significance to the the left-to-right or top-to-bottom or-
der in which the points are shown. In all three cases in the figure, there is no significance
to the choice to depict the first set in the product X×Y on the horizontal axis, and the sec-
ond set on the vertical axis. We could have done it the other way around. Although there
is no significance to which is depicted on the vertical axis and which on the horizontal,
there is significance to the order of X and Y in X ×Y . The set X ×Y is not the same as
Y ×X unless X = Y .

666 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


A. SETS AND FUNCTIONS

Basics: Tuples, strings, and sequences

Given N sets, X1,X2, · · · ,XN , (which may be identical), an N-tuple is an ordered collec-
tion of one element from each set. It is written in parentheses, as in

(x1,x2, · · · ,xN), where

xi ∈ Xi for each i ∈ {1,2, · · · ,N}.
The elements of an N-tuple are called its components or coordinates. Thus xi is the i-th
component or coordinate of (x1, · · · ,xN). The order in which the components are given
is important; it is part of the definition of the N-tuple. We can use a variable to refer to
the entire N-tuple, as in x = (x1, · · · ,xN).

Frequently the sets from which the tuple components are drawn are all identical, as in

(x1,x2, · · · ,xN) ∈ XN .

This notation means simply that each component in the tuple is a member of the same set
X . Of course, this means that a tuple may contain identical components. For example, if
X = {a,b,c} then (a,a) is a 2-tuple over X .

Recall that a permutation is ordered, like a tuple, but like a set and unlike a tuple,
it does not allow duplicate elements. In other words, (a,a) is not a permutation of
{a,b,c}. So a permutation is not the same as a tuple. Similarly, an ordered set does not
allow duplicate elements, and thus is not the same as a tuple.

We define the set of finite sequences over X to be

{(x1, · · ·xN) | xi ∈ X ,1≤ i≤ N,N ∈ N0}.

where if N = 0 we call the sequence the empty sequence. This allows us to talk about
tuples without specifying N. Finite sequences are also called strings, although by con-
vention, strings are written differently, omitting the parentheses and commas, as in

x1x2 · · ·xN .

We may even wish to allow N to be infinite. We define the set of infinite sequence over
a set X to be

{(x1,x2, · · ·) | xi ∈ X , i ∈ N0}.

Lee & Varaiya, Signals and Systems 667

http://LeeVaraiya.org


A.1. SETS

(0,1)

(6,8)

(5,6)

X = [0,6]

(a) (b)

X = {1, 2, 3, 4, 5, 6}

Y = [1,8] [0, 6] × [1,8]

(c)

a b c d e f

g

h

i

j

X = {a, b, c, d, e, f}

Y = {g, h, i, j}

{a, b, c, d, e, f} × {g, h, i, j}

Y = [1,8]

1 2 3 4 5 6

{1, 2, 3, 4, 5, 6} × [1, 8]

Figure A.2: Visualization of product sets. (a) The rectangle depicts the product set
[0,6]× [1,8]. (b) Together, the six vertical lines depict the product set {1, · · · ,6}×
[1,8]. (c) The array of dots depicts the set {a,b,c,d,e, f}×{g,h, i, j}.

668 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


A. SETS AND FUNCTIONS

We generalize the product notation to three or more sets. Thus if X ,Y,Z are sets, then
X×Y ×Z is the set of all triples or 3-tuples,

X×Y ×Z = {(x,y,z) | x ∈ X ,y ∈ Y,z ∈ Z},

and if there are N sets, X1,X2, · · · ,XN , their product is the set consisting of N-tuples,

X1×·· ·×XN = {(x1, · · · ,xN) | xi ∈ Xi, i = 1, · · · ,N}. (A.14)

We can alternatively write (A.14) as

N
∏
i=1

Xi. (A.15)

The large Π operator indicates a product of sets.

X ×X is also written as X2. The N-fold product of the same set X is also written as XN .
For example, RN is the set of all N-tuples of real numbers, and CN is the set of all N-tuples
of complex numbers. In symbols,

RN = {x = (x1, · · · ,xN) | xi ∈ R, i = 1, · · · ,N},
CN = {z = (z1, · · · ,zN) | zi ∈ C, i = 1, · · · ,N}.

Predicates on product sets

A variable over X ×Y is denoted by a pair (x,y), with x as the variable over X and y as
the variable over Y . We can use predicates in x and y to define subsets of X×Y .

Example A.1: The set

{(x,y) ∈ [0,1]× [0,2] | x≤ y} (A.16)

can be depicted by the shaded region in Figure A.3. The unshaded triangle depicts
the set

{(x,y) ∈ [0,1]× [0,2] | x≥ y}. (A.17)

Lee & Varaiya, Signals and Systems 669

http://LeeVaraiya.org


A.1. SETS

x = y

Y = [0, 2]

X = [0, 1]

Figure A.3: The rectangle depicts the set [0,1]× [0,2], the shaded region depicts
the set given by (A.16), and the unshaded triangle depicts the set given by (A.17).

Example A.2: The solid line in Figure A.4(a) represents the set

{(x,y) ∈ R2 | x+ y = 1},

the shaded region (including the solid line) depicts

{(x,y) ∈ R2 | x+ y≥ 1},

and the unshaded region (excluding the solid line) depicts

{(x,y) ∈ R2 | x+ y < 1}.

Similarly the shaded region in Figure A.4(b) depicts the set

{(x,y) ∈ R2 | − x+ y≥ 1}.

The overlap region in Figure A.4 (c) depicts the intersection of the two shaded
regions, and corresponds to the conjunction of two predicates:

{(x,y) ∈ R2 | [x+ y≥ 1]∧ [−x+ y≥ 1]}.

670 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


A. SETS AND FUNCTIONS

(a)

-x + y = 1

(b)

x + y = 1

(c)

x + y = 1-x + y = 1

Figure A.4: (a) The solid line depicts the subset of R2 satisfying the predicate
x+y= 1. The shaded region satisfies x+y≥ 1. (b) The solid line satisfies −x+y=
1, and the shaded region satisfies −x+ y ≥ 1. (c) The overlap region satisfies
[x+ y≥ 1]∧ [−x+ y≥ 1].

Lee & Varaiya, Signals and Systems 671

http://LeeVaraiya.org


A.1. SETS

A.1.10 Evaluating an expression

We have evaluated expressions several times in this appendix, each time relying on our
mathematical ability with simple expressions. We can develop systematic methods for
evaluating expressions that rely less on intuition, and can therefore handle more compli-
cated and intricate expressions.

Some examples of patterns of expressions are:

• A,B,N, · · · , names of sets

• A = {list of elements}

• x ∈ A, x /∈ A, set membership

• A = B, B⊂ A, and A⊃ B, set inclusion

• A∩B, A∪B, X×Y , X \A, Ac, set operations

• x,y, · · · , names of variables

• P(x),Q(x), · · · , predicates in x

• ∀x ∈ Set, P(x) and ∃x ∈ Set, Q(x), assertions obtained by quantification

• NewSet = {x ∈ Set | Pred(x)}, set definition

• P(x)∧Q(x), P(x)∨Q(x), ¬(P(x)), predicate operations

The patterns define the rules of grammar of the notation. The notation itself consists of
expressions, which are composed of

• constants, such as numbers and pre-defined sets,

• variables, which are names that are not pre-defined,

• operators, such as ∈, ∩, or = (as an assertion),

• quantifiers, such as ∀ and ∃, or

• definitions, namely = (as an assignment).

672 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


A. SETS AND FUNCTIONS

An expression is well-formed if it conforms to the established patterns.4 For example, if
P,Q and R are predicates, then the syntax implies that

¬[[¬(P(x))∨Q(x)]∧ [P(x)∨ [R(x)∧¬(P(x))]]] (A.18)

is also a predicate. Just as in the case of a computer language, you learn the syntax of
mathematical expressions through practice.5

In an expression, constants have a single meaning. For example, “20” is a number,
“Berkeley” is a city, and the constant “true” has a truth value. By contrast, a variable,
such as x, has no single meaning, unless it has been defined (which turns it into a con-
stant). An expression on constants has a single meaning. For example, “10+ 3” means
“13.” However, “x+3” has no single meaning, unless x has been defined. We say that in
the expression “x+3,” x is a free variable. An expression with a free variable acquires a
single meaning when that free variable is given a single meaning, if it is well formed with
that meaning. For example, “x+3,” has meaning 13 if x has meaning 10, but it is not well
formed if x has meaning Berkeley.

Quantifiers remove free variables from expressions.

Example A.3: In the expression “x = 0,” x is free. In the expression “∃ x ∈
R, x = 0,” x is no longer free. In fact, this expression has value true. In the
expression “∀ x ∈ R, x = 0,”, again x is not free, but this expression has value
false. The expression “∃ y ∈ R, x + 1 = y” still has free x. However, “∀ x ∈
R,∃ y ∈ R, x+ 1 = y” has no free variables, and has value true. The expression
“∀ x ∈ R, x+ 7,” however, is not well formed. It has neither free variables nor a
value.

A predicate expression is one that either has a meaning that is a truth value (true or false),
or can have such a meaning if its free variables are appropriately defined. Expression
(A.18) is an example a predicate expression.

4In this text, we do not attempt to define precisely what these established patterns are. To do so, we would
have to define a grammar, something that can be done formally, but is beyond our scope.

5The syntax of a language is the set of rules (or patterns) whereby words can be combined to form
grammatical or well-formed sentences. Thus the syntax of the ‘C’ language is the set of rules that a sequence
of characters (the code) must obey to be a C program. A C compiler checks whether the code conforms to the
syntax. Of course, even if the code obeys the syntax, it may not be what you intend; i.e. it may not execute
the intended computation.

Lee & Varaiya, Signals and Systems 673

http://LeeVaraiya.org


A.1. SETS

Q(x)

∧

¬

P(x)

∨

R(x)∧ (¬P(x))

R(x)

∨

P(x) ∧

¬

¬

P(x) ¬P(x)

Figure A.5: Parse tree for the expression (A.18).

Expressions also contain punctuation, such as parentheses. These help define the rela-
tionships among the components of the expression. It is beyond the scope of this book
to define completely the rules for constructing expressions6, but we can hint at the issues
with a brief discussion of parsing.

Parsing

To show that (A.18) is indeed a well-formed predicate expression, we must show that it
can be constructed using the syntax. We do this by parsing the expression (A.18) with
the help of matching brackets and parentheses. Parsing the expression will also enable us
to evaluate it in a systematic way.

The result is the parse tree shown in Figure A.5. The leaves of this tree (the bottom-
most nodes) are labeled by the elementary predicates P,Q,R, and the other nodes of the
tree are labeled by one of the predicate operations ∧,∨,¬. Each of the intermediate
nodes corresponds to a sub-predicate of (A.18). Two such sub-predicates are shown in
the figure. The last leaf on the right is labeled P(x). Its parent node is labeled ¬, and so
that parent node corresponds to the sub-predicate ¬(P(x)). Its parent node is labeled ∧,

6A text on compilers for computer programming languages will typically do this.

674 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


A. SETS AND FUNCTIONS

and it has another child node labeled R(x), so this node corresponds to the sub-predicate
R(x)∧¬(P(x)).
If we go up the tree in this way, we can see that the top of the tree (the root node) indeed
corresponds to the predicate (A.18). Since at each intermediate node, the sub-predicate is
constructed using the syntax, the root node is a well-formed predicate.

Evaluating

Suppose we know whether the predicates P(x),Q(x),R(x) evaluate to true or false for
some value of x. Then we can use the parse tree to figure out whether the predicate (A.18)
evaluates to true or false. To do this, we begin with the known truth values at the leaves
of the parse tree, use the meaning of the predicate operations to figure out the truth values
of the sub-predicates corresponding to the parents of the leaf nodes, and then the parents
of those nodes, and work our way up the tree to figure out the truth value of the predicate
(A.18) at the root node. In Figure A.6 the parse tree is annotated with the truth values
of each of the nodes. Since the root node is annotated ‘false,’ we conclude that (A.18)
evaluates to false.

Truth tables

The way in which the predicate operations transform the truth values is given in the fol-
lowing truth table:

P(x) Q(x) ¬P(x) P(x)∧Q(x) P(x)∨Q(x)
true true false true true
true false false false true

false true true false true
false false true false false

Consider a particular row of this table, say the first row. The first two entries specify that
P(x) is true and Q(x) is true. The remaining three entries give the corresponding truth
values for ¬P(x), P(x)∧Q(x) and P(x)∨Q(x), namely, ¬P(x) is false, P(x)∧Q(x) is
true, and P(x)∨Q(x) is true. The four rows correspond to the four possible truth value
assignments of P(x) and Q(x). This truth table can be used repeatedly to evaluate any
well-formed expression given the truth value of P(x) and Q(x).

Lee & Varaiya, Signals and Systems 675

http://LeeVaraiya.org


A.1. SETS

True

∧← True

¬← False

True

∨← True

True

∨← True

True ∧← False

¬← False

¬← True

True

Figure A.6: Parse tree for the expression (A.18) annotated with the truth values
of each of the nodes.

676 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


A. SETS AND FUNCTIONS

Thus, given the truth values of predicates P1(x), . . . ,Pn(x), the truth value of any well-
formed expression involving these predicates can be obtained by a computer algorithm
that constructs the parse tree and uses the truth table above. Such algorithms are used to
evaluate logic circuits.

A.2 Functions

In the notation
f : X → Y, (A.19)

X and Y are sets, and f is the name of a function. The function is an assignment rule that
assigns a value in Y to each element in X . If the element in X is x, then the value is written
f (x).

We read (A.19) as “ f is (the name of) a function from X into (or to) Y .” We also say
that f maps X into Y . The set X is called the domain of f , written X = domain( f ), the
set Y is called the range of f , written Y = range( f ).7 When the domain and range are
understood from the context, we write “ f ” by itself to represent the function or the map.
If x is a variable over X , we also say “ f is a function of x.”

Example A.4: Let the set Students contain all the students in this class. Each
element of Students is represented by a student’s name,

Students = {John Brown,Jane Doe, · · ·}.

We assign to each name in Students the student’s marks in the final examination,
a number between 0 and 100. This name-to-marks assignment is an example of a
function. Just as we give names to sets (e.g. Students), we give names to functions.
In this example the function might be named Score. When we evaluate the function
Score at any name, we get the marks assigned to that name. We write this as

Score(John Brown) = 90, Score(Jane Doe) = 91.2, · · ·

7In some mathematics texts, the set Y which we call the range is called the codomain, and range( f ) is
defined to be the set of all values that f takes, i.e., range( f ) = { f (x) | x ∈ X}. However, we will not use this
terminology.

Lee & Varaiya, Signals and Systems 677

http://LeeVaraiya.org


A.2. FUNCTIONS

JohnBrown

JaneDoe

[0, 100]

Students

Figure A.7: Illustration of Score.

Figure A.7 illustrates the function Score. Three things are involved in defining
Score: the set Students, the set [0,100] of possible marks, and the assignment of
marks to each name. In the figure this assignment is depicted by the arrows: the
tail of the arrow points to a name and the head of the arrow points to the marks
assigned to that name. We denote these three things by

Score : Students→ [0,100]

which we read as “Score is a function from Students into [0,100].” The domain of
the function Score is Students, and the range of Score is [0,100].

It is easy to imagine other functions with the same domain Students. For example, Height
assigns to each student his or her height measured in cm, SSN assigns students their social
security number, and Address assigns students their address. The range of these functions
is different. The range of Height might be defined to be [0,200] (200 cm is about 6.5
feet). Since a social security number is a 9-digit number, we can take {0,1, · · · ,9}9 to be
the range of SSN. And we can take the range of Address to be Char100, assuming that an
address can be expressed as a string of 100 characters, including blank spaces.

We usually use lower case letters for function names, such as f ,g,h, or more descriptive
names such as Score, Voice, Video, SquareWave, AMSignal.

678 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


A. SETS AND FUNCTIONS

Avoid a bad habit: It is important to distinguish between a function f and its value
f (x) at a particular point x ∈ domain( f ). The function f is a rule that assigns a value
in range( f ) to each x ∈ domain( f ), whereas f (x) is a point or element in range( f ).
Unfortunately, too many books encourage the bad habit by using ‘ f (x)’ as a shorthand
for ‘ f is a function of x.’ If you keep the distinction between f and f (x), it will be easier
to avoid confusion when we study systems.

A.2.1 Defining functions

To define a function, you must give the domain, the range, and the rule that produces
an element in the range given an element in the domain. There are many ways to do
this, as explored in much more depth in Chapter 2. Here we mention only two. The first
is enumeration. That is, in tabular form or some other form, each possible value in the
domain is associated with a value in the range. This method would be appropriate for the
Score function, for example. Alternatively, functions can be mathematically defined by
the prototype: define f : X → Y ,

∀ x ∈ X , f (x) = expression in x.

The ‘expression in x’ may be specified by an algebraic expression, by giving the graph of
f , by a table, or by a procedure.

A.2.2 Tuples and sequences as functions

An N-tuple x = (x1, · · · ,xN) ∈ XN can be viewed as a function

x : {1, · · · ,N}→ X .

For each integer in {1, · · · ,N}, it assigns a value in X . An infinite sequence y over the set
Y can also be viewed as a function

y : N→ Y,

or
y : N0→ Y,

depending on whether you wish to begin indexing the sequence at zero or one (both con-
ventions are widely used). This view of sequences as functions is in fact our model for
discrete-time signals and event traces, as developed in Chapter 1.

Lee & Varaiya, Signals and Systems 679

http://LeeVaraiya.org


A.3. SUMMARY

A.2.3 Function properties

A function f : X → Y is one-to-one if

∀ x1 ∈ X and ∀ x2 ∈ X , x1 6= x2⇒ f (x1) 6= f (x2).

Here the logical symbol ‘⇒’ means ‘implies’ so the expression is read: if x1,x2 are two
different elements in X , then f (x1), f (x2) are different.

Example A.5: The function Cube : R→ R given by

∀ x Cube(x) = x3,

is one-to-one, because if x1 6= x2, then x3
1 6= x3

2. But Square is not one-to-one be-
cause, for example, Square(1) = Square(−1).

A function f : X → Y is onto if

∀ y ∈ Y, ∃ x ∈ X , such that f (x) = y.

The expression above reads: ‘For each y in Y , there exists x in X such that f (x) = y.’

Accordingly, f is onto if for every y in its range there is some x in its domain such that
y = f (x).

Example A.6: The function Cube : R → R is one-to-one and onto, while
Square : R→ R is not onto. However, Square : R→ R+ is onto.

A.3 Summary

Sets are mathematical objects representing collections of elements. A variable is a rep-
resentative for an element of a set. A predicate over a set is an expression involving a
variable that evaluates to true or false when the variable is assigned a particular element

680 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


A. SETS AND FUNCTIONS

Probing Further: Infinite sets

The size of a set A, denoted |A|, is the number of elements it contains. By counting, we
immediately know that {1,2,3,4} and {a,b,c,d} have the same number of elements,
whereas {1,2,3} has fewer elements. It is more difficult to compare the number of
elements in the following infinite sets:

A = N= {1,2,3,4, · · ·}, B = {2,3,4,5 · · ·}, C = [0,1].

At first, we might say that A has one more element than B, since A includes B and has
one additional element, 1 ∈ A. However, these two sets have the same size.

The cardinality of a set is the number of elements in the set, but generalized to handle
infinite sets. Comparing the cardinality of two sets is done by matching elements using
one-to-one functions. Consider two sets A and B. We say that A has a smaller cardinality
than B, written |A| ≤ |B|, if there exists a one-to-one function mapping A into B. We say
that A and B have the same cardinality, written |A|= |B|, if |A| ≤ |B| and |B| ≤ |A|.

The cardinality of the infinite set A = N is denoted ℵ0, read “aleph zero” (aleph is
the first letter of the Hebrew alphabet). It is quite easy to prove using the definition of
cardinality that n < ℵ0 for any finite number n. We can now show that the cardinality of
B is also ℵ0. There is a one-to-one function f : A→ B, namely

∀ n ∈ A, f (n) = n+1,

so that |A| ≤ |B|, and there is a one-to-one function g : B→ A, namely

∀ n ∈ B, g(n) = n−1,

so that |B| ≤ |A|. A similar argument can be used to show that the set of even numbers
and the set of odd numbers also have cardinality ℵ0.

It is more difficult to show that the cardinality of N×N is also ℵ0. To see this,
consider a one-to-one function h : N2→ N (see Figure A.8),

h((1,1)) = 1, h((2,1)) = 2, h((2,2)) = 3, h((1,2)) = 4, h((1,3)) = 5, · · ·

Since a rational number m/n can be identified with the pair (m,n) ∈N2, we have shown
that the cardinality of the set of rational numbers is ℵ0.

Lee & Varaiya, Signals and Systems 681

http://LeeVaraiya.org


A.3. SUMMARY

(1,1) 

(2,2) 
(1,2) 

(2,1) 

(1,3) 
(2,3) (3,3) 

(3,2) 

(3,1) (4,1) 

(4,2) 

(4,3) 

(4,4) (4,3) (4,2) 
(4,1) 

(5,1) 

Figure A.8: A correspondence between N2 and N.

of the set. Predicates are used to construct new sets from existing sets. If the variable in a
predicate is quantified, the expression becomes an assertion.

Sets can be combined using the operations of union, intersection and complement. The
corresponding operations on predicates are disjunction, conjunction and negation. New
sets can also be obtained by the product of sets.

Functions are mathematical objects representing a relationship between two sets, the do-
main and the range. We have introduced the following patterns of expressions for func-
tions

• f ,g,h,Score, · · · , names of functions,

• f : X → Y , X = domain( f ),Y = range( f ), a function from X to Y ,

A function f : X → Y assigns to each value x ∈ X a value f (x) ∈ Y .

682 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


A. SETS AND FUNCTIONS

Probing Further: Even bigger sets

We can show that the cardinality of [0,1] is strictly larger than that of N; i.e. |[0,1]|> |N|
Since the function f : N→ [0,1] defined by

∀ n ∈ N, f (n) = 1/n

is one-to-one, we have |N| ≤ |[0,1]|. However, we can show that there is no one-to-one
function in the other direction. If there were such a function g : [0,1]→N, then it would
be possible to enumerate all the elements of [0,1] in an ordered list,

[0,1] = {x1,x2,x3, · · ·}. (A.20)

(The superscript here is not raising to a power, but just indexing.) We can show that this
is not possible. If we express each element of [0,1] by its decimal expansion (ignoring
the element 1.0), this list looks like

x1 = 0.x1
1x1

2x1
3 · · ·

x2 = 0.x2
1x2

2x2
3 · · ·

x3 = 0.x3
1x3

2x3
3 · · ·

· · ·
Construct any number y ∈ [0,1] with the decimal expansion

y = 0.y1y2y3 · · ·

such that for each i, yi 6= xi
i where xi

i is the i-th term in the decimal expansion of xi.
Clearly such a number exists and is in [0,1]. But then for every i, y 6= xi, so that y cannot
be in the list {x1,x2,x3, · · ·}. Thus, the list (A.20) is not complete.

The cardinality of [0,1] is denoted ℵ1, pronounced “aleph one,” and is strictly greater
than ℵ0. In this sense we can say that the continuum [0,1] has more elements than the
denumerable set N, even though both sets have infinite size. The obvious question is
whether there are cardinalities larger than ℵ1. In fact, there are sets of ever higher
cardinality,

ℵ0 < ℵ1 < ℵ2, · · ·
and sets with cardinality larger than all of these!

Lee & Varaiya, Signals and Systems 683

http://LeeVaraiya.org


EXERCISES

Exercises

Each problem is annotated with the letter E, T, C which stands for exercise, requires some
thought, requires some conceptualization. Problems labeled E are usually mechanical,
those labeled T require a plan of attack, those labeled C usually have more than one
defensible answer.

1. E In the spirit of Figure A.2, give a picture of the following sets:

(a) {1,2,3},
(b) [0,1]×{0,1},
(c) [0,1]× [a,b].

(d) {1,2,3}×{a,b},
(e) {a,b}× [0,1].

2. E How many elements are there in the sets

(a) {1, · · · ,6},
(b) {−2,−1, · · · ,10}, and

(c) {0,1,2}×{2,3}?

3. T Determine which of the following expressions is true and which is false:

(a) ∀n ∈ N, n > 1 ,

(b) ∃n ∈ N, n < 10 ,

(c) If A = {1,2,3} and B = {2,3,4} , then ∀x ∈ A,∀y ∈ B, x≤ y,

(d) If A = {1,2,3} and B = {2,3,4} , then ∀x ∈ A,∃y ∈ B, x≤ y,

(e) If A = {1,2,3} and B = {2,3,4} , then ∃x ∈ A,∀y ∈ B, x≤ y.

4. T In the following figure, X = {(x,y) | x2 + y2 = 1} is depicted as a 2-dimensional
circle and Z = [0,2] is shown as a 1-dimensional line segment. Explain why it is
reasonable to show the product set as a 3-dimensional cylinder.

684 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


A. SETS AND FUNCTIONS

Z X

X × Z

5. E In the spirit of Figure A.2, give a picture for the product set

{M,Tu,W,T h,F}× [8.00,17.00]

and indicate on your drawing the lecture hours for this class.

6. E In the spirit of Figure A.2, give a picture for the set A = {(x,y) | x ∈ [1,2],y ∈
[1,2]} and the set B = {(x,x) | x ∈ [1,2]}. Explain why the two sets are different.

7. C Give a precise expression for the predicate below so that Triangle is indeed a
triangle:

Triangle = {(x,y) ∈ R2 | Pred(x,y)}.
There are many ways of writing this predicate. One way is to express Pred(x,y) as
the conjunction of three linear inequality predicates. Hint: We used the conjunction
of two linear inequality predicates in Figure A.4.

8. T If X has m elements and Y has n elements, how many elements are there in X×Y ?
If Xi has mi elements, for i = 1, · · · , I, for some constant I, then how many elements
are there in

i=I

∏
i=1

Xi = X1×·· ·×XI?

9. T How many different 10-letter strings are there if each letter is drawn from the set
Al phabet consisting of the 26 lower case letters of the alphabet? How many such
strings are there with exactly one occurrence of the letter a?

10. T Recall that a set cannot contain duplicate elements. Now suppose X contains 10
elements.

(a) How many two-element combinations of elements from X are there?

(b) How many two-element permutations are there?

Lee & Varaiya, Signals and Systems 685

http://LeeVaraiya.org


EXERCISES

11. C Construct predicates for use in the prototype (A.4) to define the following sets.
Define them in terms of examples of sets introduced in this chapter.

(a) The set of U.S. cities with a population exceeding one million.

(b) The male students in the class.

(c) The old books in the library.

12. T Which of the following expressions is well formed? For those that are well
formed, state whether they are assertions. For those that are assertions, evaluate
the assertion to true or false. For those that are not assertions, find an equivalent
simpler expression.

(a) 2 ∈ {1,3,4},
(b) 3⊂ {1,3,4},
(c) {3} ⊂ {1,2,3},
(d) 2∪{1,3,4},
(e) {2}∪{1,3,4},
(f) [2.3,3.4] = {x ∈ R | 2.3≤ x≤ 3.4},
(g) {x ∈ R | x > 3∧ x < 4},
(h) [1,2]∩ [3,4] = /0.

13. E Define the following sets in terms of the sets named in section A.1.5

(a) The set of all 10-letter passwords.

(b) The set of all 5×6 matrices of real numbers.

(c) The set of all complex numbers with magnitude at most 1.

(d) The set of all 2-dimensional vectors with magnitude exactly 1.

14. E Give the set of all subsets ℘(X) of the set X = {a,b,c}.

15. T Suppose a set X has n elements. Let ℘(X) be the powerset of X . How many
elements are there in ℘(X)?

16. T Use Matlab to depict the following sets using the plot command:

(a) {(t,x) ∈ R2 | x = sin(t), and t ∈ {0, 1
20 2π, 2

20 2π, · · · , 20
20 2π}},

(b) {(y,x) ∈ R2 | y = ex, and x ∈ {−1,−1+ 1
20 ,−1+ 2

20 , · · · ,1}},

686 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


A. SETS AND FUNCTIONS

(c) {(y,x) ∈ R2 | y = e−x, and x ∈ {−1,−1+ 1
20 ,−1+ 2

20 , · · · ,1}}.

17. T Determine which of the following functions is onto, which is one-to-one, and
which is neither, and give a short explanation for your answer.

(a) License : CalVehicles→Char∗ given by ∀ vehicle ∈ CalVehicles,
License(vehicle) is the California license number of the vehicle

(b) f : R→ [−2,2], given by ∀ x ∈ R, f (x) = 2sin(x)

(c) f : R→ R, given by ∀ x ∈ R, f (x) = 2sin(x)

(d) conj : C→ C, the complex conjugate function

(e) f : C→ R2, given by ∀ z ∈ C, f (z) = (Re(z), Im(z)), where Re(z) is the real
part of z and Im(z) is the imaginary part of z.

(f) M : R2→ R2, ∀ (x1,x2) ∈ R2,

M(x1,x2) = (y1,y2)

where [
1 2
2 1

][
x1
x2

]
=

[
y1
y2

]
.

(g) Zero : R4→ R4,∀ x ∈ R4, Zero(x) = (0,0,0,0)

18. T Let A, B, and C be arbitrary sets. Let f : A→ A and g : A→ A be two functions
with domain and range A. Which of the following assertions is true for all choices
of A, B, C, f , and g?

(a) (A∪B)\C = (A\C)∪ (B\C).

(b) ℘(A∪B) =℘(A)∪℘(B).

(c) f ◦g = g◦ f .

(d) If both f and g are one-to-one, then f ◦g is one-to-one.

Note that f ◦g is function composition, defined in Section 2.1.5. X \Y is the com-
plement of Y in X , as explained in Section A.1.6. ℘(X) is the powerset of X .

19. E Each of the following expressions is intended to be a predicate expression. De-
termine whether it is true or false, or whether it is not well formed, or has a free
variable. If it has a free variable, identify the free variable.

(a) ∀ sets x, x⊂℘(x), where ℘(x) is the powerset of x.

Lee & Varaiya, Signals and Systems 687

http://LeeVaraiya.org


EXERCISES

(b) ∃ x ∈ R, {x ∈ Z|x+3 = 10}.
(c) ∀ n ∈ N, n = 2⇒ (n,n+1) ∈ {1,2,3}2.

(d) ∃x ∈ N, x+ y = 10.

688 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


B
Complex Numbers

Contents
B.1 Imaginary numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 690
B.2 Arithmetic of imaginary numbers . . . . . . . . . . . . . . . . . . 691
B.3 Complex numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . 692
B.4 Arithmetic of complex numbers . . . . . . . . . . . . . . . . . . . 693
B.5 Exponentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694
B.6 Polar coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . 696

Basics: From Cartesian to polar coordinates . . . . . . . . . . . . . 697
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701

Complex numbers are used extensively in the modeling of signals and systems for two
reasons. The first reason is that complex numbers provide a compact and elegant way
to talk simultaneously about the phase and amplitude of sinusoidal signals. Complex
numbers are therefore heavily used in Fourier analysis, which represents arbitrary signals
in terms of sinusoidal signals. The second reason is that linear time-invariant systems treat
signals that can be described as complex exponential functions in an especially simple
way. They simply scale the signals.

These uses of complex numbers are developed in detail in the main body of this text. This
appendix summarizes essential properties of complex numbers themselves. We review
complex number arithmetic, how to manipulate complex exponentials, Euler’s formula,

689



B.1. IMAGINARY NUMBERS

the polar coordinate representation of complex numbers, and the phasor representation of
sinewaves.

B.1 Imaginary numbers

The quadratic equation,
x2−1 = 0,

has two solutions, x = +1 and x = −1. These solutions are said to be roots of the poly-
nomial x2−1. Thus, this polynomial has two roots, +1 and −1.

More generally, the roots of the n-th degree polynomial,

xn +a1xn−1 + · · ·+an−1x+an, (B.1)

are defined to be the solutions to the polynomial equation

xn +a1xn−1 + · · ·+an−1x+an = 0. (B.2)

The roots of a polynomial provide a particularly useful factorization into first-degree poly-
nomials. For example, we can factor the polynomial x2−1 as

x2−1 = (x−1)(x+1).

Notice the role of the roots, +1 and −1. In general, if (B.1) has roots r1, · · · ,rn, then we
can factor the polynomial as follows

xn +a1xn−1 + · · ·+an−1x+an = (x− r1)(x− r2) · · ·(x− rn). (B.3)

It is easy to see that if x = ri for any i ∈ {1, · · ·n}, then the polynomial evaluates to zero,
so (B.2) is satisfied.

This raises the question whether (B.2) always has a solution for x. In other words, can we
always find roots for a polynomial?

The equation
x2 +1 = 0 (B.4)

has no solution for x in the set of real numbers. Thus, it would appear that not all polyno-
mials have roots. However, a surprisingly simple and clever mathematical device changes

690 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


B. COMPLEX NUMBERS

the picture dramatically. With the introduction of imaginary numbers, mathematicians
ensure that all polynomials have roots. Moreover, they ensure that any polynomial of
degree n has exactly n factors as in (B.3). The n values r1, · · · ,rn (some of which may be
repeated) are the roots of the polynomial.

If we try by simple algebra to solve (B.4) we discover that we need to find x such that

x2 =−1.

This suggests that
x =
√
−1.

But −1 does not normally have a square root.

The clever device is to define an imaginary number, usually written i or j, that is equal to√
−1. By definition,1

i× i =
√
−1×

√
−1 =−1.

This (imaginary) number, thus, is a solution of the equation x2 +1 = 0.

For any real number y, iy is an imaginary number. Thus, we can define the set of imaginary
numbers as

ImaginaryNumbers = {iy | y ∈ R, and i =
√
−1} (B.5)

It is a profound result that this simple device is all we need to guarantee that every poly-
nomial equation has a solution, and that every polynomial of degree n can be factored into
n polynomials of degree one, as in (B.3).

B.2 Arithmetic of imaginary numbers

The sum of i (or i1) and i is written i2. Sums and differences of imaginary numbers
simplify like real numbers:

i3+ i2 = i5, i3− i4 =−i.

If iy1 and iy2 are two imaginary numbers, then

iy1 + iy2 = i(y1 + y2), iy1− iy2 = i(y1− y2). (B.6)

1Here, the operator is ordinary multiplication, not products of sets.

Lee & Varaiya, Signals and Systems 691

http://LeeVaraiya.org


B.3. COMPLEX NUMBERS

The product of a real number x and an imaginary number iy is

x× iy = iy× x = ixy.

To take the product of two imaginary numbers, we must remember that i2 = −1, and so
for any two imaginary numbers, iy1 and iy2, we have

iy1× iy2 =−y1× y2. (B.7)

The result is a real number. We can use rule (B.7) repeatedly to multiply as many imagi-
nary numbers as we wish. For example,

i× i =−1, i3 = i× i2 =−i, i4 = 1.

The ratio of two imaginary numbers iy1 and iy2 is a real number

iy1

iy2
=

y1

y2
.

B.3 Complex numbers

The sum of a real number x and an imaginary number iy is called a complex number. This
sum does not simplify as do the sums of two reals numbers or two imaginary numbers,
and it is written as x+ iy or x+ jy.

Examples of complex numbers are

2+ i, −3− i2, −π+ i
√

2.

In general a complex number z is of the form

z = x+ iy = x+
√
−1y,

where x,y are real numbers. The real part of z, written Re{z}, is x. The imaginary part
of z, written Im{z}, is y. Notice that, confusingly, the imaginary part is a real number.
The imaginary part times i is an imaginary number. So

z = Re{z}+ iIm{z}.

692 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


B. COMPLEX NUMBERS

The set of complex numbers, therefore, is defined by

C= {x+ iy | x ∈ R,y ∈ R, and i =
√
−1}. (B.8)

Every real number x is in C , because x = x+ i0; and every imaginary number iy is in C ,
because iy = 0+ iy.

Two complex numbers z1 = x1 + iy1 and z2 = x2 + iy2 are equal if and only if their real
parts are equal and their imaginary parts are equal, i.e. z1 = z2 if and only if

Re{z1}= Re{z2}, and Im{z1}= Im{z2}.

B.4 Arithmetic of complex numbers

In order to add two complex numbers, we separately add their real and imaginary parts,

(x1 + iy1)+(x2 + iy2) = (x1 + x2)+ i(y1 + y2).

The complex conjugate of x+ iy is defined to be x− iy. The complex conjugate of a
complex number z is written z∗. Notice that

z+ z∗ = 2Re{z}, z− z∗ = 2iIm{z}.

Hence, the real and imaginary parts can be obtained using the complex conjugate,

Re{z}= z+ z∗

2
, and Im{z}= z− z∗

2i
.

The product of two complex numbers works as expected if you remember that i2 = −1.
So, for example,

(1+2i)(2+3i) = 2+3i+4i+6i2 = 2+7i−6 =−4+7i,

which seems strange, but follows mechanically from i2 =−1. In general,

(x1 + iy1)(x2 + iy2) = (x1x2− y1y2)+ i(x1y2 + x2y1). (B.9)

If we multiply z = x+ iy by its complex conjugate z∗ we get

zz∗ = (x+ iy)(x− iy) = x2 + y2,

Lee & Varaiya, Signals and Systems 693

http://LeeVaraiya.org


B.5. EXPONENTIALS

which is a positive real number. Its positive square root is called the modulus or magni-
tude of z, and is written |z|,

|z|=
√

zz∗ =
√

x2 + y2 .

How to calculate the ratio of two complex numbers is less obvious, but it is equally me-
chanical. We convert the denominator into a real number by multiplying both numerator
and denominator by the complex conjugate of the denominator,

2+3i
1+2i

=
2+3i
1+2i

× 1−2i
1−2i

=
(2+6)+(−4+3)i

1+4

=
8
5
− 1

5
i.

The general formula is

x1 + iy1

x2 + iy2
=

x1x2 + y1y2

x2
2 + y2

2
+ i
−x1y2 + x2y1

x2
2 + y2

2
. (B.10)

In practice it is easier to calculate the ratio as in the example, rather than memorizing
formula (B.10).

B.5 Exponentials

Certain functions of real numbers, like the exponential function, are defined by an infinite
series. The exponential of a real number x, written ex or exp(x), is

ex =
∞

∑
k=0

xk

k!
= 1+ x+

x2

2!
+

x3

3!
+ · · · .

We also recall the infinite series expansion for cos and sin:

cos(θ) = 1− θ2

2
+

θ4

4!
−·· ·

sin(θ) = θ− θ3

3!
+

θ5

5!
−·· ·

694 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


B. COMPLEX NUMBERS

The exponential of a complex number z is written ez or exp(z), and is defined in the same
way as the exponential of a real number,

ez =
∞

∑
k=0

zk

k!
= 1+ z+

z2

2!
+

z3

3!
+ · · · . (B.11)

Note that e0 = 1, as expected.

The exponential of an imaginary number iθ is very interesting,

eiθ = 1+(iθ)+
(iθ)2

2!
+

(iθ)3

3!
+ · · ·

= [1− θ2

2
+

θ4

4!
−·· · ]+ i[θ− θ3

3!
+

θ5

5!
−·· · ]

= cos(θ)+ isin(θ).

This identity is known as Euler’s formula:

eiθ = cos(θ)+ isin(θ). (B.12)

Euler’s formula is used heavily in this text in the analysis of linear time invariant systems.
It allows sinusoidal functions to be given as sums or differences of exponential functions,

cos(θ) = (eiθ + e−iθ)/2 (B.13)

and
sin(θ) = (eiθ− e−iθ)/(2i). (B.14)

This proves useful because exponential functions turn out to be simpler mathematically
(despite being complex valued) than sinusoidal functions.

An important property of the exponential function is the product formula:

ez1+z2 = ez1ez2 . (B.15)

We can obtain many trigonometric identities by combining (B.12) and (B.15). For exam-
ple, since

eiθe−iθ = eiθ−iθ = e0 = 1,

and
eiθe−iθ = [cos(θ)+ isin(θ)][cos(θ)− isin(θ)] = cos2(θ)+ sin2(θ),

Lee & Varaiya, Signals and Systems 695

http://LeeVaraiya.org


B.6. POLAR COORDINATES

so we have the identity

cos2(θ)+ sin2(θ) = 1.

Here is another example. Using

ei(α+β) = eiαeiβ, (B.16)

we get

cos(α+β)+ isin(α+β) = [cos(α)+ isin(α)][cos(β)+ isin(β)]

= [cos(α)cos(β)− sin(α)sin(β)]

+i[sin(α)cos(β)+ cos(α)sin(β)].

Since the real part of the left side must equal the real part of the right side, we get the
identity,

cos(α+β) = cos(α)cos(β)− sin(α)sin(β),

Since the imaginary part of the left side must equal the imaginary part of the right side,
we get the identity,

sin(α+β) = sin(α)cos(β)+ cos(α)sin(β).

It is much easier to remember (B.16) than to remember these identities.

B.6 Polar coordinates

The representation of a complex number as a sum of a real and an imaginary number,
z = x+ iy, is called its Cartesian representation.

Recall from trigonometry that if x,y,r are real numbers and r2 = x2 + y2, then there is a
unique number θ with 0≤ θ < 2π such that

cos(θ) =
x
r
, sin(θ) =

y
r
.

That number is
θ = cos−1(x/r) = sin−1(y/r) = tan−1(y/x).

696 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


B. COMPLEX NUMBERS

We can therefore express any complex number z = x+ iy as

z = |z|( x
|z| + i

y
|z|) = |z|(cosθ+ isinθ) = |z|eiθ,

where θ = tan−1(y/x). The angle or argument θ is measured in radians, and it is written
as arg(z) or ∠z. So we have the polar representation of any complex number z as

z = x+ iy = reiθ. (B.17)

The two representations are related by

r = |z|=
√

x2 + y2

and
θ = arg(z) = tan−1(y/x).

The values x and y are called the Cartesian coordinates of z, while r and θ are its polar
coordinates. Note that r is real and r ≥ 0.

Figure B.1 depicts the Cartesian and polar representations. Note that for any integer K,

rei(2Kπ+θ) = reiθ.

Basics: From Cartesian to polar coordinates

The polar representation of a complex number z is

z = x+ iy = reiθ,

where
r = |z|=

√
x2 + y2 and θ = arg(z) = tan−1(y/x).

However, you must be careful in calculating tan−1(y/x). For any angle θ,

tan(θ) = tan(θ+π).

Thus, for any real number y/x, there are two possible values for θ = tan−1(y/x) that lie
within the range [0,2π). You should select the one of these that yields a non-negative
value for r in

z = x+ iy = reiθ = r(cos(θ)+ isin(θ)).

This choice makes it reasonable to interpret r as the magnitude of the complex number.

Lee & Varaiya, Signals and Systems 697

http://LeeVaraiya.org


B.6. POLAR COORDINATES

Im

Re

y

x

θr

z = x+ iy

Figure B.1: A complex number z is represented in Cartesian coordinates as z =
x+ iy and in polar coordinates as z = reiθ. The x-axis is called the real axis, the
y axis is called the imaginary axis. The angle θ in radians is measured counter-
clockwise from the real axis.

This is because

rei(2Kπ+θ) = rei2Kπeiθ

and

ei2Kπ = cos(2Kπ)+ isin(2Kπ) = 1.

Thus, the polar coordinates (r,θ) and (r,θ+ 2Kπ) for any integer K represent the same
complex number. Thus, the polar representation is not unique; by convention, a unique
polar representation can be obtained by requiring that the angle given by a value of θ

satisfying 0≤ θ < 2π or −π < θ≤ π. We normally require 0≤ θ < 2π.

Example B.1: The polar representation of the number 1 is 1 = 1ei0. Notice that
it is also true that 1 = 1ei2π, because the sine and cosine are periodic with period
2π. The polar representation of the number −1 is −1 = 1eiπ. Again, it is true that
−1 = 1ei3π, or, in fact, −1 = 1eiπ+K2π, for any integer K.

698 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


B. COMPLEX NUMBERS

Products of complex numbers represented in polar coordinates are easy to compute. If
zi = |ri|eiθi , then

z1z2 = |r1||r2|ei(θ1+θ2).

Thus the magnitude of a product is a product of the magnitudes, and the angle of a product
is the sum of the angles,

|z1z2|= |z1||z2|, ∠(z1z2) = ∠(z1)+∠(z2).

Example B.2: We can use the polar representation to find the n distinct roots of
the equation zn = 1. Write z = reiθ, and 1 = 1e2kπ, so

zn = rneinθ = 1ei2kπ,

which gives r = 1 and θ = 2kπ/n, k = 0,1, · · · ,n−1. These are called the n roots
of unity. Figure B.2 shows the 5 roots of unity.

Whereas it is easy to solve the polynomial equation zn = 1, solving a general polynomial
equation is difficult.

Theorem The polynomial equation

zn +a1zn−1 + · · ·+an−1z+an = 0,

where a1, · · · ,an are complex constants, has exactly n factors of the form
(z−αi), where α1, · · ·αn are called the n roots. In other words, we can always
find the factorization,

zn +a1zn−1 + · · ·+an−1z+an =
n

∏
k=1

(z−αk) .

Some of the roots may be identical.

Note that although this theorem ensures the existence of this factorization, it does not
suggest a way to find the roots. Indeed, finding the roots can be difficult. Fortunately,
software for finding roots is readily available, for example using the Matlab roots func-
tion.

Lee & Varaiya, Signals and Systems 699

http://LeeVaraiya.org


B.6. POLAR COORDINATES

Im

Re
1

Figure B.2: The 5th roots of unity.

700 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


B. COMPLEX NUMBERS

Exercises

Each problem is annotated with the letter E, T, C which stands for exercise, requires some
thought, requires some conceptualization. Problems labeled E are usually mechanical,
those labeled T require a plan of attack, those labeled C usually have more than one
defensible answer.

1. E Simplify the following expressions:

(a)
3+4i
5−6i

× 3+6i
4−5i

,

(b)
e2+πi.

2. E Express the following in polar coordinates:

2−2i, 2+2i,
1

2−2i
,

1
2+2i

, 2i, −2i.

3. E Depict the following numbers graphically as in Figure B.1:

i, −2, −3− i, −1− i.

4. E Find θ so that
Re{(1+ i)eiθ}=−1.

5. E Express the six distinct roots of unity, i.e. the six solutions to

z6 = 1

in Cartesian and polar coordinates.

6. T Express the six roots of −1, i.e. the six solutions to

z6 =−1

in Cartesian and polar coordinates. Depict these roots as in Figure B.2.

7. T Figure out in for all positive and negative integers n. (For a negative integer n,
z−n = 1/zn.)

Lee & Varaiya, Signals and Systems 701

http://LeeVaraiya.org


EXERCISES

8. T Factor the polynomial z5 +2 as

z5 +2 =
5

∏
k=1

(z−αk),

expressing the αk in polar coordinates.

9. C How would you define
√

1+ i ? More generally, how would you define
√

z for
any complex number z?

10. T The logarithm of a complex number z is written logz or log(z) . It can be defined
as an infinite series, or as the inverse of the exponential, i.e. define logz = w, if
ew = z. Using the latter definition, find the logarithm of the following complex
numbers:

1, −1, i, −i, 1+ i

More generally, if z 6= 0 is expressed in polar coordinates, what is logz? For which
complex numbers z is logz not defined?

11. E Use Matlab to answer the following questions. Let z1 = 2+3i and z2 = 4−2i.
Hint: Consult Matlab help on i, j, exp, real, imag, abs, angle, conj, and
complex. Looking up “complex” in the help desk may also be helpful.

(a) What is z1 + z2? What are the real and imaginary parts of the sum?

(b) Express the sum in polar coordinates.

(c) Draw by hand two rays in the complex plane, one from the origin to z1 and the
other from the origin to z2. Now draw z1 + z2 and z1− z2 on the same plane.
Explain how you might systematically construct the sum and difference rays.

(d) Draw two rays in the complex plane to z3 = −2− 3i and z4 = 3− 3i. Now
draw z3× z4 and z3/z4.

(e) Consider z5 = 2eiπ/6 and z6 = z∗5. Express z6 in polar coordinates. What is
z5z6?

(f) Draw the ray to z0 = 1+1i. Now draw rays to zn = z0einπ/4 for n = 1,2,3, . . ..
How many distinct zn are there?

(g) Find all the solutions of the equation z7 = 1. Hint: Express z in polar coordi-
nates, z = reiθ and solve for r,θ.

12. E This problem explores how complex signals may be visualized and analyzed.

702 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


B. COMPLEX NUMBERS

(a) Use Matlab to plot the complex exponential function as follows:

plot(exp((-2+10i)*[0:0.01:1]))

The result is a spiraling curve corresponding to the signal f : [0,1]→C where

∀t ∈ [0,1] f (t) = e(−2+10i)t .

In the plot window, under the Tools menu item, use ‘Axes properties’ to turn
on the grid. Print the plot and on it mark the points for which the function is
purely imaginary. Is it evident what values of t yield purely imaginary f (t)?

(b) Find analytically the values of t that result in purely imaginary and purely real
f (t).

(c) Construct four plots, where the horizontal axis represents t and the vertical
axis represents the real and imaginary parts of f (t), and the magnitude and
angle of f (t). Give these as four subplots.

(d) Give the mathematical expressions for the four functions plotted above in part
(c).

13. T Euler’s formula is: for any real number θ,

eiθ = cosθ+ isinθ,

and the product formula is: for any complex numbers z1,z2,

ez1+z2 = ez1ez2 .

The following problems show that these two formulas can be combined to obtain
many useful identities.

(a) Express sin(2θ) and cos(2θ) as sums and products of sinθ and cosθ. Hint:
Write ei2θ = eiθeiθ (by the product formula) and then use Euler’s formula.

(b) Express sin(3θ) and cos(3θ) also as sums and products of sinθ and cosθ.

(c) The sum of several sinewaves of the same frequency ω but different phases is
a sinewave of the same frequency, i.e. given Ak,φk, k = 1, . . . ,n, we can find
A,φ so that

Acos(ωt +φ) =
n

∑
k=1

Ak cos(ωt +φk)

Express A,φ in terms of {Ak,φk}.

Lee & Varaiya, Signals and Systems 703

http://LeeVaraiya.org


NOTATION INDEX

704 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


Notation Index

[D→ R] signal space 28
◦ function composition 58
∑ summation 77
DM delay (discrete time) 368
Dτ delay (continuous time) 313
[A,b,c,d] state-space model 585
∗ convolution 207
N= {1,2, · · ·} natural numbers 656
· · · ellipsis 656
N0 = {0,1,2, · · ·} non-negative integers 656
∈ member 656
/∈ not a member 656
A⊂ B subset 657
A⊆ B subset 657
/0 empty set 657
= assignment or assertion 657
:= assignment 657
== assertion 658
℘(X) powerset 659
2X powerset 659

705



NOTATION INDEX

| such that 660
NewSet = {x ∈ Set | Pred(x)} prototype for sets 660
∀ for all 661
∃ there exists 662
Z integers 662
Z+ non-negative integers 662
R real numbers 662
R+ non-negative real numbers 662
C complex numbers 662
[α,β] closed interval 663
(α,β) open interval 663
(α,β] semi-open interval 663
[α,β) semi-open interval 663
Binary binary values 663
Binary∗ binary strings 663
Bools truth values 663
Bools∗ sequences of truth values 663
Char alphanumeric characters 663
Char∗ strings of alphanumeric characters 663
∩ intersection 663
∪ union 663
∧ logical and 663
∨ logical or 663
A\B set subtraction 663
Ac complement 663
¬ negation 664(n

m

)
choose 665

A×B Cartesian product 666
(x1,x2, · · ·) tuple 667
N
∏
i=1

Xi product of sets 669

XN product of sets 669
f : A→ B function 677
⇒ implies 680
|A| cardinality 681
ℵ0 aleph zero 681
ℵ1 aleph one 683

706 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


NOTATION INDEX

i imaginary number 691
Re{z} real part 692
Im{z} imaginary part 692
z∗ complex conjugate 693
|z| magnitude of a complex number 694
argz argument of a complex number 697
∠z argument of a complex number 697
reiθ polar representation 697

Lee & Varaiya, Signals and Systems 707

http://LeeVaraiya.org


Index

abs, 52
abs command in Matlab, 702
absent, 102
absolute value, 52
absolutely integrable, 297, 503, 504
absolutely summable, 503, 503
abstraction, 104, 108, 251
abstraction relations, 104
acoustic environment, 364
acoustic environments, 614
action, 237
adaptive equalizer, 39
adders, 400
additivity, 192, 193, 319
Adobe Photoshop, 365
affine, 192
automated guided vehicle, 262
air pressure, 6
air traffic control systems, 4
aleph one, 683, 706
aleph zero, 681, 706
Alexander Graham Bell, 394

algorithm, 63
aliasing, 474, 476
aliasing distortion, 491
allpass filter, 334
alphanumeric characters, 663, 706
AM, 468
amplitude, 9, 331, 689
amplitude modulation, 468
analog signal, 26
analytic, 597
angle, 697
angle command in Matlab, 702
answering service, 99
antenna arrays, 33
anti-aliasing, 482
anti-aliasing filter, 481
anti-causal, 513, 515
anti-lock brakes, 139
aperiodic signals, 298
application layer, 251
application-specific integrated circuit, 149
arcs, 99

708



INDEX

arg, 697
argument, 697, 707
arrows, 78, 99
ASIC, 149
assembly language, 402
assertion, 658, 705
assignment, 240, 657, 705
assignment rule, 50
audio, 5, 37, 614
audio equalization, 619
audio equalizer, 27
audio signals, 66
audio system, 364
automata, 240
automated guided vehicle, 262

Bach, 281
bandlimiting filter, 35
bank balance, 201
base station, 32
batteries, 32
beams, 33
behavior, 69, 112, 119
Behaviors, 112
bel, 394
Bell Telephone Labs, 394
Bell, Alexander Graham, 394
Berry, Gerard, 176
BIBO stable, 505
Binary, 20
Binary, 663
binary, 663, 706
binary strings, 663
bits per second, 27
BitStream, 62
BitStreams, 62
block diagrams, 78
blurred images, 365

Bools, 663
bounded, 505
bounded variation, 297, 505
bounded-input bounded-output stable, 505
branches, 635
broadband, 36
bubble, 99
butter command in Matlab, 396
Butterworth filter, 396

cable, 31
cable modems, 617
calculus, 522
calculus of complex variables, 597
call center, 2
capcitors, 640
cardinality, 681, 706
carrier frequency, 469
Cartesian coordinates, 697
Cartesian product, 5, 666, 706
Cartesian representation, 696
cascade composition, 78, 143, 144, 155, 612,

613
causal, 96, 382, 512, 514
causal sinusoidal signal, 534, 543, 555
CD, 7, 37
CD ROM, 38
cells, 32
cellular telephone, 139, 617
cellular telephones, 32
channel, 364, 614
Char, 663
Char∗, 663
characteristic polynomial, 588
characterstic polynomial, 587
cheby1 command in Matlab, 396, 398
cheby2 command in Matlab, 396, 398
Chebyshev 1 filter, 396

Lee & Varaiya, Signals and Systems 709

http://LeeVaraiya.org


INDEX

Chebyshev 2 filter, 396
choose, 665, 706
Church, Alonzo, 176
circle of fifths, 281
circuit, 327, 335, 580, 608
circuit analysis, 323
circular buffering, 401
circular convolution, 450
class, 401
clocks, 240
closed, 663
closed-loop, 344
closed-loop transfer function, 627
coaxial cable, 31
codec, 27
coder, 27
CodeRecognizer, 105
codomain, 6, 56, 677
collision avoidance, 4
color, 13, 14
ColorComputerImage, 15
ColorImage, 13
colormap, 14, 15, 59
ColormapImage, 59
ColormapImages, 48
ColorMapIndexes, 15
column vector, 222
combinations, 665
communication protocols, 247
communication systems, 323
communications, 36, 276
commutativity, 367
compact disc, 7, 37, 476
compact discs, 191
compensator, 614, 622
complement, 663, 687, 706
complex amplitude, 331

complex command in Matlab, 702
complex conjugate, 52, 693, 707
complex exponentials, 322
complex number, 689, 692
complex numbers, 662, 706
complex systems, 318
complex-valued functions, 318
components, 667
composition, 78
computer graphics, 276
ComputerImage, 15
ComputerVoice, 8
computing system, 139
conj command in Matlab, 702
conjugate, 52
conjugate, 52
conjugate symmetric, 332, 338
conjugate symmetry, 332, 380, 449
conjugation property:Laplace transform, 605
conjugation property:Z transform, 546
conjunction, 80, 663
connection restriction, 59, 80
constants, 672, 673
constructive semantics, 176
constructor, 401
continuous time, 5
continuous-time Fourier series, 415
continuous-time Fourier transform, 381, 428
continuous-time signal, 8
continuous-time signals, 22, 72, 313, 414
continuous-time state-space model, 218
continuous-time systems, 72, 226, 313
continuum, 5, 683
contour integral, 601
ContPeriodicp, 415
contrapositive, 507
control, 28

710 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


INDEX

control logic, 94
control signal, 228
control systems, 323
controllability, 228
controller, 28, 260, 276, 628
ContSignals, 72, 414
conv command in Matlab, 398
converge absolutely, 503
convergence in mean square, 296
convergence of the Fourier series:in mean

square, 296
convergence of the Fourier series:uniform,

295
convolution, 207, 367, 369, 545, 605, 705
convolution integral, 369
convolution sum, 198, 217, 545, 605
coordinates, 667
copper, 30
correctness, 65
critical path, 139
crosstalk, 35
CTFT, 381, 428
current mode, 237
cutoff frequency, 396
cycles per second, 9

DM, 315
DM, 368
Dτ, 313
damped oscillator, 230
damper, 640
dashpot, 640
DAT, 38
Data, 21
data sequences, 21
dB, 391, 394
DC, 289
dc gain, 571

DC motor, 634
de Morgan’s rules, 665
decibels, 391, 394
decision logic, 94
decision-directed adaptive equalization, 617,

649
decisions, 616
declarative, 52, 63, 276, 365
decoder, 27, 147
decryption, 27
definite integral formula, 419
definite integrals, 522
definitions, 672
degree

of a polynomial, 690
degrees, 284
delay, 84, 315, 325, 368, 452, 705

continuous time, 313
delay line, 400, 403
delay:property of Laplace transform, 604
delay:property of Z transform, 544
delta function, 520, 529
delta functions, 371, 493
demodulation, 468
denumerable, 683
derivative controller, 643
desired signal, 622
destination mode, 237
destructive interference, 305, 306
detection, 27
determinant, 586
deterministic, 101
DFS, 302, 339, 421
DFS coefficients, 340
DFT, 421
difference equation, 574
difference equations, 74, 312, 395

Lee & Varaiya, Signals and Systems 711

http://LeeVaraiya.org


INDEX

differential equation, 326, 579, 640
differential equations, 68, 72, 226, 312, 557
differential precoder, 147
differentiator, 643
digital audio, 37, 191
digital audio tape, 38
digital cellular telephone, 617
digital circuits, 139
digital signal, 26
digital signal processing, 237
digital signal processor, 237
digital telephony, 26
digital video discs, 38
dimension of a matrix, 221
dimension of a system, 189
Dirac delta function, 371, 462, 487, 492,

521, 529
Dirac delta functions, 441, 484, 493, 500
direct current, 289
direct form 1, 404
direct form 2, 405
Dirichlet conditions, 297, 503, 504
DiscPeriodicp, 415
discrete complex exponential, 324
discrete event, 243
discrete Fourier transform, 421
discrete rectangle, 428, 464
discrete square wave, 423, 463
discrete to continuous conversion, 483
discrete-event phase, 243
discrete-time Fourier series, 302, 339, 421
discrete-time Fourier transform, 379, 424
discrete-time signal, 8, 74
discrete-time signals, 22, 300, 313
discrete-time system, 74, 191
discrete-time systems, 313
DiscreteHorizontalSpace, 15

DiscreteTime, 8
DiscreteVerticalSpace, 15
DiscSignals, 74, 415
DiscToCont, 482
disjunction, 663
Display, 15
distortion, 27, 364, 614, 615
DNA, 3
domain, 6, 56, 677
domain name server, 57
don’t care, 151
double, 63
Doubles, 63
DSL modems, 617
DSP, 237
DSP toolbox, 385
DTFT, 379, 424
DTMF, 35
duality, 471
dummy variable, 77, 660
DVD, 38

e-mail application, 247
echo cancellation, 623
echo effect, 197, 212
eigenfunction, 322
eigenvalue, 593
eigenvalues, 587, 588
eigenvector, 609
electrical circuits, 640
electrical power, 11
electromagnetic radiation, 3
electromagnetic waves, 279
elements, 656
ellip command in Matlab, 396, 398
ellipsis, 656, 705
elliptic filter, 396
else, 100

712 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


INDEX

else arc, 100
embedded computer, 237
embedded system, 139
embedded systems, 402
empty sequence, 667
empty set, 657, 705
Encoder, 62
encoder, 27, 147
encryption, 27, 36
end-to-end, 251
energy, 296
EnglishText, 20
EnglishWords, 20
enhance, 27
environment, 260
Equal, 106
equalization, 614
equalizer, 365, 614
equilibrium, 197
equivalence relations, 104
error signal, 629
estimation, 276
ethernet, 247
Euler’s formula, 330, 695, 703
Euler’s relation, 543
event stream, 21
event streams, 94
event trace, 21
EventSet, 21
EventStream, 21
exchanging integral and summation, 350
existential quantification, 661
Exp, 23
exp, 53
exp, 694
exp command in Matlab, 702
exponential, 53

complex numbers, 53
exponential scaling property:Laplace trans-

form, 606
exponential sequence, 208
exponential signal, 527, 533
exponential signal:Z transform, 543
expressions, 672

f=ma, 73, 255
factoring polynomials, 690
factory automation, 3
false assertion, 658
far-end signal, 623
fast Fourier transform, 303, 422, 438
feedback, 81, 155, 403
feedback composition, 612, 626
feedback control, 612
feedback control system, 39
FFT, 303, 422, 438
fft command in Matlab, 438
fifth, 281
File, 20
filter, 364
filter coefficients, 395
filter command in Matlab, 398
filter design, 398
filter implementation, 398
filtering, 312, 341
finite, 304
finite Fourier series approximation, 289
finite impulse response, 382, 542
finite impulse response system, 211
finite signal, 286
finite state machine, 98, 236
finite summation identity, 424
FIR, 211, 382, 542
first harmonic, 283
first-order hold, 483

Lee & Varaiya, Signals and Systems 713

http://LeeVaraiya.org


INDEX

fixed point, 82, 156, 159
fixed points, 90
flash memory, 2
focus, 365
for all, 52, 661, 706
forced response, 577, 583
forking, 152
forward-Euler approximation, 608
Fourier analysis, 435
Fourier series, 289, 289, 338
Fourier series coefficients, 339, 415
Fourier series expansion, 289
Fourier transform, 381, 417, 428
Fourier transforms, 414
Fourier, Joseph, 289
fourth-power law, 32
frames, 16
FrameTimes, 16
free variable, 673
frequency, 9, 331
frequency domain, 276, 291
frequency response, 75, 312, 324, 324, 379,

503, 550, 558
difference equation, 577
differential equation, 583

FSM, 98
FT, 381, 428
full duplex, 36
function, 56, 677, 706
function composition, 58, 705
function space, 28
functions, 54, 677

in Matlab, 64
functions of time, 313
fundamental, 283
fundamental frequency, 289

Gödel, 176

gain, 334, 391
gcd, 294
geometric series identity, 506
geosynchronous, 35
geosynchronous satellite, 625
GHz, 279
Gibb’s phenomenon, 291
gigahertz, 279
glitches, 239
grammar, 672, 673
graph, 54
graphics, 276
grayscale, 12
greatest common divisor, 294
ground wire, 11
guard, 100
guards, 237

hand off, 32
hardware, 400
harmonic motion, 70
harmonics, 283, 289
helicopter, 501
Hertz, 9, 278
hertz, 279
hierarchical composition, 154
high fidelity, 364
highpass, 7, 365
homogeneity, 192, 193, 319
HorizontalSpace, 13
hostnames, 57
hot wires, 11
household electrical power, 11
human ear, 364, 619
hybrid, 623
hybrid systems, 232
Hz, 9, 279

714 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


INDEX

i, 691
i command in Matlab, 702
ideal interpolation, 483
IdealInterpolator, 483

textbf, 487
identically zero, 628
identities, 76
identity, 204, 229, 384, 412, 506, 533, 564,

696
identity matrix, 224
identity:finite summation, 424
ignition control, 139
IIR, 208, 215, 382, 395
IIR systems, 212
ill-formed, 138, 156, 159
Im{z}, 692
imag command in Matlab, 702
Image, 13
image enhancement, 3
Image processing, 276
image understanding, 276
images, 12
ImageSet, 16, 29
imaginary axis, 527
imaginary number, 691, 707
imaginary part, 692, 707
impedance, 623
imperative, 58, 63, 94, 276, 365
implementation of filters, 398
implies, 383, 680, 706
impulse, 198
impulse response, 198, 198, 210, 375, 376

SISO systems, 588
impulse train, 462, 464
ImpulseGen, 485
impulses, 371
incompleteness theorem, 176

Indices, 21
induction, 203
inductors, 640
infinite impulse response, 208, 212, 215,

382, 395
infinite sequence, 667, 679
initial conditions, 574, 581
initial state, 95
initial value problems, 573
Initial value theorem, 548
initial value theorem, 549
input alphabet, 95
input signal, 78
input signals, 95
Inputs, 94
instantaneous reactions, 138
integers, 662, 706
Integers16, 7
integral contoller, 643
integral formula, 419
integrals, 522
integration property:Laplace transform, 555
Intensity, 13
intensity, 285
interactive voice response, 2
internal rate of return, 205
Internet, 29

sound, 27
telephony, 35

internet, 247
Internet image search, 3
Internet protocol, 7
internet protocols, 251
interpolating, 473
intersection, 663, 706
interval, 663, 706
inverse, 224

Lee & Varaiya, Signals and Systems 715

http://LeeVaraiya.org


INDEX

inverse Fourier transform, 417
inverse transform, 538
inverse Z transform, 542
inverses, 416
IP, 7
IP address, 57
Iridium, 33
ITU, 38
iTunes visualizer, 2
IVR, 2

j, 691
j command in Matlab, 702
Java, 63, 64, 401
jet engines, 2

key, 281
kHz, 279
kilohertz, 279
Kirchhoff’s voltage law, 327, 580
Kronecker delta function, 198, 371, 464, 520

Laplace transform, 502, 522, 538
Laurent series, 597
left-sided, 524
left-sided signal, 515
LEO, 33
lHopitalsRule, 65, 385
light, 14
line card, 30
linear, 318
linear distortion, 364
linear function, 192, 192, 217
linear inequality predicates, 685
linear interpolation, 483
linear system, 195, 218, 319
linear time invariant systems, 276
linear time-invariant system, 195

linear, space-invariant, 365
LinearInterpolator, 483
linearity, 367, 577

of Fourier transforms, 454
linearity:of the Laplace transform, 534
linearity:of the Z transform, 541
LineSignals, 61
local loop, 30
LocalLoop, 61
logical and, 663, 706
logical connectives, 663
logical or, 663, 706
loudness, 237
low-earth-orbit, 33
lowpass, 335, 365
LSI, 365
LTI, 218
LTI differential equation, 579
LTI system, 14, 195, 231, 239, 312, 689
LTI systems, 276, 689

mac, 402
magnitude, 694, 707
magnitude distortion, 619
magnitude response, 334, 550, 558
major triad, 279, 292
malware, 3
manufacturing defect, 3
Maple, 65
mass-spring-damper system, 640, 644
matching game, 113
Mathematica, 65
Matlab, 64, 76

abs, 702
angle, 702
butter, 396
cheby1, 396, 398
cheby2, 396, 398

716 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


INDEX

complex, 702
conj, 702
conv, 398
ellip, 396, 398
exp, 702
fft, 438
filter, 398
filter design, 385
i, 702
imag, 702
j, 702
real, 702
remez, 387, 388
roots, 699
stem, 462, 464

matrices, 53
matrix, 221, 221
matrix exponential, 590
matrix inverse, 224
matrix multiplication, 223
McClellan, 388
Mealy machines, 104
medium access layer, 251
megahertz, 279
member, 656, 705
members, 401
memoryless, 71
meta data, 38
method, 67, 401
MHz, 279
micropascals, 394
microwave radio, 31
millibars, 66
MIMO, 188, 189, 216
min, 98
modal model, 236
mode, 236, 266

model, 68
modem, 36, 617
modem negotiation, 38
modes, 236
modulation, 458
modulo N counter, 130
modulus, 694
moment of inertia, 629
moment of intertia, 501
momentum, 256
Moore machines, 104
motor, 634
Motorola, 33
Motorola DSP56000, 402
Mouthpiece, 61
moving average, 74, 75, 88, 200, 209, 235,

369, 384, 552
moving average cross-over method, 235
MP3, 7
MP3 player, 2
muffled sound, 364
multipath, 305
multiple-input, multiple-output, 189
multiple-input, multiple-output system, 188
multiplicity, 519
multipliers, 400
multiply and accumulate, 402
musical instrument, 283
musical scale, 281

NaN, 63, 65
natural numbers, 4, 656, 662, 705
natural response, 577, 583
N , 4, 656
near-end signal, 623
negation, 664, 706
negative feedback, 627
Network, 62

Lee & Varaiya, Signals and Systems 717

http://LeeVaraiya.org


INDEX

network interface card, 247
network layer, 251
neutral wire, 11
newton, 7, 394
Newton’s law, 73, 255
Newton’s second law of motion, 70
Newton’s third law, 502
next state function, 96
nextState, 96, 190
NIC, 247
noise, 27, 35, 622
noise cancellation, 622
noise canceller, 622
noisy environment, 625
non-negative integers, 656, 662, 705
non-negative real numbers, 662, 706
nondeterministic, 101, 107
nondeterministic state machine, 175
norm, 535
normalized frequency, 475
not, 664
not a number, 63, 65
nslookup, 57
nucleotide, 3
Nyquist frequency, 478
Nyquist-Shannon sampling theorem, 481, 488

obfuscated programs, 3
object-oriented languages, 67
octave, 278
one-to-one, 680, 681
OnOff , 40
onto, 680
open, 663
open-loop response, 642
open-loop step response, 642
open-loop transfer function, 627
operational semantics, 176

operators, 672
optical fiber, 31
optics, 365
order, 396, 517, 529, 653
ordered set, 657, 666, 667
ordering, 94
ordering constraint, 95
oscillator, 215
out of phase, 11
output, 96, 190
output alphabet, 95
output equation, 190, 220
output function, 96, 96
output of a state machine, 100
output response, 190, 210, 575, 585, 590
output signal, 78
output signals, 95
Outputs, 94
overloaded, 658
overshoot, 635, 642

P controller, 628, 630, 643, 652
Pa, 7
packets, 85, 247
parallel composition, 151, 612, 620
parking meter, 108
Parks-McClellan algorithm, 388
parsing, 674
partial fraction expansion, 559, 559
pascal, 7, 394
passband, 387
PD controller, 646
perceived pitch, 477
period, 9
periodic, 300, 304
periodic signal, 285
periodic signals, 415

718 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


INDEX

periodicity of discrete-time frequency response,
324

periodicity of the DTFT, 380
permutations, 666, 667
phase, 283, 331, 689
phase response, 334
phase shift, 11, 334
phasor, 331
phoneme, 435
PID controller, 640, 643
pitch, 477
pixel, 15, 24
plant, 39, 260, 628
polar coordinates, 697
polar representation, 697, 707
pole-zero plot, 517
poles, 517, 529
polynomial, 690
port alphabet, 148
Position, 17
POSIX time, 4
possibleUpdates, 110
POTS, 29
power, 32, 394
power train, 39
powerset, 110, 182, 659, 687, 705
precision, 25
predicate, 54, 56, 660
predicate expression, 673
Pressure, 6
procedure, 63, 64
procedures, 401
product form inputs and outputs, 148
product formula, 695, 703
product of sets, 669, 706
programmable DSP, 402
propagation loss, 32

proper, 520, 549, 613, 617
proper subset, 657
proportional controller, 628, 630
protocol stack, 251
protocols, 247, 251
prototype, 660, 706
Psychoacoustics, 277
psychoacoustics, 276
public address system, 365
punctuation, 674
PureTone, 9

quantifiers, 672
quantization, 24, 25

radar, 4
radians, 278, 284
radians per second, 278
radio, 3
radio modem, 139
radio modems, 617
radio telephones, 32
ramp, 409, 597
range, 677
rational polynomials, 517, 528
RC circuit, 326, 335
Re{z}, 692
reachable, 147, 179, 181
reaction, 96, 191

composite state machines, 138
reactive, 138, 157
real command in Matlab, 702
real numbers, 662, 706
real part, 692, 707
real time, 382
real-valued functions, 318
R+, 5
R , 5

Lee & Varaiya, Signals and Systems 719

http://LeeVaraiya.org


INDEX

receiver, 364
receptive, 101, 110
receptiveness, 101
reconstruction, 473
RecordingStudio, 37
rectangle, 428, 464
rectangular pulse, 431
recursion, 403
recursive filter, 395
red eye, 3
redundancy, 37
RedundantBitStreams, 37
Reed-Solomon code, 37
refinement, 236
refinement states, 236
region of convergence, 511, 538
relation, 56, 112
remez command in Matlab, 387, 388
Remez exchange algorithm, 388
renaming, 180
residue

matrix, 588, 593
residues, 561
resistors, 640
resolution, 24
resonances, 614
rest, 197
retina, 14
reverberation, 230
RGB, 13
right-sided, 523
right-sided signal, 514
ripple, 396
RMS, 11, 11
roaming, 33
robust, 628, 631, 632
RoC, 511

rolloff, 396
root locus, 631, 635
root mean square, 11, 11
roots, 517, 690, 691, 699
roots command in Matlab, 699
roots of unity, 552, 699
router, 85
Routh-Hurwitz, 654
row vector, 222
Russell’s paradox, 659

safety, 120
safety-critical system, 2
sample, 7
sample rate, 474
SampledExp, 23
SampledImage, 24
SampledVoice, 22
Sampler, 474
samples, 191
sampling, 22, 473
sampling frequency, 23, 474
sampling interval, 23, 474
sampling period, 23
sampling rate, 23
sampling theorem, 481, 488
satellites, 31, 33
satisfy, 660
sawtooth, 407
scale, 281, 281
second harmonic, 283
self loop, 100
semantics, 176
sensor, 260
sequences, 20, 21, 667, 679
series, 506, 597
series connection, 143
set, 656

720 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


INDEX

set subtraction, 663, 706
sets and functions model, 95

nondeterministic state machines, 110
Shannon, Claude, 488
shift invariance, 318, 355
shift-and-add summation, 287
shock absorber, 640
side-by-side composition, 139, 140
sifting property, 374, 375, 492
sifting rule, 520, 529
signal, 2, 4

mathematical model, 4
signal flow graph, 403–405
signal flow graphs, 400
signal processing, 276, 323
signal space, 28, 705
signum function, 53
simple harmonic motion, 70
simulates, 115
simulation, 113, 188, 232
simulation relation, 114, 115
Simulink, 76
Sinc, 64

textbf, 487
sinc function, 487
single-input, single-output, 189, 584
sinusoidal discrete-time signals, 301
sinusoidal images, 285
sinusoidal signal, 331
sinusoidal signal:Laplace transform, 534, 555
sinusoidal signal:Z transform, 543
SISO, 189, 199, 584, 590
size of a matrix, 53
Sound, 5
sound, 5

on the Internet, 27
sound pressure, 394

spatial frequency, 285
spatial resolution, 24
speech codec, 139
speech recognition, 435
spring, 640
square matrix, 224
square wave, 418, 423, 442, 461
SquareRoot, 63
stability criterion for causal systems, 518
stable, 208
stable system, 501, 503, 505
state, 93, 99, 104, 188
state estimators, 276
state machine, 94
state machines, 76
state response, 96, 101, 190, 203, 210, 226,

585, 590
state space, 95, 266
state trajectory, 210
state transition, 99
state transition diagram, 99
state transitions, 93
state update equation, 190, 220
state-determined, 105
state-determined output, 163, 628, 653
state-machine models, 232
state-space model, 93, 190, 196, 208

continuous-time, 218, 590
discrete-time, 585, 705

StateMachine, 94
States, 94
stead-state response, 570
steady state output, 570
steady-state response, 579, 584, 632
stem command in Matlab, 462, 464
stem plot, 8
step, 191

Lee & Varaiya, Signals and Systems 721

http://LeeVaraiya.org


INDEX

step number, 95
step response, 360, 411
steps, 95
stock market prices, 384
stock prices, 75, 235
stopband, 387
storage, 27
strictly proper, 561, 653
strings, 667
stuttering element, 233
stuttering reaction, 97
stuttering symbol, 97
subsampling, 482
subscriber line, 30
subset, 657, 705
such that, 660, 706
summation, 77, 77, 705
summation identity, 424
summing signals, 9
SumOfTones, 9
superposition, 193
supervisory control, 260
suspension system, 640
switch, 31, 85
symbolic algebra programs, 65
symbolic mathematical software, 65
Symbols, 21
symmetry of Fourier series, 338
symmetry of Fourier transforms, 449
synchronous languages, 139
synchronous/reactive, 138
synchronous/reactive systems, 157
synchrony, 138, 155
system, 2, 4

tables, 57
tapped delay line, 400, 403
technical stock trading, 235

telephone, 29
telephone answering service, 99
telephone network, 481, 623
television, 3
terahertz, 279
there exists, 662, 706
three-prong plug, 11
THz, 279
timbre, 282
Time, 6
time index, 191
time invariant, 315
time reversal, 547
time scaling property:Laplace transform, 606
time shifting, 452
time-based models, 232
time-domain signals, 276, 313
time-invariant, 191
time-invariant system, 314
time-passage phase, 243
timed automata, 240
tine, 68, 70
tip and ring, 623
torque, 502, 629
trace, 101
tracking error, 632
traction control, 139, 189
traffic helicopter, 625
train whistle, 298
training sequence, 615
training signals, 39
transfer function, 503, 511, 523, 546, 577

difference equation, 577
differential equation, 582

transient, 88
transient output, 570
transient response, 579, 584

722 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


INDEX

transition, 99
transition band, 387
transition structure, 266
transitivity of simulation, 116
translation, 28
transmission, 27
transmitter, 364
transport layer, 251
transpose, 222
triad, 279
triangle inequality, 504
trigonometric identities, 76, 229, 696
true assertion, 658
truncation, 25
truth table, 675
truth values, 663, 706
tuning fork, 68, 70
tuple, 667, 679, 706
tuples, 669
turbines, 2
Turing, Alan, 176
twisted pair, 30, 623
two-sided signal, 513, 525
type constraint, 143

ultrasonic, 279
ultrasound imaging, 2
uniform convergence, 295
union, 663, 706
uniqueness of the Fourier series, 309
unit circle, 514, 516
unit delay, 400, 618
unit ramp, 532, 534, 597
unit step, 74, 360, 395, 411, 470, 502, 508,

513, 521, 525
UnitDelay, 130, 184
universal quantification, 52, 661
Unix time, 4

unstable, 208
unstable system, 501
unvoiced sound, 437
update, 94
update function, 95, 95, 96
update table, 103

variable, 4, 659
variables, 672
vector, 222
VerticalSpace, 13
video, 16
Video’, 16
visual syntax, 78
vocal chords, 437
Voice, 6
voice mail, 99
voice over IP, 7
voice-quality audio, 7
voiceband data modem, 36
voiceband data modems, 617
voiced sound, 437
Voices, 61
VoIP, 7

Wall Street, 76, 235, 384
watts, 394
waveform, 6
wavlength, 14
weighted delta function, 374
weighted delta functions, 372
well-formed, 156, 159, 168, 628
well-formed expressions, 673
well-tempered scale, 281
western musical scale, 281
Wheatstone bridge, 623
wildcard, 151
wireless, 32

Lee & Varaiya, Signals and Systems 723

http://LeeVaraiya.org


INDEX

Z transform, 502, 510, 538
zero-input output response, 206
zero-input response, 206, 210, 215, 217, 583

difference equation, 577
zero-input state response, 206, 215
zero-order hold, 483
zero-state impulse response, 210
zero-state output response, 206
zero-state response, 205, 210, 217, 583

difference equation, 577
zero-state state response, 206
zeroes, 517
ZeroOrderHold, 483
zeros, 529

724 Lee & Varaiya, Signals and Systems

http://LeeVaraiya.org


INDEX

Lee & Varaiya, Signals and Systems 725

http://LeeVaraiya.org

	Preface
	Signals and Systems
	Signals
	Systems
	Summary
	Exercises

	Defining Signals and Systems
	Defining functions
	Defining signals
	Defining systems
	Summary
	Exercises

	State Machines
	Structure of state machines
	Finite state machines
	Nondeterministic state machines
	Simulation relations
	Summary
	Exercises

	Composing State Machines
	Synchrony
	Side-by-side composition
	Cascade composition
	Product-form inputs and outputs
	General feedforward composition
	Hierarchical composition
	Feedback
	Summary
	Exercises

	Linear Systems
	Operation of an infinite state machine
	Linear functions
	The [A,B,C,D] representation of a system
	Continuous-time state-space models
	Summary
	Exercises

	Hybrid Systems
	Mixed models
	Modal models
	Timed automata
	More interesting dynamics
	Supervisory control
	Formal model
	Summary
	Exercises

	Frequency Domain
	Frequency decomposition
	Phase
	Spatial frequency
	Periodic and finite signals
	Fourier series
	Discrete-time signals
	Summary
	Exercises

	Frequency Response
	LTI systems
	Finding and using the frequency response
	Determining the Fourier series coefficients
	Frequency response and the Fourier series
	Frequency response of composite systems
	Summary
	Exercises

	Filtering
	Convolution
	Frequency response and impulse response
	Causality
	Finite impulse response (FIR) filters
	Infinite impulse response (IIR) filters
	Implementation of filters
	Summary
	Exercises

	The Four Fourier Transforms
	Notation
	The Fourier series (FS)
	The discrete Fourier transform (DFT)
	The discrete-Time Fourier transform (DTFT)
	The continuous-time Fourier transform
	Fourier transforms vs. Fourier series
	Properties of Fourier transforms
	Summary
	Exercises

	Sampling and Reconstruction
	Sampling
	Reconstruction
	The Nyquist-Shannon sampling theorem
	Summary
	Exercises

	Stability
	Boundedness and stability
	The Z transform
	The Laplace transform
	Summary
	Exercises

	Laplace and Z Transforms
	Properties of the Z tranform
	Frequency response and pole-zero plots
	Properties of the Laplace transform
	Frequency response and pole-zero plots
	The inverse transforms
	Steady state response
	Linear difference and differential equations
	State-space models
	Summary
	Exercises

	Composition and Feedback Control
	Cascade composition
	Parallel composition
	Feedback composition
	PID controllers
	Summary
	Exercises

	Sets and Functions
	Sets
	Functions
	Summary
	Exercises

	Complex Numbers
	Imaginary numbers
	Arithmetic of imaginary numbers
	Complex numbers
	Arithmetic of complex numbers
	Exponentials
	Polar coordinates
	Exercises

	Bibliography
	Notation Index
	Index

